
A Lightweight Web Component Toolbox for Database-Driven Web Applications

Andreas Schmidt∗‡ and Tobias Münch†§
∗ University of Applied Sciences

Karlsruhe, Germany
Email: andreas.schmidt@h-ka.de

‡ Karlsruhe Institute of Technology
Karlsruhe, Germany

Email: andreas.schmidt@kit.edu
† Münch Ges. für IT Solutions mbH, Germany

Email: to.muench@muench-its.de
§ Chemnitz University of Technology, Chemnitz, Germany

Abstract—Creating, content editing and interacting with re-
lational databases in web applications has traditionally re-
quired developer knowledge of languages such as JavaScript
or PHP. We present a lightweight, framework-independent
toolbox for database-driven web applications. It provides intuitive
database visualization, querying, and editing directly in a web
browser—requiring only HTML knowledge. Unlike traditional
frameworks like Angular or React, our web components simplify
database interaction using a thin REST-based access layer.
This work extends prior research by detailing the architecture,
integration challenges, and considerations of extensibility.

Keywords-Web Component; Relational-Database; Interface; Pro-
totyping

I. INTRODUCTION

This paper is an extended version of a conference paper [1],
published in 2024 at the Sixteenth International Conference
on Advances in Databases, Knowledge, and Data (DBKDA-
2024) conference in Athens/Greece. In this extended paper,
we examine the components we developed and describe their
interactions in greater detail. We have also added an example
scenario showing the components’ use in a simple real-world
scenario. In a detailed discussion, we also address current
work in the area of security and authentication, as well as the
expansion of the functionality of our components. We have
also continued to work on linking the components to each other
and to the other elements within the website. This means that
the parameters of the components can now be read from the
values of other components or HTML elements and monitored
for changes. We have implemented a similar mechanism for
the implementation of parameterized SQL statements.

With digitalization, there is increasing demand for user-
friendly database interaction tools that support collaboration [2].
Traditionally, developers use frameworks such as Angular or
React to create dynamic, database-driven web interfaces [3].
However, they also introduce noteworthy complexity, requiring
developers to learn and maintain codebases, often leading to
vendor lock-in [4], [5]. Non-developers can not cope with this
complexity. The need for a lightweight and straightforward
approach outranks the benefits of full-scale frameworks for
scientific applications and internal business tools. For example,
Microsoft Access has enabled user-driven database-driven
development with minimal programming effort [6]. However, its

desktop-based nature limits its accessibility and collaboration
capabilities in modern web environments [6]. Additionally, in
many companies, there is a shortage of suitable IT personnel
and limited financial resources for IT services [7], [8]. The
shortage of software engineers in particular poses a major
challenge for companies [8], as they are needed to create and
maintain large, complex software solutions. Reacting quickly
to changing markets and optimizing processes are important
criteria for remaining competitive. One way of overcoming
these challenges is to expand the circle of potential developers.
This is the path taken by no-code or low-code applications. One
problem with this approach, however, is that the approaches
are often proprietary and you get into a vendor lock-in, and
the approaches are often difficult to maintain in a broader
environment [9].

One way to get around this vendor lock-in is to use
standards. In the last years, web components have emerged as
an alternative for building reusable, framework-independent
UI elements [10]. The World Wide Web Consortium (W3C)
defines these components across web browsers [11]. These
components enable developers to create custom HTML ele-
ments encapsulating functionality, style, and behaviour [10],
[11]. Thus, they can be modular and easily integrated [11].
Compared to the development of database applications based
on traditional programming languages, the development or
integration of database applications using HTML code is
less complex and therefore allows even business experts with
basic HTML knowledge to implement or adapt an application
according to their requirements and can therefore significantly
reduce the workload of a company’s IT-department.

As a consequence, we introduce a set of loosely coupled
web components designed for database interaction functionality
to web applications. Our approach is similar to adaptive Linked
Data-driven Web components [12]. These components provide
the following database operations:
• Table display and navigation (browsing relational database

content)
• Dataset editing (modifying individual records)
• Query execution (dynamically running predefined SQL

statements)
• Selection filtering (interactive searching and data retrieval)

1International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

These components communicate with databases via a REST-
based access layer. Unlike traditional frameworks, this approach
provides a lightweight, low-code alternative that enables non-
experts to build database-driven web applications.

Unlike other low-code applications, which are often self-
contained applications, we rely entirely on the W3C composite
standard Web Components [13] and thus enable our components
not only to create new applications, but also to be easily
integrated into existing applications.

We structured the paper as follows: First, in Section II, we
give an overview over related work. After that, we provide
an overview of the composite standard Web Components
in Section III. Then, we outline the system architecture
in Section IV. Then, Section V presents the implemented
components. The coupling of components with each other
and with the other elements of the website is described in
Chapter VI. Section VII demonstrates a real-world example
application, while Section VIII discusses key challenges and
limitations. Finally, Section IX concludes with future directions
and planned enhancements.

II. RELATED WORK

A. Database Access Through the Web

The classic approach to bringing database content to the
web is via server-side programming such as PHP, Python or
node.js (server-side JavaScript). To avoid having to constantly
reinvent the wheel of web-based programming, frameworks
based on these languages such as django (Python), symfony
(PHP) or express (JavaScript) have emerged, most of which
implement some form of the Model View Controller (MVC)
paradigm and use an object relational mapping framework to
access the database. In the field of database administration,
phpMyAdmin [14] and derivatives such as pgMyAdmin are
popular tools. Our approach differs fundamentally from this
classic approach. Neither is the rendering done on the server
side, nor is an imperative programming model used to create
the content.

B. Java Applets

Java applets [15] took a different approach. These were typi-
cally small programs written in Java that were loaded from the
server and ran in the user’s browser in a protected environment
(sandbox). A sophisticated access API for relational databases
was also available through JDBC [16]. The integration of the
applets into the web pages is done with the element embed
or object and has a number of similarities with the web
components approach we use. Both approaches run on the
client within the browser and there are a number of predefined
methods that must be implemented to integrate the application
into the page. The integration is declarative in both cases and
parameters can be passed to the program. Both approaches
also allow the programmatic access to the DOM tree of the
embedding website. From the mid-2010s, however, support
for the applets was gradually discontinued by the browser
manufacturers.

C. Declarative Web

At the ACM Web Conference 2023, Steven Pemberton deliv-
ered a presentation titled "The One Hundred Year Web," high-
lighting the escalating complexity and consequent formidable
challenges in implementation [17]. Pemberton critiques the
departure from the declarative path of the web with HTML5,
referring to it as a "Cowpath" that is incongruent with the
original principles [17]. He expresses hope that the damage
incurred thus far can be rectified through the collaborative
efforts of the web community, aiming to ensure the long-term
backward compatibility of the web [17]. In our work, we want
to follow exactly this approach and show that the otherwise
imperative integration of database content can also be done
declaratively.

Michael Hanus has introduced a concept that combines
declarative programming with the use of a CGI program, which
generates a web application based on the database [18]. There-
fore, Hanus proposed an interface that integrates both functional
and logical aspects derived from his Curry approach [18]. He
posits that this conceptual framework is transferrable to a client-
side context through the generation of JavaScript [18]. The
primary distinction to our work lies in the rendering location
of the HTML document. In the presented method, the HTML
document is rendered on the server-side and transmitted to
the client. On the other hand, in the client-side approach, the
data is loaded from the server and rendered directly on the
client-side.

D. Low Code Development

Low-code development platforms have the potential to
significantly change the tasks of software engineering and help
developers in companies create applications themselves without
having to delve too deeply into coding, which significantly
expands the pool of potential developers. Typically, low-code
development platforms (LCDPs) provide a visual interface for
application development that is realized through model-driven
design and declarative programming [19], [20]. In addition
to platform-specific platforms, there are also approaches that
generate web applications as the target platform, such as the
low-code platform Xelence from Sagitec Software [21].

The low-code initiative has given rise to a number of
application developers, including Caspio [22], Budibase [23],
webflow [24], and Bubble.io [25], which enable web-based
applications to be developed in the form of single-page
applications with little or no programming effort. However,
these are standalone systems that are difficult or impossible to
integrate into existing web applications. In contrast to these
approaches, our low-code web components offer this function-
ality with ease of development, interoperability, extensibility,
and maintainability.

III. WEB COMPONENTS

Web Components are custom, encapsulated, and reusable
elements designed for integration into web pages or applications.
They are processed and executed within contemporary web
browsers. As of today, these APIs are integral components of

2International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the Web Hypertext Application Technology Working Group
(WHATWG) standard [26].

A custom element is a JavaScript class which can define
custom HTML elements [26]. This element has to be inherited
from the HTMLElement class [26].

The HTMLElement serves as the foundational class for
every element present on a web page [26]. While it is possible to
derive from a specific class like HTMLParagraphElement,
such an approach is not fully supported by all browsers.

A Custom Element follows a specific lifecycle when in-
voked. Initially, the constructor is executed, establish-
ing the initial configurations. Upon inclusion in the DOM,
the connectedCallback method is triggered. Subse-
quently, the component is prepared and capable of both
receiving and emitting events. If a property is changed,
the attributeChangedCallback method is called,
but only if the attribute is defined in the static property
observedAttributes. Finally, when the element is re-
moved from the DOM, the disconnectedCallback
method is employed to internally reset the component [26].

Custom elements are registered by calling the method
define(tagName,class) of class customElements.
The method expects the tag name as the first parameter, so
that it can be used in the markup, e.g. with db-table. The
name of the implemented class is specified as the second
parameter [26].

IV. ARCHITECTURE OF THE DATABASE WEB COMPONENTS

While the web components run in the browser, they have
to communicate with a database server. The developed web
components don’t communicate directly with the database,
but through a thin Representational State Transfer (REST)-
based access layer (see Fig. 1, middle). This service maps a
logical database identifier to a specific database on the server
side. We use the PHP-CRUD-API library [27] by Maurits van
der Schee as the core for this purpose and have extended
it with additional functionality. PHP-CRUD-API provides a
REST-based CRUD interface for accessing relational databases,
i.e., records can be created, read, updated, and deleted. We
implemented the necessary extension modules ourselves, such
as access to the database metadata and a module for executing
SQL statements, and integrated them into the PHP-CRUD-
API as customControllers [27]. In order to be able to handle
multiple databases per endpoint, we have also implemented
the wrapper module rdbms.php, which provides additional
meta information about the databases available at the endpoint
and initializes the PHP-CRUD-API module with the specific,
selected database.

Specifically, the service provides the following functionality:
Database scheduler:

The REST API can manage multiple databases
running on any computer. For this purpose, the new
entry point rdbms.php has been implemented, which
takes over the management of the databases. This also
includes providing meta information about which
databases are available via this endpoint. Once a

specific database has been specified, the rdbms.php
module forwards the request to the PHP-CRUD-API
module for processing.

Access Control:
In the configuration for accessing the databases, it
can be specified which tables are accessible. In
addition to this coarse-grained access control, the
PHP-CRUD-API library offers further mechanisms
such as authentication via API key, JWT token, or
username/password. Currently, we are implementing
authentication based on Keycloak [28] via JWT token
forwarding.

CRUD-Functionality:
This functionality is completely coverd by the PHP-
CRUD-API library and includes the (C)reation,
(R)eading, (U)pdating, and (D)eletion of datasets in
the database.

Metadata Module:
For the purpose of constructing forms for creating
and modifying data records, as well as for resolving
foreign key relationships, we require information
about the structure of the tables and their constraints.
We have implemented this functionality as a custom
controller of the PHP-CRUD-API module. This has
the advantage that the authentication mechanisms
used by PHP-CRUD-API can also be used for this
module.

SQL Module:
The SQL module was also implemented as a custom
controller of the PHP-CRUD-API library for the
same reasons as the metadata module. It allows the
execution of parameterized SQL select statements.

V. COMPONENTS

As part of our research work, we have developed a series
of web components for the declarative integration of database
functionality into HTML pages. Concrete, the following
components were realized:

db-connection: This component establishes the connection
between the components and the RESTful backend service.
It acts as an intermediary between the other components and
the RESTful service. Additionally, it is also responsible for
authentication based on Keycloak via JWT token forwarding.

db-table: This component represents a database table. The
functionality ranges from the simple display of data records
to a wide variety of interaction options like sorting, further
filtering an so on.

db-row: Component for representing a single data set (row in
a table). The functionality of this component ranges from
simple, non interactive visualization of the data set to the
creation and editing of data sets using predefined or freely
definable forms, and the use as a controller in a model-view-
controller (MVC) szenario.

db-field: This component represents a single attribute of a
data set. db-field components are used in conjunction

3International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Architecture of our database web components.

with the db-row component when arbitrary layouts are to
be realized for the visualization of a data set.

db-select: Analogous to the HTML select element, in which a
value can be selected from a list of predefined values. In the
case of the db-select component, the displayed values
come from the results of an SQL query or the selection of
certain columns from a table.

db-query: Component that displays the results of an arbitrary
SQL query. It is also possible to browse through the results
and resort them.

In the following we will present these components in detail.
The data in the example screenshots shown comes from the
Mondial database [29]. The PHP-CRUD-API library we use
does not support composite keys for write operations. For this
reason, we modified the Mondial database schema and added
artificial keys and corresponding foreign keys.

A. Connection-component

The connection-component is a non-visible component in a
page. It is responsible for the mapping to a concrete database
on server-side. The left side of Fig. 2 gives an example, how
the web component is integrated inside a HTML page. The
db-connection component communicates with a RESTful
service, which is specified by the parameter url. The further
parameter database specifies a logical database name, which
is mapped on server side (Fig. 2, middle) to a specific database
(right side of Fig. 2). Note that the database can run on any
computer and not necessarily on the computer with the REST-
API endpoint. Table I shows all possible attributes of the
component.

Figure 2. Database mapping (from [30]).

TABLE I
db-connection ATTRIBUTES

Attribute Description Mandatory
database Logical database name. This name is mapped

to a concrete database on the backend side.
yes

url URL of the REST-API endpoint
Default: URL, from where the web-
components are loaded

no

B. Table-component

The db-table component is responsible for displaying the
content of a database table or a part of it. Fig. 3 shows in the
upper part the definition of a db-table component. The table
to be shown is “country”, of which the three columns Name,
Capital, and Population are to be displayed (attribute
attribute-list). The actions attribute specifies the
possible interaction options. In this specific case, page-by-page
scrolling (paging) is enabled with a page size of 10 datasets
(parameter pagesize), the datasets can be sorted in ascending
and descending order according to the column values (sort),
and additional filtering can be carried out at column level
(filter). Inline-edit is also activated (inline-edit).

In the lower part of Fig. 3 the visual appearance of the
component inside the browser, according to the previously
described specification is shown. Paging (1), sorting (2),
filtering (3) and inline-edit (4) as specified in the markup are
activated. The full list of possible attributes of the component
are shown in Table II. The refresh-rate attribute, for
example, is responsible for ensuring that the current database
content is always displayed by accessing the database table

4International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

again every n seconds and rereading and displaying the
actual values. In addition to the parameters from Table II,
the appearance of the component can also be adapted to your
own requirements using cascading stylesheets (CSS).

Figure 3. Specification and visual appearance of the web component
db-table, showing different interaction elements like page-wise scrolling (1),
sorting (2), filtering (3), and inline-editing (4).

TABLE II
db-table ATTRIBUTES

Attribute Description Mandatory
table Name of the table yes
filter Mandatory filter condition, that all

datasets must fulfill
no

pagesize Maximum number of datasets on a page no
page Page to display no
order Sort order (column name) no

direction Sort direction (asc, desc) no
connection Id of a db-connection web-

component. If the attribute is not set,
the default server component is chosen

no

attribute-list Comma separated list of attributes to
display (default: all)

no

actions List of possible values: sort, filter, paging,
inline, edit, delete

no

refresh-rate Time in seconds after which the table
data is reloaded from the database

no

C. Selection-component

The db-select web component presents a selection box,
from which values can be selected and searched via a prefix
or infix search. The values are specified by an SQL-select
statement. The SQL-statement can either be specified directly
by the sql-attribute, or it is specified using the attributes
value, text, table and (optional) filter. On the left
side of Fig. 4, the visual appearance with prefix-search is
shown, while on the right hand side, the markup, defining the

web-component on the left, is shown. The attribute value
represents the table-column, which values are passed to the
HTML-form on submit, while the values of the column,
specified by the attribute text are displayed by the element
and are used for the prefix/infix-search. The attribute name
specifies the name of the db-select element, and thus
the name of the attribute under which the selected value is
transferred to the form. Table III provides an overview of all
possible attributes and their meaning.

Figure 4. web component db-select

TABLE III
db-select ATTRIBUTES

Attribute Description Mandatory
connection-id Id of a db-connection web-component no
prefix-search The term entered in the search field is

considered as a prefix (Default: true)
no

name Name of the element. The value of the
selected entry (attribute value in Vari-
ant I, first column of SQL-statement in
Variant II) is passed on to the form under
this name.

no

Variant I
table Name of the table yes
value Name of the attribute used for the value-

attribute of the option element (returned
by the form).

yes

text Name of the attribute used for the text-
node of the option element (value used
for search).

yes

filter Mandatory condition the datasets must
fulfill.

no

Variant II
sql SQL-Statement with one or two columns.

The statement can have one or two
columns in the select-clause. If only one
column is given, the value of this column
is used for the value and the text.

yes

D. Row-component

The component represents a single dataset. It allows you to
create a new record or edit an existing one. The component
provides its own HTML form for this purpose. To do this, the
component uses the functionality provided by the metadata
module to determine the structure and constraints of the table.
This concerns information about the names and data types
of the fields, not null constraint and information about
primary and foreign key relationships. With the help of this
information, foreign key relationships, for example, are resolved
by displaying not the foreign key value but the referenced data

5International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

record. This feature is shown on the left side of Fig. 5, where
the foreign key attributes Capital_fk (label: Capital), which
reference the capital city of a country, is not displayed, but
a selection box showing the current value and simply giving
the option to change it using the db-select web-component
described previously. If a renaming of the attribute identifiers
of the database table is desired (as here, Capital instead of
Capital_fk), this can be accomplished with CSS rules.

The right side of Fig. 5 shows, how the markup of the web-
component, shown on the left, looks like. The parameter key
expects the value of the primary key of the dataset. The name
of the primary key attribute does not have to be specified as it
is determined from the metadata of the table. If the attribute
key is omitted, the component provides a form within which
a new data record can be created.

Figure 5. Web-component db-row in edit-mode using the predefined layout.
Foreign keys (i.e., Capital) are represented by db-select-components,
allowing to search and select a concrete dataset.

Another use of the db-row component is as a con-
troller in a model-view-controller (MVC) setup (attribute
controller="true"). In this case, the component is
invisible and reads the parameters either from the GET
parameters of the current URL or from a JSON string that has
been passed to the data-attribute. Depending on whether the
primary key value has been specified, an SQL update or insert
operation is performed. Subsequently, the page specified by
the target-url is loaded (or error-url in case of an
error).

Table IV lists all possible attributes of the web component
db-row. The form attribute, for example, is used to create
your own HTML form layout and link it to the component,
so that this form is used instead of the internal one. If the
parameter is-editable is set to false, a predefined, read-
only representation of the dataset is displayed. If this does not
meet layout requirements, the visible attribute can be set
to false and the layout can be defined using db-field
components (see below).

E. Field-Component
The db-field component handles exactly the value of

one column of a dataset. It gets its value from a db-row

TABLE IV
db-row ATTRIBUTES

Attribute Description Mandatory
table Name of the table yes
connection-id Id of a db-connection web-component no
visible Specifies if the component should

display the dataset on the page. If
the component is used together with
db-field components you typically
set this parameter "off" (default: on)

no

is-editable Specifies if the dataset should be ed-
itable. Possible values: yes/no(default:
yes)

no

display-key Flag, if the database key should be
displayed or not

no

attribute-list Comma separated list of attributes to
be shown (default: all attributes)

no

key The value of the primary key of a
dataset in this table.

no

form the id of a form-element, the db-row
component should work with. Addi-
tionally a mapping between the form
fields and the table columns can be
specified using the mapping attribute
(see below).

no

mapping Mapping between form field name and
table column name.

no

controller Enable "controller-mode". If the pa-
rameter is set to "true", the pa-
rameter action must also be
set (store-from-get-request,
store-from-data).

no

action See description above (controller-
mode).

no

target-url,
error-url

Page to load after dataset is written
(controller-mode).

no

refresh-rate Duration (in seconds) until the dataset
is read again

no

component and returns the value within a element. If
only one db-row is specified on the HTML-page, this is used
automatically, otherwise the desired db-row must be specified
with the parameter dataset. Fig. 6 gives a minimal example,
displaying the name and population of the city with the primary
key value of 2037 (Paris). In the upper part, you see the result
in the browser, at the bottom the corresponding declaration of
the elements db-row and two db-field elements in the
HTML page. Note that in the db-row component, the attribute
refresh-rate is set to the value of 10. This ensures that
the dataset is reloaded every 10 seconds so that the actual
number of inhabitants is always displayed.

F. Query-Component

The visual representation of the db-query component is
similar to that of the db-table component in Fig. 3. The
main difference is that no table parameter is specified, but
an arbitrary SQL select-statement. Fig. 7 shows an example in
which the SQL statement determines the number of borders
and overall border length for all countries having more than
5 neighbors, sorted by decreasing number of neighbors and
decreasing border length. Table V provides a list of all possible
attributes.

6International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Two db-field components with an invisible db-row component

Figure 7. Web-component db-query executing a complex SQL statement.
The result datasets can be scrolled and ordered by the different columns of
the result.

One of the most important enhancements since the version
of our components described in [1] is the support of parameteri-
zable SQL-statements. Instead of values, it is possible to define
placeholders in the SQL-statement in the form of question
marks (?), which get their value from other HTML elements
of the website. This can be, for example, the value of an input
field, or the currently selected value of an HTML-selectbox
or the db-select (see Section V-C) component implemented by
us. Fig. 8 shows this functionality, where the SQL-statement
contains two parameters that take their values from the two
input fields that specify the minimum and maximum height
of the mountains to be displayed. The mapping between the
input fields and the parameters in the SQL statement is realized
by the attribute params of the component db-query. The

values of the attribute specify the id of the HTML components
and the property to be read. In the case of the HTML input
element, this is the property value.

Figure 8. Web-component db-query with a parameterized SQL-statement,
reading the values from two input fields.

By specifying the two input elements from which the values
for the parameterized SQL-statement are read, event handlers
are also registered, which inform the db-query component
about changes to the values for the input fields, so that the
component executes the SQL-statement again when the values
change.

TABLE V
db-query ATTRIBUTES

Attribute Description Mandatory
sql SQL Statement to be executed yes

pagesize Maximum number of datasets on a page no
page Page to display no

connection Id of a db-connection web-component.
If the attribute is not set, the default server
component is chosen

no

refresh-rate Duration (in seconds) until the query is
resubmitted

no

actions List of possible values: sort, paging no

VI. PARAMETER BINDING

Analogous to the behavior of parameterized SQL statements,
we have implemented a mechanism that allows the values
of the parameters of our components to be read from other

7International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

components. This is achieved by a special syntax, in which
instead of the value for an attribute, the id of the HTML
component followed by the concrete property (dot-notation)
is specified within double curly brackets. Fig. 9 demonstrates
this using the example of the pagesize attribute of the
db-table component. Instead of specifying the value as fixed,
the {{..}} notation is used here to reference the property
value of the select element with the ID choose-pagesize
({{choose-pagesize.value}}).

Figure 9. Parameter binding: Mapping attribute values to other HTML-
elements.

VII. EXAMPLE APPLICATION

In this section, the use of the components we have developed
will be demonstrated using a small example application. The
components db-connection, db-table and db-row will
be used. The aim of the application is a simple task list in
which tasks to be completed can be entered and managed with
a priority and optional deadline. The application consists of
two HTML pages, a view and a controller page. The view is
shown in Fig. 10 and contains a HTML-form for entering a
new task and below it a table with the tasks already created.
Beside the form-element with the input fields for the new task,
the page contains the web-components db-connection and
db-table.

When the submit button ("add task") is pressed, the form data
is send to the page iaria-demo.controller.html (see
Fig. 11) via the GET-method and this page acts as a controller
like in a MVC setup, storing the passed values and after that
reload the calling page. The complete code of the controller file
iaria-demo.controller.html is shown in Fig. 11. In
line 2 and 3, our database web-components are loaded. Line 4
and 5 sets up the component db-connection to establish a

connection to the database with the name iaria-demo. If
the attribute url is omitted, it is expected that the endpoint
resides at the same address, from where the components were
loaded (see line 2). In lines 6 to 8, the component db-row is
configured as a controller (controller="true"), reads the
parameters passed from the previous page (the view with the
form from Fig. 10) and inserts the dataset into the todo_list
table. Since no target-url or error-url parameter are
specified, the previous form page is reloaded after the insert
operation is executed.

VIII. DISCUSSION, FURTHER CHALLENGES

Our web components for database developers serve as a
proof of concept, demonstrating that lightweight, framework-
independent database interaction is feasible. However, we must
work towards a low-code or no-code solution to transition from
a developer-focused prototype to a solution for no-coders. A
visual tool allowing users to connect components dynamically
could improve accessibility - such as a split-screen UI with
commands on the left and live interaction on the right.

Challenges such as validation, scalability, and security are
critical for real-world usage. Performance testing is needed
to ensure components handle large datasets and concurrent
users efficiently, while usability testing will determine if non-
developers can use the system effectively. Hosting components
on a CDN and optimizing the backend REST API will enhance
scalability. Security remains a primary concern, requiring
role-based access control (RBAC) to restrict data access.
Additionally, input sanitization is necessary to prevent SQL
injection and XSS attacks.

To address these challenges, we will:
1) Develop a wizard-based UI for configuring components

without coding.
2) Implement authentication and authorization mechanisms for

secure user access on the World Wide Web.
3) Integrate components into third-party web applications for

real-world test settings to evaluate arising problems.
Our database components could enhance scalability, security,

and usability and serve as an alternative to traditional methods,
effectively connecting developer-driven tools and no-code
solutions.

IX. CONCLUSION AND OUTLOOK

We have implemented the first prototype of our web compo-
nents and are actively working on expanding their functionality.
One key improvement is evaluating all available database
metadata directly within the components. This metadata is
already visible in Fig. 5, where a selection box displays a
dereferenced value (e.g., "Paris") instead of the foreign key for
the capital.

Security remains a significant area for future work. Actually
we allow the restriction to only acces certain tables inside a
database and support authentication based on keycloak via JWT
token forwarding. For future iterations we plan to implement
a role-based access control (RBAC) meachanism. Using our
web components in another web application with RBAC makes

8International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Example Application: View with form and db-table component.

Figure 11. db-row component, acting as a controller (complete code).

the integration possibilities interesting and the security aspects
challenging.

Several functional enhancements are also in progress. The
db-select component will be extended to support multiple
selections, making handling n : m relationships easier. The
db-table component currently does not resolve foreign keys,
but this can be worked around using db-query with SQL-
join operations. In the future, native support for foreign key
dereferencing in the db-table will be added as an optional
feature.

For future work, we focus on four key areas:
1) Security and Authentication – Adding built-in authentica-

tion and authorization mechanisms.
2) Scalability and Performance – Optimizing data handling

for large datasets and concurrent users.
3) No-Code Accessibility – Developing a visual configuration

wizard for non-developers.
4) Evaluation - Evaluation of our framework in terms of the

time required to develop a specific application. This should
include a comparison with traditional software development
approaches as well as with modern existing low-code
solutions.

Future work will also involve real-world testing and integra-
tion into enterprise applications to gather feedback and further
refine the components. Our components will enable business
developers to create new business cases with software support
without needing software engineers.

REFERENCES

[1] A. Schmidt and T. Münch, “Web components for database
developers”, in Proceedings of the Sixteenth International

Conference on Advances in Databases, Knowledge, and Data
Applications, 2024, pp. 20–22.

[2] H. Chen, R. H. Chiang, and V. C. Storey, “Business intelligence
and analytics: From big data to big impact”, MIS quarterly,
pp. 1165–1188, 2012.

[3] R. Vyas, “Comparative analysis on front-end frameworks
for web applications”, International Journal for Research in
Applied Science and Engineering Technology, vol. 10, no. 7,
pp. 298–307, 2022.

[4] J. Hassan, “The effects of architectural design decisions
on framework adoption: A comparative evaluation of meta-
frameworks in modern web development”, Ph.D. dissertation,
May 2024. DOI: 10.13140/RG.2.2.10552.97287.

[5] C. Shapiro, Information rules: A strategic guide to the network
economy. Harvard Business School Press, 1999.

[6] J. Eckstein and B. R. Schultz, Introductory relational database
design for business, with Microsoft Access. John Wiley & Sons,
2018.

[7] K. Almaree et al., “The usefulness of cash budgets in micro,
very small and small retail enterprises operating in the cape
metropolis”, Expert Journal of Business and Management,
vol. 3, no. 1, 2015.

[8] M. Skare, M. d. l. M. de Obesso, and S. Ribeiro-Navarrete,
“Digital transformation and european small and medium
enterprises (smes): A comparative study using digital economy
and society index data”, International journal of information
management, vol. 68, p. 102 594, 2023.

[9] K. Rokis and M. Kirikova, “Challenges of low-code/no-code
software development: A literature review”, in International
conference on business informatics research, Springer, 2022,
pp. 3–17.

[10] T. Münch, “Vanilla js-design and implementation of a progres-
sive web application from scratch”, in International Conference
on Web Engineering, Springer, 2024, pp. 461–464.

[11] D. Glazkov and H. Ito, Introduction to web components, https:
/ / www. w3 . org / TR / components - intro/, [Online; accessed
2025-05-27].

[12] A. Khalili, A. Loizou, and F. van Harmelen, “Adaptive linked
data-driven web components: Building flexible and reusable
semantic web interfaces: Building flexible and reusable seman-
tic web interfaces”, in The Semantic Web. Latest Advances and
New Domains: 13th International Conference, ESWC 2016,
Heraklion, Crete, Greece, May 29–June 2, 2016, Proceedings
13, Springer, 2016, pp. 677–692.

[13] “Web components - specifications”, [Online; accessed 2025-
05-27], 2015, [Online]. Available: https://www.webcomponents.
org/specs.

9International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[14] M. Delisle, Mastering phpMyAdmin 3.1 for Effective MySQL
Management. Packt Publishing, 2009, ISBN: 1847197868.

[15] E. Boese, An Introduction to Programming With Java Applets.
Jones and Bartlett Publishers, 2009.

[16] G. Reese, Java Database Best Practices: Persistence Models
and Techniques for Java Database Programming. O’Reilly,
2009.

[17] S. Pemberton, “The one hundred year web”, in Companion
Proceedings of the ACM Web Conference 2023, ser. WWW
’23 Companion, Austin, TX, USA: Association for Computing
Machinery, 2023, pp. 642–647, ISBN: 9781450394192. DOI:
10.1145/3543873.3585578.

[18] M. Hanus, “Lightweight declarative server-side web program-
ming”, in Practical Aspects of Declarative Languages: 23rd
International Symposium, PADL 2021, Copenhagen, Denmark,
January 18-19, 2021, Proceedings, Copenhagen, Denmark:
Springer-Verlag, 2021, pp. 107–123, ISBN: 978-3-030-67437-3.
DOI: 10.1007/978-3-030-67438-0_7.

[19] E. Elshan, E. Dickhaut, and P. Ebel, “An investigation of why
low code platforms provide answers and new challenges”, in
Hawaii International Conference on System Sciences (HICSS),
(Maui, Hawaii), Maui, Hawaii, 2023.

[20] N. Prinz, C. Rentrop, and M. Huber, “Low-code development
platforms-a literature review.”, in AMCIS, 2021.

[21] R. Arora, N. Ghosh, and T. Mondal, “Sagitec software studio
(s3)-a low code application development platform”, in 2020
International Conference on Industry 4.0 Technology (I4Tech),
IEEE, 2020, pp. 13–17.

[22] Caspio, Caspio: Low-Code Platform - Build Online Database
Apps, https://www.caspio.com/, (Accessed on 2025-05-23),
2024.

[23] Budibase, Github: Budibase/budibase, https : / / github. com /
Budibase/budibase, (Accessed on 2025-05-23), 2024.

[24] Webflow, Webflow: Create a custom website | Visual website
builder, https://webflow.com/, (Accessed on 2025-05-23), 2024.

[25] Bubble, Bubble: The full-stack no-code app builder, https :
//bubble.io/, (Accessed on 2025-05-23), 2024.

[26] WHATWG. HTML Living Standard, https://html.spec.whatwg.
org/multipage/, [Online; accessed 2025-05-27].

[27] M. van der Schee, PHP-CRUD-API, https : / / github . com /
mevdschee/php-crud-api, Last accessed 17.2.2025, 2025.

[28] S. Thorgersen and P. I. Silva, Keycloak-identity and access
management for modern applications: harness the power of
Keycloak, OpenID Connect, and OAuth 2.0 protocols to secure
applications. Packt Publishing Ltd, 2021.

[29] W. May, “Information extraction and integration with FLORID”,
Last accessed 17.2.2025, 1999, [Online]. Available: http://dbis.
informatik.uni-goettingen.de/Mondial.

[30] A. Schmidt and T. Münch, “Enable Business Users to Embed
Dynamic Database Content in Existing Web-Based Systems
Using Web Components and Generic Web Services”, in
Proceedings of the 20th International Conference on Web Infor-
mation Systems and Technologies - WEBIST, 2024, pp. 296–306.
DOI: 10.5220/0013000000003825.

10International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

