International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

Comparing Closed-Source and Open-Source Code Static Measures

Luigi Lavazza
Dipartimento di Scienze Teoriche e Applicate
Universita degli Studi dell’Insubria
Varese, Italy
luigi.lavazza@uninsubria.it

Abstract—Most software engineering empirical studies are
based on the analysis of open-source code. The reason is that
open-source code is readily available, while usually software
development organizations do not give access to their code, not
even when the purpose is research and the code itself will not be
disclosed. As a consequence, the corpus of empirical knowledge
is related almost exclusively to open-source software. This poses
a quite important question: do the conclusions we draw from the
analysis of open-source code apply to closed-source code as well?
In this paper, a comparison of open-source and closed-source
code is performed, to provide some preliminary answers to the
question. Specifically, the goal of the paper is to evaluate whether
static code measures from open-source code are similar to those
obtained from closed-source code. To this end, an empirical
study was performed, involving closed-source code from two
organizations and open-source code from a few different projects.
The most popular static code measures were collected using a
commercial tool, and compared. The study shows that open-
source code measures appear similar to the measures obtained
from industrial closed-source code. However, we must note that
the study reported here involved just a few industrial projects’
measures. Therefore, replications of the work presented here
would be very useful.

Keywords-software code measures; static code measures; open-
source code; closed-source code.

I. INTRODUCTION

Software development organizations make their code avail-
able to researchers very rarely. This is due to their need
for preserving the competitive advantage deriving from code
ownership. As a consequence, the great majority of the empir-
ical studies involving source code analyze open-source code,
which is freely available. The conclusions reached by these
studies are expected to apply to all code, including industrial
closed-source code. However, the generalizability of studies
based on open-source software relies on the assumption that
closed-source software is “similar” to open-source software.
Specifically, it is expected that the measures of open-source
code are representative of closed-source software as well.

This paper describes an empirical study that aims at verify-
ing if and to what extent code measures of open- and closed-
source projects are similar. To this end, we measured a set
of industrial closed-source projects and a set of open-source
projects and compared the resulting measures. While in a
previous paper [1] we considered only method-level measures
of Java code, in this paper we extend the analysis to class-level
measures.

Based on our results, there are no major differences
among the measures collected from industrial and open-source
projects. The study reported here has the merit to provide

some objective evidence that studying open-source projects
as representative of closed-source projects is sound.

In this study, the investigation is limited to static code
measures for Java projects. Specifically, we consider the code
metrics that are most frequently used in the research literature
and the software industry, which can be easily obtained via
any state-of-the-art tool.

The paper is structured as follows. Section II describes the
static code measures investigated in this study. Section III
describes the empirical study; results are given in Sections IV
and V for method and class measures, respectively Section VI
discusses the results obtained by the study. Section VII dis-
cusses the threats to the validity of the study. Section VIII
accounts for related work. Finally, in Section IX some con-
clusions are drawn, and future work is outlined.

II. CODE MEASURES

Since the first high-level programming languages were
introduced, several measures were proposed, to represent the
possibly relevant characteristics of code [2]. For instance, the
size of a software module is usually measured in terms of
Lines Of Code (LOC), while McCabe Complexity (also known
as Cyclomatic Complexity) [3] was proposed to represent the
“complexity” of code, with the idea that high levels of com-
plexity characterize code that is difficult to test and maintain.
The object-oriented measures by Chidamber and Kemerer [4]
were proposed to recognize poor software design. For instance,
modules with high levels of coupling are supposed to be
associated with difficult maintenance.

We have considered some of the most popular method-level
measures (listed in Table I) and class-level measures (listed
in Table II). All the measures mentioned in Tables I and II
were collected via the SourceMeter tool [5]. Interested readers
can find additional information concerning the definition and
meaning of the selected metrics in the documentation of
SourceMeter.

Halstead proposed several code metrics [6], based on the to-
tal number of occurrences of operators V1, the total number of
occurrences of operands Ny, the number of distinct operators
71 and the number of distinct operands 75. SourceMeter does
not provide the individual measures of Ny, Ny, n1 and 19;
instead, it provides Halstead Program Length (HPL), which is
defined as HPL = N; + N,, and Halstead Program Vocabulary
(HPV), which is defined as HPV = n; + n,. Halstead Volume
(HVOL) is defined as HVOL = (N7 + N2) * loga(m + 12);
Halstead Calculated Program Length (HCPL) is defined as

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

71

TABLE I
METHOD MEASURES COLLECTED VIA SOURCEMETER.
Metric name Abbreviation
Lines of Code LOC
Logical Lines of Code LLOC
Halstead Program Length HPL
Halstead Program Vocabulary HPV
Halstead Calculated Program Length HCPL
Halstead Volume HVOL
Maintainability Index (Original version) | MI
McCabe’s Cyclomatic Complexity McCC

HCPL = 11 xloga(n1) 4+ n2 * loga(n2). McCabe’s complexity
(McCC) is used to indicate the complexity of a program, being
the number of linearly independent paths through a program’s
source code [3]. The Maintainability Index (MI) [7] is defined
as MI =171 —5.2xIn(HVOL) — 0.23 x (McCC) — 16.2 %
In(LLOC), where LLOC is the number of Logical LOC, i.e.,
the number of non-empty and non-comment code lines.

At the class level, we considered size metrics and the
metrics proposed by Chidamber and Kemerer [4].

TABLE II
CLASS MEASURES COLLECTED VIA SOURCEMETER.
Metric name Abbreviation
Lines of Code LOC
Logical Lines of Code LLOC
Coupling between Objects CBO

Response for a Class RFC
Weighted Methods per Class WMC
Lack of Cohesion in Methods | LCOMS5
Depth of Inheritance DIT
Number of Children NOC

Besides LOC and LLOC, which have the same meaning and
definition as the corresponding metrics used for methods, the
other class-level metrics are briefly described below [8].

WMC (Weighted methods per class) was defined as the sum
of the complexities of its methods. As a measure of complexity
SourceMeter assigns 1 to each method, hence WMC is equal
to the number of methods in the class.

CBO (Coupling between object classes) represents the num-
ber of classes coupled to a given class (efferent couplings
and afferent couplings) through method calls, field accesses,
inheritance, arguments, return types, and exceptions.

RFC (Response for a Class) measures the number of differ-
ent methods that can be executed when a method is invoked
for that object.

LCOM (Lack of cohesion in methods) measures the lack
of cohesion and computes into how many coherent classes
the class could be split. The original definition of LCOM [4]
was criticized because it depended on the number of methods
in the considered class. A few alternative definitions were
given. We use the one supported by SourceMeter, which is
computed by taking a non-directed graph, where the nodes
are the implemented local methods of the class and there is
an edge between the two nodes if and only if a common (local
or inherited) attribute or abstract method is used or a method
invokes another. The value of the metric is the number of

International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

connected components in the graph not counting those, which
contain only constructors, destructors, getters, or setters.

DIT (Depth of Inheritance Tree) provides for each class a
measure of the inheritance levels from the hierarchy top class.
In Java, where all classes inherit Object, the minimum value
of DIT is 1.

NOC (Number of Children) measures the number of imme-
diate descendants of the class.

III. THE EMPIRICAL STUDY

The empirical study involved closed-source and open-source
Java programs. This code was measured, and the collected data
were analyzed via well established statistical methods. The
dataset is described in Section III-A, while the measurement
and analysis methods are described in Section III-B. The
results we obtained are reported in Sections IV and V.

A. The Dataset

As already mentioned, obtaining source code from software
industries is not easy. Therefore, the closed-source code ana-
lyzed within the study is a convenience sample: it is the code
that we were able to obtain from industrial developers. The
open-source code analyzed within the study is the open-source
code used within or together with the analyzed industrial
projects. This guarantees a sort of “homogeneity” of code with
respect to the required quality.

The open-source projects that supplied the code for the
study are: Log4J] [9], JCaptcha [10], Pdfbox [11], Jasper-
Reports (abbreviated JReports where necessary) [12], Hiber-
nate [13].

Because of confidentiality reasons, the names of the in-
dustrial projects that supplied the code to be measured are
not given: these projects are named Industriall, Industrial2,
Industrial3 (abbreviated Ind1, Ind2 and Ind3 where necessary).
Indl and Ind2 are client and contract management systems
from a large service company, Ind3 is the back-end of a web
application. All of the industrial projects aimed to develop
software supporting the main business of the owner companies,
i.e., none of the considered projects delivered a product to
be sold on the market. Also, all projects were developed by
external software houses on behalf of the owner companies.
Because of confidentiality reasons, the code and the raw
measures are not available.

Table III gives some descriptive statistics of the considered
projects.

TABLE III
DESCRIPTIVE STATISTICS OF THE DATASETS.
Number LOC LOC per file
of files total | mean sd median range

Ind1 1507 | 202299 134 268 91 [1-6851]
Ind2 280 56419 201 286 93 [3-2336]
Ind3 1323 | 250193 189 307 100 [6-3644]
Log4J 1067 | 126354 118 121 80 [20-1357]
JCaptcha 248 25292 102 99 75 [16-691]
Pdfbox 1215 | 252158 208 251 125 [21-2966]
JReports 3177 | 533008 168 285 89 [27-4398]
Hibernate 2392 | 236527 99 127 63 [9-2146]

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

72

Table III provides, for each analyzed project, the number
of files, the total number of LOC, and the mean, standard
deviation, median and range of the LOC per file.

B. The Method

The first phase of the study consisted in measuring the code.
We used SourceMeter [5] to obtain the measures.

When analyzing the measures concerning methods, we
decided to exclude from the study all the methods having
unitary McCabe complexity, i.e., the methods that contain no
decision points, since those methods would bias the results. In
fact, these methods are quite numerous (since they include all
the setters and getters) and very small (the excluded methods
have mean and median LOC in the [3,6] range).

After removing the methods having unitary McCabe com-
plexity, we got the dataset whose descriptive statistics are
given in Table IV.

TABLE IV
DESCRIPTIVE STATISTICS OF THE DATASETS’ METHODS, AFTER
REMOVING METHODS WITH UNITARY MCCABE COMPLEXITY.

Num. LOC LOC per method
methods total | mean sd median range
Indl 1342 32654 24 38 15 [3, 626]
Ind2 703 17099 24 25 16 [3, 197]
Ind3 3339 | 127170 38 ol 21 [3, 1272]
Log4J 1729 29948 17 17 12 [3, 176]
JCaptcha 362 6386 18 15 13 [3, 100]
Pdfbox 3738 92679 25 26 16 [3, 380]
JReports 6815 | 180104 26 31 17 [3, 453]
Hibernate 2746 46505 17 15 12 [3, 221]

Table V gives the descriptive statistics of the datasets with
respect to classes.

TABLE V
DESCRIPTIVE STATISTICS OF THE DATASETS’ CLASSES.

Num. LOC LOC per class
classes total | mean sd median range
Indl 1159 | 151726 131 293 65 [7, 6735]
Ind2 247 48261 195 273 88 [3, 2268]
Ind3 1389 | 222711 160 292 75 [2, 3639]
Log4J 1210 85242 70 93 39 [1, 1218]
JCaptcha 240 17941 75 93 50 [2, 648]
Pdfbox 1408 | 206029 146 225 72 [2, 2894]
JReports 2895 | 371364 128 262 55 [3, 4088]
Hibernate 2832 | 166082 59 95 32 [2,2039]

Finally, we compared the collected measures. To this end,
we provide a visual representation of the data via boxplots
that describe the distributions, the mean and the median of
the measures collected from each project. We also performed
statistical analysis:

1) We performed a Kruskal-Wallis test for all the con-
sidered metrics, since the conditions for performing
ANOVA tests did not hold. As a result, we obtained
that, for all metrics, projects are not all equivalent with
respect to the considered measure.

2) To explore in detail the differences among projects, we
performed Wilcoxon rank sum tests for all project pairs,
for all the considered metrics.

International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

3) When a Wilcoxon rank sum test excluded that the
measures are equivalent, we evaluated the effect size via
Hedge’s g.

In all the performed analysis, we considered the results

significant at the usual a = 0.05 level.

IV. RESULTS OF METHOD-LEVEL MEASUREMENTS
This section reports the data collected from methods,
grouped according to the type of property being measured.

A. Size Measures

Boxplots of LOC measures are given in Figure 1: for the
sake of readability, Figure 1 provides also a view without
outliers. The mean values are represented as blue diamonds.

Hibernate — f[smmme o
JReports —|] ——— o < @ o
Pdfbox —] e—ce o
JCaptcha —{ oo
Log4) — {[emmmmeoo
INd3 | 1} e s mmoon o 0000 © o .
Ind2 —{ H]-+mm—como

Indi — || 4mm=o coowo ° °

o

200 —
400 —
600 —
800 —
1000 —|
1200 —|

o
LOC
Hibernate — +--[I_&]---------- 4
JReports o b----{ I @ }------mmomeoe- 4
Pdfbox o F--- I @ J---------------- 4
JCaptcha — +---{_&]--------- 1
Logd) o +F--CIe]---------- 1
R B I I 3 4
L B I I 4
Indt o +--C T &----omomomome- 4
| T T |
e & S 8 8
LoC

Figure 1. Boxplots of size (measured in LoC) distributions, with (top) and
without (bottom) outliers.

The results of the Wilcoxon rank sum tests and Hedges’s
g evaluations concerning LOC are given in Table VI. Specifi-
cally, a cell includes symbol ‘=" if the Wilcoxon rank sum test
could not exclude that the considered measures are equivalent;
otherwise, a cell includes one of the symbols ‘n,” ‘s, ‘m’ for
negligible, small and medium effect size, respectively (in no

case a large effect size was found).

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

73

TABLE VI
WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR METHODS’
LOC.
Indl Ind2 Ind3 Log4)] JCaptcha Pdfbox JReports Hibernate
Indl - n s s n n n s
Ind2 n - N s N = n N
Ind3 § s - s s s s s
Log4) s S s - n s s n
JCaptcha n s s n - s s n
Pdfbox n = s s s - n s
JReports n n s s s n - s
Hibernate s s s n n s s —
Hibernate — fjemmmno o
JReponS — }I]—zm- oo
Pdfbox —{] +mmmmemoco o
JCaptcha —{ fjemo
Log4) — (jmmmcmco
Ind3 —{ H[} te——cmmco @ w0 @mo o oo °
Ind2 — 4= o
Ind1 —{ | 4=—o w0 e o oo
I I I I I I I
o o o o o o o
S =3 S S S S
Y 53 © =} S S
LLOC
Hibernate 4 +---[1_ ¢ }---------- 4
JReports o k-----[CI @ }----mo-mommoooo 4
e T N S .
Scaptcha | +--CIE}-------- :
Loght o +--ATI8 - :
e S I S y
T N I S |
I R i) SRR y
I I I T T T T
o o o = o o o
- x @ < [re © ~
LLOC

Figure 2. Boxplots of size (measured in LLoC) distributions, with (top) and
without (bottom) outliers.

Boxplots of LLOC measures are given in Figure 2.
The results of the Wilcoxon rank sum tests and Hedges’s g
evaluations for LLOC measures are given in Table VII.

B. Complexity

Boxplots of McCabe cyclomatic complexity measures are
given in Figure 3. For the sake of readability, Figure 4 provides
the same data, excluding outliers.

The results of the Wilcoxon rank sum tests and Hedges’s g
evaluations are given in Table VIIL

International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

TABLE VII
WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR LLOC.
Indl Ind2 Ind3 Log4)] JCaptcha Pdfbox JReports Hibernate
Indl - n s N S n n s
Ind2 n - s s s n n s
Ind3 s s - s s s s s
Log4] s § s - n s § =
JCaptcha s S s n - s S n
Pdfbox n n N s s - n s
JReports n n s s § n - s
Hibernate s s s = n s s -
Hibernate — jme
JReports — jmmemo o
Pdfbox —{ fmmo
JCaptcha —{ |
Logd) —| =
Ind3 — I—mo oo o o oo ° °
Ind2 — = o
Ind1 —{ | oo o0
I T I I T
o o o o o =
=1 (=] =1 (=1 c
Y < © D c
McCC

Figure 3. Boxplots of McCabe cyclomatic complexity distributions.

C. Maintainability

Maintainability is measured via the Maintainability Index
M [7].

Boxplots of MI measures are given in Figure 5. For the
sake of readability, Figure 6 provides the same data, excluding
outliers.

The results of the Wilcoxon rank sum tests and Hedges’s g
evaluations are given in Table IX.

Hibernate 4 []-------- 4
JReports 4 [T ¢----------- 4
Pdfbox | [®]----------- 4
JCaptcha 4 [Je]-------- q
Logd) 4 I R-------- 4
T R) I s S ——— |
nd2 4 1T _$---------- 4
indt - -+~ ;
| T |
©w o b

McCC

Figure 4. Boxplots of McCabe cyclomatic complexity distributions. Outliers
omitted.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

TABLE VIII TABLE IX
WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR MCCABE WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR THE
COMPLEXITY. MAINTAINABILITY INDEX (MI).
Indl Ind2 Ind3 Log4] JCaptcha Pdfbox JReports Hibernate Indl Ind2 Ind3 Logd] ICaptcha Pdfbox JReports Hibernate
Ind1 - n n s s n = s Ind1 - s n m m s s m
Ind2 n - s s s = n s Ind2 S - n s m n n m
Ind3 n S - s S s s s Ind3 n n - m m s s m
Log4J S s s - n n n s Log4J m s m - n s s n
ICaptcha 8 s s n - s s n JCaptcha m m m n - S s =
Pdfbox n = S n S - n s Pdfbox s n s s s - n s
JReports = n s n s n - s JReports s n s s s n - s
Hibernate s s s s n s s - Hibernate m m m n = s s -
Hibernate — o oo [f- sum tests and Hedges’s g evaluations are given in Table X.
JReports o oo - -~ []---4
Pdfbox o o ommmp----[T]---4
Hibernate — e o
JCaptcha — oat---[T]--4
JReports - jmmm———nao o
LogdJ — o combo--{T}--
g Pdfbox — jemmo o o
Ind3 < ° 6 © 00 ©0000HmEDCEm—, - - - R
JCaptcha —{ =
Ind2 o ammont—--{T}--
Logd —| femmo ©
Ind1 ® 00 @ awof - - -
i N3 — [e—acawn @ oo 0o oo ° °
| | | | | | |
§ 3 S 8' o 3 S Ind2 — femmocwoo
M Indt —{ {smceces ° o o
T | | T T
Figure 5. Boxplots of Maintainability Index MI distributions. o = s = =
S g g g
HVOL
D. Halstead Measures i o
Figure 7. Halstead volume distributions.
Halstead identified measurable properties of software in
analogy with the measurable properties of matter [6]. Among
these properties is the volume, measured via the Halstead
Vplume (HVOL). Boxplots of HVOL measures are glven in Hibernate —| +-[8}------ 3
Figure 7. For the sake of readability, Figure 8 provides the
same data, excluding outliers. The results of the Wilcoxon rank JReports 1+~ #h-------oo- 1
Pdfbox - +-{I__¢}----------- 4
JCaptcha — +-{—#}------ 4
Hibernate — bommmmmmmoe e el - 1 Logd) - +-I&}--------- 4
JReports | boo) B : R N y
Pdfbox bommmmmmmm oo el }-------- 1 nd2 < F-- - 4
JCaptcha bommmmmomoee- ot 1 Indt o F--[T T e---m-mmm- 4
LogdJ — Fomommmmmm oo el }---------- 4 T T T T T
e 8 8 8 8 8
INd3 — F-====mmmmmmmmees (I I 1] S) < 2
Ind2 bemmmmmmnneeee NI I SERER . HVOL
Indt o F----mmmmmmmmme oo e 1T }---------- 4 Figure 8. Halstead volume distributions. Outliers omitted.
| T T | T
=) 2 =] =] IS Boxplots of Halstead Calculated Program Length (HCPL)
measures are given in Figure 9. For the sake of readability, Fig-
M ure 10 provides the same data, excluding outliers. The results
Figure 6. Boxplots of Maintainability Index MI distributions. Outliers of the Wilcoxon rank sum tests and Hedges’s g evaluations

omitted. are given in Table XI.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

TABLE X TABLE XI
WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR THE WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR THE
HALSTEAD VOLUME. HALSTEAD COMPUTED PROGRAM LENGTH.
Indl Ind2 Ind3 Log4)] JCaptcha Pdfbox JReports Hibernate Indl Ind2 Ind3 Log4)] JCaptcha Pdfbox JReports Hibernate

Indl - = n s s s s s Indl - = s s s s s m
Ind2 = - N s N s s m Ind2 = - s s s s s m
Ind3 n s - s N s s N Ind3 S s - s s s s m
Log4) s S s - n n = s Log4) S s s - n = n s
JCaptcha s s N n - n n n JCaptcha s N s n - n n n
Pdfbox s S s n n - n s Pdfbox s s s = n - n s
JReports S S s = n n - s JReports S s s n n n - s
Hibernate s m s s n s s — Hibernate m m m s n s s —

i The results of the Wilcoxon rank sum tests and Hedges’s g
ibernate —{ {j4mm=co o . . .
evaluations are given in Tables XII and XIII.
JRepons — |I]—-zm o
TABLE XII
Pdfbox —|] s oo WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR CLASS LOC.
JCaptcha —| {4 Indl Ind2 1Ind3 Logd] JCaptcha Pdfbox JReports Hibernate
Indl - n s s n n n s
Log4) — fe—oao o Ind2 n - s s s = n s
Ind3 S s - s s s s s
e 000 oo o o Log4) s N s - n s N n
Ind3 — HII- o ® JCaptcha n s s n - S s n
Pdfbox n = s s s - n s
Ind2 — I{H—ow oo JReports n n s s s n - s
Hibernate s s s n n s s -
Ind1 — H[l»-—-uo @ ®
T T T T T
o = = = 3 TABLE XIII
S] =] S WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR CLASS
HCPL LLOC.
Indl Ind2 Ind3 Log4) JCaptcha Pdfbox JReports Hibernate
Figure 9. Halstead computed program length distributions. Ind1 - n s s s n n s
Ind2 n - s s s n n s
Ind3 s s - s s s s s
Log4] s s s - n S s =
JCaptcha S s s n - s s n
V. RESULTS OF CLASS-LEVEL MEASUREMENTS Pdfbox n n s s s - n s
JReports n n s S s n - s
. . Hibernate S s s = n s s -
This section reports the data collected from classes, grouped
according to the type of property being measured.)
B. Coupling Measures
A. Size Measures Boxplots of CBO measures are given in Figures 12 and 13.

The results of the Wilcoxon rank sum tests and Hedges’s g

Boxplots of LOC and LLOC measures are given in Fig- oyajyations concerning CBO measures are given in Table XIV.

ure 11.
TABLE XIV
WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR CBO.
. | N e - Indl Ind2 Ind3 Log4] JCaptcha Pdfbox JReports Hibernate
F 4
Hibernate E]ZI Ind1 - n s n n s s s
Ind2 n - s n n n s n
JReports o F----[& }------------ 1 Ind3 s s - s s s n s
Log4] n n s - n s s n
Pdtbox o F---I_] & }------------- 4 JCaptcha n n s n - s s s
Pdfbox s n N S s - n n
JReports s s n S s n - s
JCaptcha '—_"EIZI_ ________ 1 Hibernate s n s n s n s -
Loght | b=~ [IET-- - :
ngs 4+ , C. Response for a Class
R [s S
Boxplots of RFC measures are given in Figures 14 and 15.
L0 I N EENECH bbbt ! The results of the Wilcoxon rank sum tests and Hedges’s g
IV T T ey o 4 evaluations concerning RFC measures are given in Table XV.

D. Results for WMC

Boxplots of WMC measures are given in Figures 16 and 17.
HCPL The results of the Wilcoxon rank sum tests and Hedges’s

g evaluations concerning WMC measures are given in Ta-
Figure 10. Halstead computed program length distributions. Outliers omitted. ple X VTI.

100 —
200 —
300 —
400 —
500 —
600 —
700 —

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

Hibernate — ({mm—mooco ° Hibernate —| {jsmmmmmn o °
JReports | || t———memwemn 0w 0w 0 o0 o JReports — || +mm—emcmn a0 o e o o o
Pdfoox —| ([} emmome w0 0 o o Pdfoox —| ([} semmeco @ o °
JCaptcha —{ o JCaptcha —{ feme
Logd) —| ([[emmmcoo o Logd) —| [0
Ind3 - ([} o 0@ 00 0 o o Ind3 — [} 4mm—csmmo @0 0owo 0o °
Ind2 - f[J-+mmeoo o o Ind2 — ([} He—mo o o
Indi - f+mesmm occo < o0 o Indi — {mmemexsw o ooo oo ° °
T T T T T T T T T T T T T T
e 8 8 8 8 8 8 8 e 8 8 8 8 8 8
S & 8 S3 3 3 R e & 8 g 3 3
LOoC LLOC
Hibernate — +{1_#------ 1 Hibernate — +{_¢------- 4
JReports 4 +-{_ I Je------------ 4 JReports o +-{_ I Je------------ 4
Pdibox o +-{_ T @ }-----------mmoooee 1 Pdibox o F-{_ T & f------------------ 4
JCaptcha — +-{T¢]------- 4 JCaptcha — +-[T_e}----- 1
Logd) - +[I—*F--------- 4 Logd) - +{I—*}--------- 1
Indd o r--{ T p----------m---- 4 R e I I 4
s B I I T B 4 s B I I T B 1
Indl o k- $----------- 4 Indl — +-[F--o--4
T T T T T T T T T T T T T
< 8 8 8 8 < 3 8 3 8 3 8 3
2 & 8 3 s 2 & & & &3
LOoC LLOC
Figure 11. Boxplots of LoC (left) and LLOC (right) distributions, with (top) and without (bottom) outliers.
Hibernate — ([} wmomeo @0 o Hibernate o+ @ }-------------- 4
JReports —| A} tmm——cco@mw o000 o o 0o o JReports o k--{ I @]-----mmmmommeoe 4
Pdfbox —| 1} a0 o 0 Pdibox —{ +--{ L& }--------momoe- 4
JCaptcha — il JCaptcha — +-{_Te }------- 4
Logd) - (|4 o Logd) 4 + [T & J----------- 1
Ind3 — ([} - momoocmocroo o R I I 4
Ing2 —| [J-mmoommno Ind2 | [T &----------- 4
INd| — frmmce 000 o o o Indt -| [TJ-e--+
T T T T T T T T T T T T T
° 8 8 B g% ®§ 8 ° = = & =
CBO CBO
Figure 12. Boxplots of CBO distributions. Figure 13. Boxplots of CBO distributions. Outliers omitted.

E. Results for Class Cohesion

Class cohesion was measured via the LCOMS metric. The results of the Wilcoxon rank sum tests and Hedges’s
Boxplots of LCOMS5 measures are given in Figures 18 and 19. g evaluations concerning LCOMS measures are given in

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Hibernate —| {]+mmm=oe woo °
JReports - |} ——um—om amamoom o o o 0
Pdfbox —{ [} e—cmwo oo
JCaptcha —{ {4mee
Logd) - (4mmeco © o

Ind3 — m—-_woooo omo® ocoo oo

o

Ind2 — - - 4m®o 0 owo o ° °
Indi - {[[+===ecca®m w oo @oo o o o
T T T T
< 8 8]
& < 3
RFC
Figure 14. Boxplots of RFC distributions.
Hibemate o +{ T ®}------ q
JReports < -1 $---------- q
Pdibox | F- {8]------------- 4
JCaptcha - +{Te]------ 4
Logd) 4 +{ T e}------- 4
R I I I L 1
e I I I S 4
Indt — F[CIJ--o---4
T T T T T
< & < 3 8

RFC

Figure 15. Boxplots of RFC distributions. Outliers omitted.

Table XVII.
FE. Results for the Depth of Inheritance

Boxplots of DIT measures are given in Figures 20 and 21.
The results of the Wilcoxon rank sum tests and Hedges’s
g evaluations concerning DIT measures are given in Ta-

ble XVIIIL.
G. Results for the Number of Children

Boxplots of NOC measures are given in Figures 22 and 23.

TABLE XV

WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR RFC.

International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

Hibernate —| fmemo = °
JRepons — '_—-no-m o o
Pdfbox —| [emmmmeco o

JCaptcha —{ fw
Logd) — | o
Ind3 —{ (] +m——cxceman o waw @ oo ° °
Ind2 — ([} Hmeecmo °

|nd1—|_'°°° ®© o oo ° °

500 —
1000 —
1500 —

o
wMmC

Figure 16. Boxplots of WMC distributions.

Hibernate < +[T¢----+
JReports < [Je-------- 4
Pdfbox 4 +CI___ &----------- q
JCaptcha - +{I_#}-----
Logd) 4 I e}------ q

incs —{ +- -+~ ---~---~~~=-~- 4
inc2 —{ v~ - - -- -~~~ -~ -~~~ 1
Indl — F[CTJ--+--4
T T T T T
o o o [=3 o
N < © <
wmMmC

Figure 17. Boxplots of WMC distributions. Outliers omitted.

The results of the Wilcoxon rank sum tests and Hedges’s g
evaluations concerning NOC measures are given in Table XIX.

VI. DISCUSSION

Figure 1 shows that the set of chosen projects are quite
homogeneous with respect to size, all projects having the
great majority of methods no longer than 200 LOC. This
homogeneity is confirmed by the effect size evaluations given

TABLE XVI
WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR WMC.

Indl Ind2 1Ind3 Log4] JCaptcha Pdfbox JReports Hibernate Indl Ind2 1Ind3 Log4] JCaptcha Pdfbox JReports Hibernate
Indl - s s n n n n n Indl - s s n n n n s
Ind2 s - n 1 m m s 1 Ind2 s - = 1 m S N 1
Ind3 s n - s s s s m Ind3 s = - S s S s m
Log4) n 1 N - = s s n Log4) n 1 s - = s s n
JCaptcha n m s = - S s n JCaptcha n m s = - S s n
Pdfbox n m s s s - n s Pdfbox n s s S s - n s
JReports n s s s s n - s JReports n s s s s n - s
Hibernate n 1 m n n S s - Hibernate s 1 m n n S s —

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

78

International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

Hibernate
JReports
Pdfbox
JCaptcha
Log4J
Ind3

Ind2

Ind1

Hibernate
JReports
Pdfbox
JCaptcha
Log4J
Ind3

Ind2

Ind1

Figure

100 —
150 —
200 —
250 —
300 —

LCOM5

Figure 18. Boxplots of LCOMS distributions.

e [E— |
o b s — :
_ | o
| e |
o brememeennnes e :
o brememeennnees s SRR :
e [E— S :
41 .
T I I I I T T
s 5 2 ®° 3 5 3
LCOM5
19. Boxplots of LCOMS distributions. Outliers omitted.

in Tables VI and XII: only negligible and small effect sizes
were found, both at the method and class level.

Similarly, the great majority of methods have McCabe
complexity not greater than 5 for all projects, with the only
exception of Industrial3 (see Figure 4). However, also in
project Industrial3, only outliers have alarmingly high McCabe
complexity. As for LOC, the effect size is at most small,
indicating substantial equivalence of the projects’ complexity

measures.

Hibernate 4 []------- 4 o ° o
JReports — F------- - ------ 1 o . .
Pdfbox /4 [| ~ f------mmmmmmmm e 4
JCaptcha - [[J--------mmmmmmmmmmmoee 4
logé) 1 [J------- 4 ° ° ° °
Ind3 4 [___]------- 4 °
Ind2 — | ° o
indt o [.
I T T 1 1 T T
i - o~ @ < 0 ©
DIT
Figure 20. Boxplots of DIT distributions.
Hibernate 4 [& }-------- 4
JReports - F-------- - 5
Pdfbox —| q Fommmm o 4
o e I I 4
Logh) | o }-------- ;
Ind3 4 [F-------- 4
Ind2 o |
oL R I S T — 4
T T T T T T
i - N © < 0

DIT

Figure 21. Boxplots of DIT distributions. Outliers omitted.

Concerning the Maintainability Index, Figure 5 shows that
Industriall and Industrial3 are the only projects that include
methods with negative MI; specifically, Industrial3 has several
methods with negative MI, some with alarmingly low values.
So, even though the situation excluding outliers (Figure 6)
seems to indicate a rather homogeneous situation, industrial
projects appear to be less maintainable then open-source
projects in several cases: according to Table IX, in 8 out of
15 comparisons involving a closed-source and an open-source

TABLE XVII TABLE XVIII
WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR LCOMS. WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR DIT.
Indl Ind2 1Ind3 Log4] JCaptcha Pdfbox JReports Hibernate Indl Ind2 1Ind3 Log4] JCaptcha Pdfbox JReports Hibernate
Indl - n n n n n n n Indl - s n n m s m n
Ind2 n - n n n n n n Ind2 s - s S 1 m 1 s
Ind3 n n - n n n = s Ind3 n s - n m S m n
Log4) n n n - N s n s Log4) n N n - s n m n
JCaptcha n n n s - n n n JCaptcha m 1 m s - S s m
Pdfbox n n n s n - n n Pdfbox s m s n s - s s
JReports n n = n n n - s JReports m 1 m m s s - m
Hibernate n n s S n n s - Hibernate n s n n m S m —

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

79

°
o

Hibernate —

7

JReports —

Pdfbox —|

!

JCaptcha —|

°

o
o

Logd) —
Ind3 —

Ind2 —

o

o
o

LA i

Ind1 —

0
50
100 —
150 —

NOC

Figure 22. Boxplots of NOC distributions.

Hibernate — I .
JReports — | .
Pdfbox I .
JCaptcha —| | .
Log4) — | .
Ind3 — | .

Ind2 | o

Ind1 — | .

1.0
0.5 —
0.0 —
05 -
1.0 —

NOC

Figure 23. Boxplots of NOC distributions. Outliers omitted.

project, the effect size was medium. Instead, comparisons in-
volving only open-source projects and comparisons involving
only closed-source projects revealed at most small effect size.

Finally, we can see that all projects are fairly homogeneous
with respect to Halstead volume (Figures 7 and 8 and Table X).
Similar considerations apply for Halstead Computed Program
Length (HCPL), with medium effect size differentiating indus-
trial projects only with respect to Hibernate (Table XI).

In conclusion, we can observe that the analyzed open-source

TABLE XIX
WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR NOC.
Indl Ind2 1Ind3 Log4] JCaptcha Pdfbox JReports Hibernate
Indl - n n n n n = n
Ind2 n - n n s n n n
Ind3 n n - n n n n n
Log4) n n n - n n n n
JCaptcha n s n n - n n n
Pdfbox n n n n n - n n
JReports = n n n n n - n
Hibernate n n n n n n n -

International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

and closed-source code appear sufficiently similar, as far as
method-level metrics are concerned.

Halstead volume and program length appear homogeneous
through open-source and closed source programs (Tables X
and X), with the exception of Hibernate, which appears
“smaller” than the closed-source industrial programs.

Concerning coupling (CBO) and cohesion (LCOMS), no
difference could be spot between open-source and closed-
source programs.

RFC and WMC appear larger in Ind2 and Ind3, with
medium effect size in just a few cases (Tables XV and XVI).

Finally, the situation appear quite homogeneous also when
inheritance-related metrics (DIT and NOC) are concerned.
There are several medium effect size values in Table XVIII
concerning DIT, but we have to consider that all the DIT values
are small: as shown in Figure 21, the great majority of classes
has DIT not grater than 2. Only Ind2 seems to make very
little usage of inheritance (its values of both DIT and NOC
are definitely small).

Overall, neither for classes nor for methods there are re-
markable differences between open-source and closed-source
programs.

VII. THREATS TO VALIDITY

Concerning the application of traditional measures, we used
a state-of-the-art tool (SourceMeter), which is widely used and
mature, therefore we do not see any threat on this side.

A risk with the type of work presented here is that the code
that companies are willing to provide to researchers might
differ from the code they would not provide. This is possibly
due to the desire to “hide” low-quality code. In our case,
it is not so: the closed-source code being measured is the
complete code being used to build production applications and
is representative of the companies’ software in general.

Concerning the external validity of the study, as with most
Software Engineering empirical studies, we cannot claim that
the obtained results are generalizable. Specifically, the limited
number of considered projects calls for replications of this
study, involving more industrial closed-source code projects.

VIII. RELATED WORK

Open-source projects have been compared with closed-
source ones multiple times, but usually with respect to external
perceivable qualities. In fact, many of the published papers
aimed at answering questions like “Should I use this open-
source software product or this closed-source one?”” These pa-
pers considered issues like reliability, speed and effectiveness
of defect removal, evolution, security, etc.

Bachmann and Bernstein [14] surveyed five open source
projects and one closed source project to evaluate the quality
and characteristics of data from bug tracking databases and
version control system log files. Among other things, they
discovered a poor quality in the link rate between bugs and
commits.

The debate on the security of open-source software com-
pared to that of closed-source software have produced several

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

studies. This is due not only to the relevance of the problem,
but also to the fact that security issues concerning closed-
source software are publicly available, even when the source
code is not.

Schryen and Kadura [15] analyzed and compared published
vulnerabilities of eight open-source software and nine closed-
source software packages. They provided an empirical analysis
of vulnerabilities in terms of mean time between vulnerability
disclosures, the development of disclosure over time, and the
severity of vulnerabilities.

Schryen [16] also investigated empirically the patching
behavior of software vendors/communities of widely deployed
open-source and closed-source software packages. He found
that it is not the particular software development style that
determines patching behavior, but rather the policy of the
particular software vendor.

Paulson et al. [17] compared open- and closed-source
projects to investigate the hypotheses that open-source soft-
ware grows more quickly, that creativity is more prevalent
in open-source software, that open-source projects succeed
because of their simplicity, that defects are found and fixed
more rapidly in open-source projects.

As opposed to the papers mentioned above, here a fairly sys-
tematic comparison of code measures is proposed. Previously,
MacCormack et al. compared the structure of an open-source
system (Linux) an a closed-source system (Mozilla) [18]. With
respect to our work, they evaluated just one code property
(modularity) for a single pair of products.

A comparison based on code metrics involving multiple
open-source and closed-source projects [19] was performed
from a different point of view and using different techniques:
the authors modified the Least Absolute Deviations technique
where, instead of comparing metrics data to an ideal distri-
bution, metrics from two programs are compared directly to
each other via a data binning technique.

IX. CONCLUSIONS

Open-source projects provide the code used in many em-
pirical studies. The applicability of the results of these studies
to software projects in general, i.e., including closed-source
projects, would be questionable, if open-source code were not
representative of closed-source code as well.

To address this issue, a comparison of open-source and
closed-source code was performed. Specifically, static code
measures from five open-source projects were compared to
those obtained from three closed-source projects. The study—
which addressed only Java code—shows that some of the most
well-known static code measures appear similar in open-source
and in industrial closed-source products.

However, we recall that the study reported here involved
just a few industrial projects’ measures, because getting access
to industrial code is not easy. Hence, the presented analysis
should be regarded as a preliminary results, which needs
replications before it can be considered valid in general.

[1]

[2]
[3]
[4]
[5]
[6]
[7]

[8]

[9]
[10]
[11]
[12]
[13]
[14]
[15]

[16]

(17]

(18]

[19]

International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

REFERENCES

L. Lavazza, “A comparison of closed-source and open-source code static
measures,” in ICSEA 2024-The Nineteenth International Conference on
Software Engineering Advances. IARIA, 2024, pp. 1-6.

N. Fenton and J. Bieman, Software metrics: a rigorous and practical
approach. CRC press, 2014.

T. J. McCabe, “A complexity measure,” IEEE Transactions on software
Engineering, no. 4, 1976, pp. 308-320.

S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on software engineering, vol. 20, no. 6, 1994,
pp. 476-493.

“SourceMeter,” https://www.sourcemeter.com/, [retrieved August, 2024].
M. H. Halstead, Elements of software science. Elsevier North-Holland,
1977.

K. D. Welker, P. W. Oman, and G. G. Atkinson, “Development and
application of an automated source code maintainability index,” Journal
of Software Maintenance: Research and Practice, vol. 9, no. 3, 1997,
pp. 127-159.

Diomidis Spinellis, “ckjm — A Tool for Calculating Chidamber and Ke-
merer Java Metrics,” https://www.spinellis.gr/sw/ckjm/doc/indexw.html.
“Log4j.”

“Jcaptcha,” https://jcaptcha.sourceforge.net/.

“Apache pdfbox,” https://pdfbox.apache.org/.

“Jasperreports.”

“Hibernate,” https://hibernate.org/.

A. Bachmann and A. Bernstein, “Software process data quality and
characteristics: a historical view on open and closed source projects,”
in Proceedings of the Joint int. ERCIM workshops on Principles of
software evolution IWPSE) and software evolution (Evol) workshops,
2009, pp. 119-128.

G. Schryen, “Security of open source and closed source software:
An empirical comparison of published vulnerabilities,” AMCIS 2009
Proceedings, 2009, p. 387.

, “A comprehensive and comparative analysis of the patching
behavior of open source and closed source software vendors,” in 2009
Fifth International Conference on IT Security Incident Management and
IT Forensics. IEEE, 2009, pp. 153-168.

J. W. Paulson, G. Succi, and A. Eberlein, “An empirical study of
open-source and closed-source software products,” IEEE transactions
on software engineering, vol. 30, no. 4, 2004, pp. 246-256.

A. MacCormack, J. Rusnak, and C. Y. Baldwin, “Exploring the structure
of complex software designs: An empirical study of open source and
proprietary code,” Management Science, vol. 52, no. 7, 2006, pp. 1015—
1030.

B. Robinson and P. Francis, “Improving industrial adoption of software
engineering research: a comparison of open and closed source software,”
in Proceedings of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, 2010, pp. 1-10.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

81

