International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

Facilitating Software Migration using Normalized Systems Expansion -
A Detailed Case Study

Christophe De Clercq
Research and Development
Fulcra bv, Belgium
Email: christophe.de.clercq@fulcra.be

Abstract—Applications with evolvability issues that become
less modifiable over time are considered legacy. At some point,
refactoring such applications is no longer a viable solution,
and a rebuild lurks around the corner. However, the new
application risks becoming non-evolvable over time without a
clear architecture that will enforce evolvability. Rebuilding an
existing application offers little business value; migrating from
old to new can be complicated. Normalized Systems theory
aims to create software systems exhibiting a proven degree of
evolvability. According to this theory, one would benefit from
building legacy systems if they were to be rebuilt. In this
paper, we will present a real-life use case of an application
exhibiting non-evolvable behaviour and how this application is
being migrated gradually into an evolvable application through
NS-based software expansion. We will also address the extra
value that NS-based software expansion brings in the migration
scenario, allowing the combination of old and new features
in the newly built application. The paper demonstrates that
software expansion facilitates phased software migration without
the downsides of fragile manual-built gateways and results in a
future-proof and evolvable new software system.

Keywords—NS; Expansion; Rejuvenation; Software Migration

I. INTRODUCTION

This article extends a previous contribution originally pre-
sented at the Sixteenth International Conference on Pervasive
Patterns and Applications (PATTERNS) 2024 [1].

Research on agile software development has increased in
the last few years. This research has helped improve agile
development methods, but little attention has been paid to
making software more agile.

Agile architecture, as defined by key agile frameworks such
as Scaled Agile Framework (SAFe) [2], is a set of values and
principles that guide the ongoing development of the design
and architecture of a system while adding new capabilities.
This definition describes more of a process than a guarantee
that the system being built will be agile, meaning the ability
to change. An agile architecture is an architecture that can
change. It is a feature of a system that requires deliberate
design. Therefore, agile architecting is a better term to describe
an agile approach to architecture, and agile architecture should
indicate the intentionality to create a dynamic system.

Normalized Systems (NS) theory aims to increase software
agility by designing software systems with agile architec-
tures. Software evolvability, or how easily software can be
modified, can be achieved by following a set of theorems
that lead to a specific and evolvable software architecture.

Geert Haerens
Antwerp Management School, Belgium
Engie nv, Belgium
Email: geert.haerens@engie.com

NS theory has been developed and improved over time. It
is based on theoretical foundations and has been applied in
several software projects. Previous research has documented
the theoretical contributions of NS theory well [3] [4] [5] [6],
but there are fewer studies on real-life cases where NS theory
has been used [7]. This paper reports on a development project
that shows the viability of the NS theory method for creating
evolvable software and emphasizes the advantages of a real-
life NS development project. We show how NS can help with
an information system migration use case and how it can make
the target system adaptable.

The paper is organized as follows: Section II explains the
basics of NS, and Section III summarizes software migration
strategies. Section IV presents the use case, and Section V
will explain the migration approach. Section VI looks at the
migration mechanism via carefully designed gateways called
Transformers. We conclude with Section VII discussing the
benefits of NS in this scenario and conclude the paper in
Section VIII.

II. FUNDAMENTALS OF NS THEORY

Software should be able to evolve as business requirements
change over time. In NS theory [8], the lack of Combinatorial
Effects measures evolvability. When the impact of a change
depends not only on the type of the change but also on the size
of the system it affects, we talk about a Combinatorial Effect.
The NS theory assumes that software undergoes unlimited
changes over time, so Combinatorial Effects harm software
evolvability. Indeed, suppose changes to a system depend on
the size of the growing system. In that case, these changes
become more challenging to handle (i.e., requiring more work
and lowering the system’s evolvability).

NS theory is built on classic system engineering and statisti-
cal entropy principles. In classic system engineering, a system
is stable if it has bounded input, which leads to bounded
output (BIBO). NS theory applies this idea to software design,
as a limited change in functionality should cause a limited
change in the software. In classic system engineering, stability
is measured at infinity. NS theory considers infinitely large
systems that will go through infinitely many changes. A system
is stable for NS if it does not have Combinatorial Effects,
meaning that the effect of change only depends on the kind
of change and not on the system size.

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

165

NS theory suggests four theorems and five extendable
elements as the basis for creating evolvable software through
pattern expansion of the elements. The theorems are proven
formally, giving a set of required conditions to strictly fol-
low to avoid Combinatorial Effects. The NS theorems have
been applied in NS elements. These elements offer a set
of predefined higher-level structures, patterns, or “building
blocks” that provide a clear blueprint for implementing the
core functionalities of realistic information systems, following
the four theorems.

A. NS Theorems

NS theory [8] is based on four theorems that dictate the
necessary conditions for software to be free of Combinatorial
Effects.

o Separation of Concerns

o Data Version Transparency

¢ Action Version Transparency
o Separation of States

Violation of any of these four theorems will lead to Combina-
torial Effects and, thus, non-evolvable software under change.

B. NS Elements

Consistently adhering to the four NS theorems is very
challenging for developers. First, following the NS theorems
leads to a fine-grained software structure. Creating such a
structure introduces some development overhead that may
slow the development process. Secondly, the rules must be
followed constantly and robotically, as a violation will in-
troduce Combinatorial Effects. Humans are not well suited
for this kind of work. Thirdly, the accidental introduction of
Combinatorial Effects results in an exponential increase of
rework that needs to be done.

Five expandable elements [9] [10] were proposed, which
make the realization of NS applications more feasible. These
elements are carefully engineered patterns that comply with
the four NS theorems and that can be used as essential building
blocks for various applications: data element, action element,
workflow element, connector element, and trigger element.

o Data Element: the structured composition of software
constructs to encapsulate a data construct into an isolated
module (including get- and set methods, persistency,
exhibiting version transparency, etc.).

o Action Elements: the structured composition of software
constructs to encapsulate an action construct into an
isolated module.

o Workflow Element: the structured composition of soft-
ware constructs describing the sequence in which action
elements should be performed to fulfil a flow into an
isolated module.

o Connector Element: the structured composition of soft-
ware constructs into an isolated module, allowing external
systems to interact with the NS system without calling
components statelessly.

International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

o Trigger Element: the structured composition of software
constructs into an isolated module that controls the sys-
tem states and checks whether any action element should
be triggered accordingly.

The element provides core functionalities (data, actions,
etc.) and addresses the Cross-Cutting Concerns that each of
these core functionalities requires to function correctly. Cross-
cutting concerns cut through every element, so they require
careful implementation to avoid introducing Combinatorial
Effects.

C. Element Expansion

An application comprises data, action, workflow, connector,
and trigger elements that define its requirements. The NS
expander is a technology that will generate code instances of
high-level patterns for the specific application. The expanded
code will provide generic functionalities specified in the appli-
cation definition and will be a fine-grained modular structure
that follows the NS theorems (see Figure 1).

The application’s business logic is now manually pro-
grammed inside the expanded modules at pre-defined loca-
tions. The result is an application that implements a certain
required business logic and has a fine-grained modular struc-
ture. As the code’s generated structure is NS compliant, we
know that the code is evolvable for all anticipated change
drivers corresponding to the underlying NS elements. The only
location where Combinatorial Effects can be introduced is in
the customized code.

0C0E 006 2063
012061306 36 €
0,306 206 206
03006 20¢ €

NS application =
n instances of elements

Build
XML Model

mmmm — W

Fig. 1. Requirements expressed in an XML description file, used as input for
element expansion.

D. Harvesting and Software Rejuvenation

The expanded code has some pre-defined places where
changes can be made. To keep these changes from being
lost when the application is expanded again, the expander can
gather them and re-inject them when re-expanded. Gathering
and putting back the changes is called harvesting and injection.

The application can be re-expanded for different reasons.
For example, the code templates of the elements are improved
(fix bugs, make faster, etc.), new Cross-Cutting Concerns (add

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

166

a new logging feature) are included, or a technology change
(use a new persistence framework) is supported.

Software rejuvenation aims to routinely carry out the har-
vesting and injection process to ensure that the constant
enhancements to the element code templates are incorporated
into the application.

Code expansion produces more than 80% of the code of
the application. The expanded code can be called boiler-plate-
code, but it is more complex than what is usually meant by that
term because it deals with Cross-Cutting Concerns. Manually
producing this code takes a lot of time. Using NS expansion,
this time can now be spent on constantly improving the code
templates, developing new templates that make the elements
compatible with new technologies, and meticulously coding
the business logic. The changes in the elements can be applied
to all expanded applications, giving the concept of code reuse
a new meaning. All developers can use a modification on
a code template by one developer on all their applications
with minimal impact, thanks to the rejuvenation process (see
Figure 2).

d NS application Model describes the structure of application

NS
Development

NS
Rejuvenation

Extract the customizations of the code from previous software stack
{ Adopt the existing application model, add data element, business logic

Expand the model to generate code

Inject the Harvested customizations from previous expansion on the new
software stack

Customize the code (Craftings) to better accommodate your use-cases

“ Extract the customizations of the code from previous software stack

Fig. 2. NS development and rejuvenation.

III. FUNDAMENTALS OF SOFTWARE MIGRATION
STRATEGIES

Software systems are supposed to change over time as
the business environment changes. When a system has issues
following the changes, it is marked as legacy.

In [11], a legacy information system is defined as any
system that significantly resists modification and change. The
main reasons for becoming legacy are the lack of system
flexibility (the very definition of legacy) and the lack of skills
to change the system.

Information systems are closely linked with the technologies
on which they depend, and they also evolve. These changes
are not driven by the business context but by the progress and
shifts in technology and its market. When some technologies
lose their support from the providers, their expertise will also
disappear, leading to a shortage of skilled resources to make
the necessary changes to the information system.

If a system is outdated but the business still needs to change
and improve, the only solution is to redesign it and move it
to a new platform.

-

International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

Formally, re-engineering is the examination and alteration
of a subject system to reconstitute it in a new form and the
subsequent implementation of the new form. Re-engineering
generally includes some form of reverse engineering (to
achieve a more abstract description) followed by some more
form of forward engineering or restructuring (from [11]).

Usually, the re-engineering of a new system will involve
not only current functionalities but also future functionalities.
Re-engineering provides the old and new requirements, while
migration builds and uses the new system that replaces the
legacy one.

Figure 3 shows the three activities that are part of the
migration process:

¢ The transformation of the conceptual information schema
S

e The data transformation (D)

o The programming code transformation (T)

schema - 7
conversion >)

D data D'

conversion

[» B——

program
conversion

p'

Fig. 3. Conceptual schema conversion strategy (from [11]).

The order of the three migration activities can vary, affecting
when the target system is ready for end users. The literature
defines the following generic methods:

o Database first: migrate data first, then migrate program-
ming gradually, and go live when all programming mi-
grations are done.

o Database last: migrate programming first, go live when
all data is migrated.

o Composite database: migrate data and functionality to-
gether and go live when both are migrated.

o Chicken Little strategy: like a composite database but
keep legacy and replacement systems running simulta-
neously.

« Big bang methodology: develop a new system, stop the
old system, migrate data, and start a new system.

« Butterfly methodology: big bang with data synchroniza-
tion techniques to reduce data migration time and down-
time.

Each of these strategies has advantages and disadvantages. We
refer to [12] for more details.

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

167

IV. USE CASE: CONNECTING-EXPERTISE

This paper presents a case study of migrating a legacy
information system using NS principles and NS expansion/re-
juvenation, which helped overcome some of the limitations of
the selected migration strategy.

We begin by providing a functional view of the legacy
system, followed by a technical view. We then discuss the
legacy system’s evolvability problems, justify the need for a
new system, and describe how the transition from old to new
occurred.

A. Functional perspective

Connecting-Expertise [13] is a company that provides a
software platform called CE VMS that helps to improve and
simplify the sourcing, assigning, and management of an or-
ganization’s workforce. Connecting Expertise uses a software
platform to connect job-seekers and job-suppliers quickly and
efficiently.

When a job-seeker (seeking a human resource for a job)
and a job-supplier (supplying a human resource for a job) find
each other on the platform, the platform handles the necessary
administrative steps to make someone work effectively, such
as creating assignments, creating and processing timesheets,
and invoicing based on timesheets.

The business model of Connecting-Expertise combines a
buyer-funded model, where a job-seeker pays a license or a
fee per hour worked by a consultant to use the platform, and
a vendor-funded model, where a job-supplier pays per hour
worked by a consultant.

B. Technical perspective

The first version of CE VMS dates from 2007. CE VMS’s
core comprises a PHP web server and a MariaDB MySQL
backend DB. The application has components such as DTO/-
DAO classes (for data storage, access, and exchange), HTML
view templates, and CLI scripts for running background pro-
cesses.

In 2017, some CE VMS kernel features were separated
and moved to a new PHP server with a Zend Apigility API
framework. This setup is called CE2 VMS. The APIs are
only for internal use (not accessible by the job-seekers and
suppliers systems) and even though the features provided by
the API are not part of the CE VMS kernel, both kernel and
API framework use common code (like the data access logic,
as they both connect to the same database). The shared code
is in a library that both the kernel and the APIs use, but some
code, like DTO and DTA classes, exist in both the kernel and
the library.

The queuing system is a critical component of the current
system, as it transfers tasks that take a long time from the web
application to specialized processing servers. The tasks that
take a long time are placed in a queue processed by node.js
scripts. These scripts will invoke the relevant (internal) APIs,
communicate with the DB, and even call external APIs of CE2
VMS users’ systems. An overview of the technical architecture
can be found in Figure 4.

International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

CE Web Application Queuing system
PHP based, no framework PE— Rabbit MQ
Templates (indexation, publishing
Interfacing, notifications)
Beans Services
DTO Batch jobs (PHP CLI) ‘ Background workers
—— Node.js
DAO -
- (indexation, interfacing

notifications)
T

Y

CE Internal API
PHP based, using Zend Apigility

(Indexation, invoicing, interfacing)

N

)
= =)
]

7T
(cetbray)

3
J
J

A\

Elastic Search
Indexation DB
(rinsterad)

MySQL

Webserver FileSystem
Master + 2 slaves

(uploaded files, invoices, FTP)

Fig. 4. CE2 VMS technical architecture.

C. Maintainability and evolvability issues

The following sections will describe the main problems
affecting the system’s maintainability and evolvability: the
code base, code quality, technical architecture, scalability, and
functionality. Each of these areas will be explained in more
detail below.

1) Code base: The code base was developed without proper
coding standards that were maintained and followed. First, the
SOLID principles [14] were suggested as a coding standard at
some point, but the standard is not systematically applied and
verified, leading to many violations. Second, current coding
practices led to highly coupled code because of the use of
global variables and the absence of interfaces. Third, many
classes are long and complex, and many unused code has
not been removed. Fourth, consistent naming conventions
for database elements and attributes are missing. Finally, we
reiterate the previous point of code duplication between the
kernel and the libraries and the lack of standard frameworks
that could help structure the system and the code.

2) Code Quality: The code has quality problems because
there are no coding standards. First, there is no testing plan
to test each class or component of the application. Second,
doing functional acceptance tests is problematic because the
code is complex. One needs to know many technical details
(like how the queue works, DB queries, and manual running
of background jobs to do end-to-end tests). Third, security
coding practices are not used, so the code is vulnerable to
common security risks like SQL injection because input data
is not validated correctly. Finally, releasing a new version is a
big deal instead of a routine, often needing last-minute fixes,
even when acceptance testing seems good.

3) Technical Architecture: The technical architecture docu-
mentation (the infrastructure, system software, and networking
used) is not consistent, complete, or coherent. This might
account for the redundancies observed, such as using two
different indexing databases, two worker systems, two in-
voicing systems, and a custom approach to connecting with

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

168

external systems. The reason for having two different technical
environments for serving the BE and UK markets is not
justified and leads to double maintenance. There is a strong
dependency between the code base and the underlying techni-
cal infrastructure. Changing underlying technical components
(such as the DB) is very difficult because of the lack of
abstraction of the technologies used (tight coupling between ¢
code and Maria DB).

4) Scalability: A system that can cope with a growing
amount of work by adding resources has scalability. The
current environment has some components that are hard to
scale. First, the DB (MariaDB — MySQL) is not clustered (no
load balancing option, and it is on the same server as the web
server, which means they share the server resources). Second,
the file storage area for timesheet uploads is only accessible
from the web server, so all background processes that need
these files (like the background invoicing process) must also
run on the web server (which also shares the resources).
Third, the Xapian indexation system does not work across
the network, and it has to run on the web server, just like the
current job executer (Jenkins). There is also resource sharing
here. Lastly, the application does not use caching mechanisms,
which leads to unnecessary DB queries. These are all technical
obstacles that needed to be replaced by other technologies to
enable the scaling of the platform, i.e., to connect ever more
job-seekers and job-suppliers by simply adding resources.

5) Functionality: The system is complicated to set up for
new clients. They frequently need new application settings,
reports, or even application functions. This makes it hard to
expand the application to more customers (for example, in a
new country). The system also has a limitation on the currency:
some system modules only support the Euro.

V. MIGRATION APPROACH

Connecting-Expertise needs to enable integration with the
backend systems of job-seekers and suppliers to remain com-
petitive as a platform. However, this development is hindered
by current issues of evolvability. Connecting-Expertise faces
a challenge: how can CE2 VM offer integration with external
systems, along with existing and new functionalities, without
affecting the current CE2 VMS platform and creating a whole
new CE platform from scratch? The following sections will
explain the new setup, how NS expansion was introduced,
the differences between CE2 and CE3, and how transformers,
carefully designed gateways, deal with the migration from CE2
to CE3. Note that the meaning of transformers in this paper
is unrelated to the notion of transformers in today’s popular
Large Language Models (LLMs) [16] and Generative Al

A. The New setup

In 2021, a new system, CE3 VMS, was proposed. It consists
of a set of external APIs that provide integration functionalities
with job-seeker and supplier systems. These APIs call a new
set of internal APIs exposing the new CE data model.

As we discussed, the CE2 VMS data model is inconsistent
and lacks anthropomorphism. For CE3 VM, a new data

International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

model that follows the NS evolvability principles is being
put forward. Connecting-Expertise decided to create a set of
APIs that would enable external integration and calls toward
the CE3 VMS. These APIs would interact with internal APIs
that expose existing CE2 VMS functionalities, new CE3 VMS
functionalities, and the new CE3 VMS data model. In the
following sections, we will explain the reason for an NS
approach, the new CE3 VMS data model, the conversion from
CE3 VMS to the CE2 VMS data model, the overall transition
strategy from CE2 VMS to CE3 VMS, and the benefit of
rejuvenation.

B. NS Expansion approach

Connecting-Expertise realized that their platform had issues
with adaptability. Connecting-Expertise liked the NS approach
but was not completely convinced about using NS Expansion
with the NSX tools [15]. Two methods were compared:
building the new CE3 system following the NS principles or
the CE3 system with the NSX tools. Essentially, this means
deciding between working with or without software expansion.
All stakeholders were informed about both methods and the
stakeholders did a qualitative comparison. The result of this
comparison (see Figure 5) was that an expansion-based method
using the NSX tools, was preferred. It should be noted that this
was a qualitative comparison that needs to be verified again
once implementation starts and finishes (see Section VII).

APPLICATIE ARCHITECTUUR |3 -

securTy [
SOFTWARE QUALITY
ciycp .

BUDGET [B:

|
0 10 20 30 40 50 60 70 80 90
(A) with Software Expansion , (B) without Software Expansion Score

Fig. 5. Implementing CE2 with or without Software Expansion.

C. CE3 VMS Data Model

CE3 VMS does not rebuild existing functionalities. Instead,
it uses the CE3 VMS data model to call existing function-
alities (as a data exchange format) and converts the CE3
VMS data model to the CE2 VMS data model to use the
corresponding CE2 VMS functionalities. Data already in CE2
VMS is accessed/stored via APIs on CE3 VMS. Only when
new functionalities on CE3 VMS introduce new data types
will the data be stored and accessed in the CE3 VMS-specific
database.

CE3 VMS uses two types of data elements. One is for CE3
VMS native data, which can only be accessed and used by
CE3 VMS, called a CE3 data element. Another is for data in
CE2 VMS that CE3 VMS exposes through a CE3/CE2 data

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

169

element. According to NS principles, the CE3/CE2 data ele-
ments transform the less anthropomorphic CE2 data elements
into a data structure. The CE2 data element will aggregate a
certain amount of CE3/CE2 data elements. Figure 6 shows
an example modelled in ArchiMate. The diagram shows a
data object d_A_CE2 that is an aggregation of d_al_CE3/CE2,
d_a2 CE3/CE2 and d_a3_CE3/CE2, and accessible via CE2
and CE3, while data object d_b_CE3 is only accessible via
CE3. Transformers are used to convert the CE2 data object
and CE2/CE3 data objects.

CE2 Services

ssssssss

accesses

4 a1_CE3ICEZ :
d_a2_CE3ICEZ :

d_a3_CEJICE2

CE3 Services

d_A_CE2

aggregation

Fig. 6. Transformation of data objects between CE2 and CE3.

D. The Transformer Cross-Cutting Concern

[uu w I ww Log] " w I ww Log]
TRANS |CESI/CE2 dataelement typel ., CE3 data element type Mon
get() get()
XX set() Fac XX set() Fac
[vy Author I Authen Percist [vy Author I Authen Percist

Fig. 7. Transformer as a Cross-Cutting Concern of the CE3/CE2 data element
type.

The transformers deal with a Cross-Cutting Concern that
affects both CE2 and CE3. They are special classes that belong
to the CE3/CE2 data elements of CE3 VMS.

All the expanded CE3/CE2 data elements have a transformer
inside them as a Cross-Cutting Concern. The transformer’s role
is to map the CE3 data model to the CE2 data model. When
an instantiated CE3/CE2 data element performs persist/retrieve
actions, the transformer will change the CE3 data into the CE2
format - like an ETL operation - and then do the persist/retrieve
action on the CE2 database. This approach requires the CE3
and CE2 data models to be unambiguously mappable. This
was ensured during the design of the CE3 data model. Figure 7
shows the difference between the 2 data element types.

A feature available on CE2 VMS will use the data elements
created on CE2 VMS. The same feature can be accessed from
CE3 VMS through the CE3/CE2 data elements. When all
users of this feature switch from using it on CE2 VMSand
start using it on CE3 VMS (moving users from the old to the
new platform for that feature), it is time to also move all the
relevant data from the CE2 VMS database to the CE3 VMS
database. The transformers will help with this migration.

International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

A migration task would get the CE2 data through the
CE3/CE2 data element and save it into a CE3 data element.
After this migration task, the feature that needs this data will
only use the native CE3 data element, smoothly transitioning
from one system to the other. Figure 8 explains the process.

E. Rejuvenation and Transformation

To create CE3 VMS, a connection with CE2 VMS had to
be embedded in the code. The parts of the code that handle
this connection are in the transformation classes. These classes
belong to the CE3/CE2 data elements. When setting up the
meta-model used as the basis for the code expansion, data
elements will be marked as either type CE3/CE2 or type CE3.
All transformation classes are then included in the expansion.
When a data structure does not need to be linked to both CE2
and CE3 anymore, it is enough to specify this in the meta-
model and re-expand. CE3 data elements will then be applied,
and the transformers will no longer be required. The process
of re-expansion that improves the element structures is called
rejuvenation. In this case, the rejuvenation process eliminates
all code and connections to CE2, removing the link to legacy.

VI. INSIDE THE TRANSFORMERS

This section will take a closer look at the transformers, in-
cluding their coding. We start by explaining how transformers
are activated where required, followed by the main classes
that make up the transformers. We continue by listing where
transformations are required and end by describing the main
types of transformers.

A. Activating Transformations

In Section V-C, we have explained the difference in the data
model used in CE3 and CE2 and that transformers translate
one model to another. When a DataElement is created in CE3
with a homologue in CE2, linking a transformation to the CE3
DataElement is a matter of indicating in the model of the
DataElement that you want to have transformations included.
Example: In CE2, the notion of “Bids” exists. As there are
some anthropomorphic issues with this literal, the decision
was taken to stop using “Bids” and replace it by ‘“Proposal.”
The DataFElement for “Proposal” in CE3 gets flagged with
the need for a transformation, and the fully qualified name
of the corresponding CE2 data element (com. connecting
expertise.ce2.Bids) is given as a parameter. The same is done
for each attribute associated with CD3’s “Proposal”: indicate
to what field in the CE2’s “Bids” the transformation must
happen.

By default, one-to-one mapping/transformation is included
such that the name of an attribute of CE3’s “proposal” to
a different attribute name but with the same content type in
CE2’s “Bid” For example “proposal_nr” to “bids_nr".

If an attribute requires a more custom transformation,
the attribute of the DataFlement must be flagged with the
hasCustomTransformation option. The expanded code for the
transformer will then include the boilerplate code to call the

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

170

(1) get data

ww Log

(o~]

d A CE2

(2) get data from CE2

d_a1_CE3/CE2
get()

XX set) Fac

Mon

get(), set() - a1"
get(), set() -a2' [T+, .
get(), set() - a3' N

JI_

Percist

R .. (2) get data from CE2
e vy | Author | Authen

c
c

w I ww Log

)

. (3) read data

: from CE2 DB d_a2_CE3/CE2

get()
set()

" {TRANS

"+ (2) get data from CE2" *

Mon
Fac

Percist

XX
yy Author | Authen

Database CE2

Log

c
<

w Iww

d_a3_CE3ICE2

get()

X i) Fac

TRANS Mon

Percist

0a]

y Author | Authen

International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

£]
Temp migration
Component

. (4)setdata

w ww
uu
d_a1_CE3

get()
set()

Log

Mon

Fac

Author | Authen | Percist +

<
s
:
5

~ (5) Percist data

Log .
*, inCE3DB

d_a2_CE3
get()
XX set()

Author | Authen

Mon

Fac

Percist

Database CE3

<
s
:
=

d_a3_CE3
get()
XX set()

Author | Authen

Percist

F
i

Fig. 8. Migration of data from CE2 VMS to CE3 VMS.

transformation and provide anchor points (locations to add
custom code in the expanded code) to code the transformation
manually.

Custom transformations are required when no pattern is
found between the mapping of CE3 to CE2,and thus, they
cannot be generalized in expandable code. However, some-
times a pattern can be found, and then it is interesting to
generalize this pattern in an expansion template and provide
it as a configuration option of the CE3 DataElement.

For example, language translation is a transformation that
is potentially applicable to all DataElements and has a general
pattern. The indication of a need for language transformation
of the values of attributes of a CE3 DataFlement will expand
the required code for performing this task.

B. Expaned Transformation Code

Three transformation Java classes will be created based on
the configuration of the DataElements that require transforma-
tion.

+ <DataElement>TransformationCoordinator.java:
Transformation may require a custom sequence of
operations, e.g., fetch a different DataElement, do a
transformation operation on it, and then only perform a
transformation on the actual textless DataElement>. The
transformer coordinator class holds this logic.

o To<DataElement>Transformer.java: This transformer
class will take CE2 data as input and provide CE3 data
as output.

o From<DataElement>Transformer.java: This trans-
former class takes CE3 data as input and provide CE2
data as output

C. Usage of Transformations

The method invocations to transformation classes discussed
in the previous section get injected into the DataElementBean,
the heart of the logic layer. There, operations are called, which
allow the manipulation of the DataElement in CE3 but require
transformations for proper reflection into CE2.

A CE3 DataElement contains methods for performing basic
operations on the data. When transformers are attached to
a CE3 DataElement, these basic operations need to call the
transformers to access the corresponding CE2 DataElement.
Examples of operations requiring transformer integration

e Projections: Representation of the DataElement in an NS
application, with “Info” (the most essential attributes),
“Details”, and “DataRef” (data reference) as 3 possible
sub-projections.

o SearchResult: When data gets searched the requested
projections get wrapped in a result class.

e CrudsResult: When a CRUD operation is invoked, the
end product gets wrapped in a result class.

e Diagnostics: When something went wrong in the data
layer, this needs to be transformed to a correct error in
the logic layer.

o Finder: Information to search information, the result of
this is a SearchResult.

e QueryFilter: A different representation to search infor-
mation, the result of this is a SearchResult.

e SortField: column names on which can be sorted, these
can vary in name. If additional methods should be added
to DataElements, it suffices to do so on the DataElement
template, including the option to link a transformer to
them. A rejuvenation cycle will then include these extra
methods and corresponding transactions in the entire code

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

171

base, thus eliminating the introduction of a combinatorial
effect.

D. Types of Transformations

Depending on what a CE3 DataElement represents, different
transformations will be required to link with the corresponding
CE2 DataElement(s). We will now elaborate the main types
of transformation.

1) Table renames: A Data Element in CE3 with a cor-
responding Data Element in CE2 that only differs in name
requires a simple table rename transformation. For example:
“bids” and “proposal” are names of tables corresponding with
the ’bids” DataElement in CE2 the “proposal” DataElement
in CE3. Both represent the same thing; they are just named
differently. Having activated a transformation at DataElement
level between the two, results in expanded code that allows
the conversion of one into the other. In Listing 1, we see the
code that takes care of the conversion of ProposalDetails (CE3)
toward BidsDetails (CE2) and the vise-versa.

//From

public static com.connectingexpertise.ce2.BidsDetails
< transformDetails (ProposalDetails details) {...}

/1 To

public static ProposalDetails transformDetails (

< ParameterContext<com.connectingexpertise.ce2.
— BidsDetails> detailsParameter) {...}

International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

3) Cardinality mapping: CE2 supports three languages. All
translations are spread throughout the codebase. Adding a
fourth language would require a full revision of the codebase,
effectively introducing a combinatorial effect. In CE3, the
issue can be solved by adding an attribute with a language
code postfix (e.g., _NL, _FR, _EN) to a one-to-many table
containing translations. Upon insertion, the transformer will
create the necessary detail records with the default translation.
During update, it will map the language attribute to the
corresponding translation row. As long as the transformer is in
place, CE3 will be limited to using only the CE2 languages.
Once the transformer is gone (functionality fully migrated
from CE2 to CE3), many languages can be added without
introducing a combinatorial effect. Listing 3 shows some code
related to translations. Note that the original DataElement data
will need to fetched and mapped in order not to lose this
information when making changes to DataElementTranslation.

Listing 1. Table renames or mapping between two different DataElements of
CE2 and CE3.

2) Column renames: The CE3 DataElement for pro-
posal” has an attribute “request”’, while the corresponding
CE2 DataElement ”bids” has a similar attribute called “rfq”.
Mapping from “request” to “rfq” and vise versa required a
mapping of columns. Both represent the same attribute; they
are just named differently. Having activated a transformation
at the attribute level results in expanded code that allows one
conversion into the other. In Listing 2, we first see getting the
attribute “request” defined in CE3’s Proposal and setting that
value into the attribute "Rfq” of CE2’s Bids, and vice versa.

/1 From

transformedDetails .setRfq(FromRequestTransformer .
— transformDataRef(details.getRequest()));

/1 To
transformedDetails .setRequest (ToRequestTransformer .
< transformDataRef(details.getRfq()));

Listing 2.
DataElements.

Column mapping between two different CE2 and CE3

Note the From<item>Transformer, taking CE3 data
as input and given CE2 data as output, and the
To<item>Transformer, taking CE2 data as input and giving
CE3 data as output.

// From

public class FromCountryTranslationTransformer {
public static com.connectingexpertise.ce2.CountryDetails
— transformDetails (CountryTranslationDetails details
=) |
com.connectingexpertise.ce2.CountryDetails
— transformedDetails = new com.connectingexpertise
— .ce2.CountryDetails () ;
transformedDetails . setld (details.getld());

CrudsResult<com.connectingexpertise.ce2.CountryDetails>
— originalDetailsCrudsResult = com.
— connectingexpertise.ce2.CountryLocalAgent.
— getCountryAgent(Context.emptyContext()).
— getDetails (details.getld());
if (originalDetailsCrudsResult.isError()) return null;
com.connectingexpertise.ce2.CountryDetails
— originalDetails = originalDetailsCrudsResult.
— getValue () ;

// anchor:value—fields —transformDetails: start

if (details.getLanguage().getName().equals("nl”)) {
transformedDetails . setCountryNIl(details .getName());
transformedDetails .setCountryFr(originalDetails .

— getCountryFr());
transformedDetails . setCountryEn (originalDetails .

— getCountryEn());

} else if (details.getLanguage().getName().equals(”fr”)
=) {
transformedDetails . setCountryNl(originalDetails .

— getCountryNI1());
transformedDetails . setCountryFr(details .getName());
transformedDetails . setCountryEn(originalDetails .

— getCountryEn());

} else {
transformedDetails .setCountryNI(originalDetails .

— getCountryN1());
transformedDetails . setCountryFr(originalDetails .

— getCountryFr());
transformedDetails .setCountryEn (details .getName ());

// anchor:value—fields —transformDetails : end

1 // anchor:parent—fields —transformDetails: start
transformedDetails .setUuid (originalDetails.getUuid ());
transformedDetails . setlsoCode (originalDetails .
— getlsoCode ());
transformedDetails . setPostcodelist(originalDetails .
— getPostcodelist());
transformedDetails .setCompanyNumberRequired (
— originalDetails .getCompanyNumberRequired ()) ;
transformedDetails . setRequiresVatNumber (originalDetails
— .getRequiresVatNumber ());

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

172

transformedDetails . setSelfregistration (originalDetails .
— getSelfregistration());
transformedDetails . setSelfregistration (originalDetails .
— getSelfregistration());
transformedDetails . setSortOrder(originalDetails .
— getSortOrder ());
transformedDetails .setUseRrnr(originalDetails .
— getUseRrnr());
// anchor:parent—fields —transformDetails :end

// anchor:custom—other—fields —transformDetails: start
// anchor:custom—other—fields —transformDetails : end

return transformedDetails;

}
}

//To
public class ToCountryTranslationTransformer {
public static CountryTranslationDetails transformDetails (
< ParameterContext<com.connectingexpertise.ce2.
< CountryDetails> detailsParameter , String language)
= {
Context context = detailsParameter.getContext();
com.connectingexpertise.ce2.CountryDetails details =
— detailsParameter. getValue () ;
CountryTranslationDetails transformedDetails = new

< CountryTranslationDetails () ;
transformedDetails . setld (details.getld());

// anchor:value—-fields —transformDetails: start
if (language.equals(”"nl”)) {
transformedDetails .setName(details . getCountryNI());
} else if (language.equals(”fr”)) {
transformedDetails .setName (details.getCountryFr());
} else {

transformedDetails .setName(details . getCountryEn());
// anchor:value—-fields —transformDetails : end

CrudsResult<DataRef> resolvedLanguageDataRef =
<~ LanguageLocalAgent. getLanguageAgent(context).
— resolveDataRef (DataRef.withName(language));
if (resolvedLanguageDataRef.isError()) {
transformedDetails . setLanguage (null);
} else {
transformedDetails .setLanguage (
— resolvedLanguageDataRef. getValue());

}

transformedDetails . setCountry (ToCountryTransformer .
< transformDataRef(details . getDataRef()));

// anchor:custom—-other—fields —transformDetails: start
// anchor:custom—other—fields —transformDetails : end

return transformedDetails;

International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

5) Data value mappings: The typing of attributes in CE2
has not been consistent; e.g., instead of consistently storing a
boolean as TRUE/FALSE, a boolean is sometimes stored as
strings with ”’y” and ’n” as values. In the new CE3 data model,
this is now harmonized, and the transformation will map to
the corresponding type in CE2. A similar transformation can

be found in the code below (Listing 5).

// fill in original CE2 values
if (details.getld() !'= null & details.getld() != OL) {
CrudsResult<com.connectingexpertise.ce2.BidSkillDetails >
— oldDetailsResult = com.connectingexpertise.ce2.
< BidSkillLocalAgent. getBidSkillAgent(Context.
— emptyContext()).getDetails (details . getld());
if (oldDetailsResult.isSuccess()) {
BidSkillDetails oldDetails = oldDetailsResult.

— getValue () ;
transformedDetails .setFreeSkillName (oldDetails .

— getFreeSkillName ());
transformedDetails .setType (oldDetails . getType());
transformedDetails . setQuestionType (oldDetails .

— getQuestionType ());
transformedDetails .setDescription (oldDetails .

— getDescription());
transformedDetails . setJustificationMissingSkill (

— oldDetails . getJustificationMissingSkill ());
transformedDetails . setSkill (oldDetails. getSkill ());
transformedDetails .setCustomerScore (oldDetails .

— getCustomerScore ());

Listing 4. Filling in deprecated attributes in CE2 for database consistency.

Listing 3. Handling translation in the transformer.

4) Deprecated attributes: Some CE3 DataElements con-
tain attributes that are considered to be deprecating the new
model. However, as long as the functionality is not fully
migrated from CE2 to CE3, the data is still stored in CE2.
Consequently, these attributes still need to be completed in
CE2 when editing an entry. Otherwise, they will be nulled,
which impacts the workings of CE2. Creating DataElements
containing depreciated attributes always have a default stored
in the CE2 database. This is achieved by retrieving the current
CE2 element and filling the deprecated values with the existing
ones. Listing 4 shows some sample code.

1 transformedDetails.setOverBudget(details .
— getHasBudgetExceeded () != null ? (details.
— getHasBudgetExceeded () ? 7Y” ”N”) null);
4 transformedDetails.setRfq(FromRequestTransformer.
— transformDataRef(details.getRequest()));
transformedDetails . setUuid (details . getUuid ());
7 if (DataRefValidation.isDataRefDefined (details .
— getExternalAnonymizationStatus ())) {
transformedDetails . setExternalAnonymizationStatus (
— details.getExternalAnonymizationStatus () .
— getName ()) ;

W

}

// anchor:custom—other—fields —transformDetails: start

2 transformedDetails.setLonglist(details.getIsLonglisted ()
— 2?21 : 0);

3 transformedDetails.setVat(details.getlsVatExcluded () !=
— null ? (details.getlsVatExcluded () ? "EXCLUDED” : ”
< INCLUDED”) null);

6 transformedDetails.setState (transformState (details.

— getExternalStatus ().getName()));
// anchor:custom—other—fields —transformDetails : end

6 public static String transformState(String state) {
String transformedState ;
switch (state) {
case "PUBLISHED”:
transformedState = "SUBMITTED” ;
break ;
case “PENDING_PUBLICATION™ :
transformedState = "PENDING_SUBMIT” ;
break ;
case “CREATED”:
transformedState = "INITIATED”;
break ;

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

173

default:
transformedState = state ;
break ;
}

return transformedState ;

Listing 5. Filling in deprecated attributes in CE2 for database consistency.

6) Complex and large data: In some cases, the data trans-
formations are more extreme. CE2 contains files, often stored
as php serialized objects in the database. Migration of all this
data in a big-bang operation can be time-consuming and risky.
For this reason, a particular transformation was implemented
to migrate such complex objects from CE2 to CE3 when
touched. This spreads the migration over a longer time. The
inconvenience of touching such an object the first time will
result in some extra delay due to the on-the-fly transformation
toward CE3, is preferred over the risk of a big-bang migration.
Practically, in CE3, an extra Asset Data Element is created.
This Data Element contains the actual file. This asset is created
the first time an entry in CE2 of such a file is read, and it
does not exist yet in CE3. If it already exists in CE3, the file
is searched and linked. This kind of transformation will often
reside between custom anchors because of the different file
types existing in CE2 with other structures.

VII. DISCUSSION

In this section, we will discuss different aspects of the
migration approach. We will start with the choice of NS
expansion, followed by a comparison between this migration
approach and a generic migration approach called Chicken
Little [12], and a short discussion on the value of a phased
migration. We will end by giving some basic numbers.

A. The Choice for NS Expansion

In Section V-B, we explained why Connecting-Expertise
chose to use NS Expansion compared to standard program-
ming using the NS principles as guidelines. We asked the
Connecting-Expertise’s lead developer, Sven Beterams, if the
estimated gains from using NS Expansion materialized during
project delivery. He confirmed that thanks to NS Expansion,
the development went faster, the code quality improved con-
siderably, and the data model was anthropomorphic and con-
sistent. The development of the backend was greatly enhanced,
and the phased migration approach was made possible thanks
to NS Expansion/Rejuvenation.

B. Migration Approach

The usage of the transformers plays an essential role in
the migration from CE2 VMS toward CE3 VMS. The idea of
gradually shifting functionalities from one system to another
while keeping both active is called the Chicken Little approach
(see [12]). The main drawback of using this approach is the
need for gateways between the source and target system.
These gateways must be meticulously designed and consis-
tently implemented, which can be daunting. NS Expansion
mitigates the downsides of doing Chicken Little dramatically.

International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

The gateways are implemented using the transformer classes
that are part of the data elements. Using NS Expansion ensures
that each gateway/transformer is identical in structure and
usage. The transformers can evolve, and all modifications and
improvements can be quickly and easily redeployed using re-
expansion/rejuvenation. When functionality is fully migrated
from the source to the target system, there is no longer the
need to keep the gateways in place. With classic coding
practices, the manual removal of the gateways comes with
risks. Accidental removal of too much could result in broken
functionalities—insufficient removal results in traces of legacy
code in a brand-new system. With NS Expansion, it suffices
to perform a rejuvenation cycle to replace the code templates
that contain transformers with code templates without trans-
formers. All traces of legacy are removed in a consistent and
precise way.

C. Phased Migration

Connecting-Expertise wanted to avoid a big-bang migration.
The transformer approach facilitated this even more. The ease
with which the final migration of data can be performed (as
described in Figure 8) is thanks to the transformer Cross-
Cutting Concern and the ability to rejuvenate the code and
erase all links to legacy after final migration. Without the NS
Expansion approach, this task would be much harder.

D. Some Basic Numbers

The system currently contains 546 CE2 data elements,
corresponding to database tables, and 416 CE3 data elements
with 120 CE task elements and 48 CE3 workflows. The
development team consisted of 1 to 3 back-end developers,
with the lower number at the beginning and the end, and the
higher number in the middle. At the end of 2022, the creation
of a dedicated front-end, on top of the generated user interface,
was initiated. This effort also involved 2 to 3 developers, where
a decrease in back-end developers made room for an increase
in front-end development. As is often the case in software
development, the front-end development turned out to be less
predictable than the back-end development. Due to the specific
nature of front-end development, and the many stakeholders
involved, it should probably be treated as a separate project.

VIII. CONCLUSION

This paper presented a real-life case where NS Expansion
facilitates software migration. We introduced NS and NS
Expansion and gave a general overview of software migration
approaches. We presented the Connecting-Expertise use case,
where a mission-critical platform needed to evolve while
keeping the existing system operational. We have shown that
addressing the migration as a Cross-Cutting Concern, using
transformer classes embedded in data elements, combined with
NS Expansion and rejuvenation, can mitigate some of the
significant drawbacks of a phased migration.

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

174

International Journal on Advances in Software, vol 17 no 3 & 4, year 2024, http://www.iariajournals.org/software/

ACKNOWLEDGMENT
The authors thank Sven Beterams from Connecting-
Expertise for sharing his application knowledge and Jan Hardy
of NSX for explaining how the transformers are implemented.
We would also like to thank Chetak Kandaswamy for collect-
ing and structuring the material required to create this paper.

REFERENCES
[1

—

C. De Clercq and J. Verelst, “Using Normalized Systems Expansion to

Facilitate Software Migration-a Use Case,” The Sixteenth International

Conference on Pervasive Patterns and Applications (PATTERNS 2024),

pp. 6-12, April 2024.

SAFe Framework, [Online], Available: www.scaledagileframework.com,

[retrieved: December, 2024].

[3] H. Mannaert, J. Verelst, and K. Ven, “The transformation of require-
ments into software primitives: Studying evolvability based on systems
theoretic stability,” Science of Computer Programming, vol. 76, no. 12,
pp. 1210-1222, 2011.

[4] H. Mannaert, J. Verelst, and K. Ven, “Towards evolvable software

architectures based on systems theoretic stability,” Software: Practice

and Experience, vol. 42, no. 1, pp. 89-116, 2012.

H. Mannaert, P. De Bruyn, and J. Verelst, “On the interconnection of

crosscutting concerns within hierarchical modular architectures,” IEEE

Transactions on Engineering Management, 2020.

[6] H. Mannaert, K. De Cock, and P. Uhnak, ”"On the realization of

metacircular code generation: The case of the normalized systems

expanders,” In Proceedings of the Fourteenth International Conference

on Software Engineering Advances (ICSEA) (Vol. 2019, pp. 171-176).

P.Huysmans, J. Verelst, H. Mannaert, and A. Oost, “Integrating infor-

mation systems using normalized systems theory: four case studies,” In

IEEE 17th Conference on Business Informatics, Volume 1, pp. 173-180,

2015.

[8] H. Mannaert, J. Verelst, and P. De Bruyn, “Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design,” ISBN 978-90-77160-09-1, 2016.

[9]1 H. Mannaert, J. Verelst, and K. Ven, “The transformation of requirements
into software primitives: Studying evolvability based on systems theo-
retic stability,” Science of Computer Programming, Volume 76, Issue
12, pp. 1210-1222, 2011.

[10] P. Huysmans, G. Oorts, P. De Bruyn, H. Mannaert, and J. Verelst, “Po-
sitioning the normalized systems theory in a design theory framework,”
Lecture notes in business information processing, ISSN 1865-1348-142,
pp. 43-63, 2013.

[11] S.Demeyer and T. Mens, “Software Evolution,” ISBN 978-3-540-76439-
7, 2008.

[12] A. Sivagnana Ganesan and T. Chithralekha, “A Comparative Review
of Migration of Legacy Systems,” International Journal of Engineering
Research & Technology (IJERT), ISSN 2278-0181, Volume 6, Issue 02,
February 2017.

[13] Connecting-Expertise, [Online], Available : www.connecting-
expertise.com, [retrieved: December, 2024].

[14] R. Martin, ”Clean Architecture”, ISBN-13 978-0-13-449416-6, 2017.

[15] NSX, [Online], Available: www.normalizedsystems.org, [retrieved: De-
cember, 2024].

[16] A. Vaswani, N. Shazeer, N. Parman, et al., ”Attention is all you need,”

31st Conference on Neural Information Processing Systems (NIPS

2017), Long Beach, CA, USA 2017.

[2

—

[5

=

[7

—

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

175

