International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

Model-Supported Software Creation: Extending Model-Driven Software Engineering
with Non-Formal Artifacts and Transformations

Hans-Werner Sehring
Department of Computer Science
Nordakademie
Elmshorn, Germany
e-mail: sehring@nordakademie.de

Abstract—Software typically is developed based on descrip-
tions of a relevant section of the real world, the problem
at hand as well as the software to be built for its solution.
Methodologies and tools have evolved to create and manage
such descriptions, and to finally implement software as specified.
Model-Driven Software Engineering (MDSE) is one approach of
model management. A series of models that build upon each other
by means of model transformation is used to describe a software
solution in increasing detail. While the application domain and
the software solution under consideration are reflected by such
models, other aspects of a software project are not always
considered on equal level. Examples are the business side of the
project that usually exceeds the software creation part, creative
activities like user interface design, and aspects of the operation
of the software. In this article, we discuss aspects of extending
MDSE towards a holistic approach that includes additional
phases of software engineering and the incorporation of models
that are either defined in specific notations used by experts or that
do not allow formalized model transformations. The approach
relies on artifacts that are created using a heterogeneous set of
languages. These artifacts are described by formal models that
add semantics and that relate the informal artifacts. For such an
approach, we coin the term ‘“model-supported software creation”
in this article.

Keywords—model-driven software engineering; model-driven ar-
chitecture; software engineering; software architecture

I. INTRODUCTION

Software is, in most of the cases, used to represent and
solve real-world problems. In order to be able to do so, a
relevant section of the real world needs to be captured, and
the problem as well as its solution need to be described in
sufficient detail. This includes defined requirements, test cases,
conceptual models, domain models, etc.

Methodologies and tools have evolved that capture problems
and solutions, model the real world with respect to the problem
at hand, and finally allow implementing software with respect
to such a model.

Classical software engineering has a typical sequence of
an analysis phase, resulting in requirements, design phases,
resulting in solution designs, and implementation phases, re-
sulting in working software. In agile approaches, these phases
may be very condensed. The artifacts (descriptions, models,
code, etc.) created in each phase build upon each other. Still,
they are formally unrelated. Those artifacts contributing to a
phase consider the artifacts from previous phases, though.

The various description artifacts involved in software engi-
neering processes call for means to manage these descriptions.

In particular, they have to be related to each other to reach
goals like, for example, those of coherence and traceability.

Model-Driven Software Engineering (MDSE) or Model-
Driven Software Development (MDSD) is one approach to
a more formal management of artifacts. A series of models
that build upon each other is used to describe a software
solution in increasing detail. Typically, the models are refined
or transformed up to the point where actual running software
can be generated out of the most precise model.

Software engineering, and thus MDSE, at best captures the
whole software lifecycle. Ultimately, all development steps are
captured by a holistic MDSE approach. In this article, we study
two dimensions in which to extend typical MDSE approaches.
We use the name Model-Supported Software Creation (MSSC)
for an accordingly extended kind of MDSE. This article is an
extension of the presentation of the first ideas towards holistic
software (project) models in [1].

While MDSE gained a fair amount of attention, it is not
equally successful in all application domains [2]. We see
two main obstacles to applying MDSE in some areas: the
heterogeneity of modeling artifacts and the stages of software
development that are covered by a software engineering pro-
cess.

1) MDSE is well-suited for formal domains and for
computation-centric solutions. But is is not equally well
applicable to software development processes with a
high degree of creativity involved. For example, it is
feasible to model technical domains that are based on
mathematics and physics. But it is less practical to
formally model solutions with a focus on creative and
subjective aspects. Human-machine interaction (online
shops, for example) or content-centric applications (per-
sonalized marketing websites, for example) are examples
found in typical customer-facing commerce systems.

2) MDSE focuses on the stages of a project where the
actual software is specified and implemented. Most
approaches start with defined requirements. Projects in-
clude more tasks than just software creation alone. There
are earlier stages in which (business) goals are set and a
decision is made to start a project, and there are stages
that follow software implementation, like operations and
maintenance.

In order to incorporate these aspects in MDSE, we study

a modeling approach that allows incorporating models in

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

80

varying notations and modeling approaches that do fully rely
on formalized model transformations. It is based on models
that are created using a heterogeneous set of languages and that
are used to add semantics to and that relate informal artifacts.

Section II of this paper revisits some approaches to MDSE.
Additional demand for modeling that exceeds software mod-
eling is studied in Section III (extended demand for additional
project phases) and in Section IV (requirements to the integra-
tion of both formal and informal models). Section V presents
the Minimalistic Meta Modeling Language (M>L) that we use
as the basis for first experiments with holistic MSSC models
presented in Section VI. We conclude the paper in Section VII.

II. MODEL-DRIVEN SOFTWARE ENGINEERING

Various approaches to software generation from models are
discussed. In this section, we briefly revisit some of these.

A. Model-Driven Architecture

The Model-Driven Architecture (MDA) [3] of the Object
Management Group (OMG) is an early and well received pro-
posal for an MDSE approach. It assumes models to be created
on (originally) three levels of abstraction. A Computation-
Independent Model (CIM; this term is not used in current
specifications) describes the software to be developed from
the perspective of the subject domain, as domain concepts
or requirements. It typically is an informal description, for
example, done in natural language. A first formal model is a
Platform-Independent Model (PIM), formulated in the MDA’s
Meta Object Facility (MOF). It is transformed into a Platform-
Specific Model (PSM) that in turn is used to generate a working
implementation. Model transformations are specified using
Query View Transform (QVT) based on MOF.

B. Software Generation

Software generation has gained particular attention since
this step in an MDSE process can well be formalized.

a) Metaprogramming: Programs that generate programs
are an obvious means to software generation. The development
of such generators tends to be costly, but results may be
targeted optimally to the application at hand.

b) Templates: Code with repeating structures can be for-
mulated as templates with parameters for the variations of that
uniform code. For Concept-Oriented Content Management [4],
for example, code for CRUD operations is generated. This
code does not differ in functionality, but in the data types
used for domain entities.

¢) Generative Al: The currently emerging generative Al
approaches based on large languages models provide another
means to generate code from descriptions. Based on a library
of samples, they allow interactively generating code from less
formal descriptions, in particular natural language expressions.

C. Domain-specific Languages

Languages can be associated with metamodels [5]. This
means that a model of a software application can be expressed
by a language for a subject domain. Such a language is called
a Domain-Specific Language (DSL).

International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

The software generation process is simplified to defining an
application using a DSL, allowing to define the application in
terms of the subject domain. There is a trade-off regarding the
degree of abstraction: The more domain knowledge is put into
the DSL, the simpler it is to define an application. But a more
specialized DSL also means that the range of application that
can be defined becomes more limited.

D. Generic Software

The aim of MDSE and MSSC is custom software that is
tailored to solve one specific problem. Generic software, on
the other hand, encapsulates some domain knowledge that is
applicable in a set of scenarios.

The concrete application is defined by setting parameters of
the generic software. The application areas of generic software
are defined by the degree to which domain knowledge was
generalized and parameterized.

There are varying degrees of parameterization. This relates
to so-called low code and no code approaches. These are also
based on a generalized software that maps a section of the
real world, and they allow software to be customized within
the limits of the chosen section.

III. MDSE FOR THE FULL SOFTWARE LIFECYCLE

On top of software models as provided by approaches like
the ones presented in the preceding section, there are addi-
tional aspects of (software) projects that have to be captured
in a holistic software engineering process. In this section, we
outline typical project activities and intermediate results.

Further artifacts play a role for these aspects, and they call
for additional model contributions.

We call sets of project contributions that logically belong
together a modeling stage. This term shall reflect the fact that
models build up upon each other, and not in a temporal sense
as terms like project phase would indicate.

Table I gives an overview over typical stages of software
creation and some examples of artifacts they deal with.

A. Business Goals, Project Goals, and Constraints

The purpose of software typically is not just to be useful by
meeting the requirements, but it contributes to some business
goals. At least in commercial applications, business goals are
defined upfront, and software may be one part of a solution
to reach these goals.

Software modeling in the MDSE sense starts at the point
where there is consensus about the kind of software to be
developed. In fact, projects start at an earlier stage at which
a (business) need arises. In a commercial setting, this may
be, for example, increased revenue, a certain number of new
customers, or some degree of customer satisfaction. A solution
approach is not given. At this stage, it is not even decided that
new or improved software will be part of the solution.

Therefore, on top of a software project, a business endeavor
is pursued. The business goals will finally be the main criteria
to measure project success. To this end, these goals need to
be precisely formulated so that their impact on the software

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

81

TABLE I. STAGES OF SOFTWARE CREATION

Modeling stage Model entities on the stage

KPIs

OKRs

Information architecture

Interaction design

Wireframes

Processes, data flows

Solution hypothesis

Functional ~

Non-functional ~

Customer journeys

Touch points

Interfaces

High-level architecture

Functional mapping

Components

Communication between those components
Interfaces to the environment
Constraints of the resulting software system
Requirements met by the architecture
Rationale behind architecture decisions
Metaprogramming

Software generators

Domain-specific languages
Infrastructure definition

Automated deployments

Service level agreement

Monitoring

(Business) Goals

Subject domain model

Requirements

Solution architecture

Software architecture(s)

Code

Systems architecture

Operations

models becomes apparent. Furthermore, the degree to which
goals are met needs to be measurable. This calls for a business
model to be formulated at the very beginning of a model-
supported software creation project.

A project starts with the identification of a problem to
be solved as a contribution to a business goal. In many
cases, the problem does not lie within the computing domain.
Accordingly, the desired solution is typically formulated by
means of (project) goals that shall be reached.

Goals have to be measurable in order to judge the success
of a project. Key Performance Indicators (KPIs) or Objectives
and Key Results (OKRs) are used to define target values. The
values that are measured often lie in the business domain and
have to be determined by controlling means on the business
level. The success of a software solution that helps reaching
the goal is then proven implicitly, assuming that it substantially
contributes to reaching the business goals.

Since formal goals are set up as a first abstraction of the
business goals to be reached, they are subjective and depend
on a stakeholder who defines them. Approaches like i* [6] aim
to model this subjectivity.

B. Requirements

Requirements characterize the properties of a software solu-
tion. This means that this stage only is entered if it is decided
that software helps reaching the defined goals. It also means
that a first software solution hypothesis has been recognized
and is being detailed through requirements.

There is a wide range of requirements: functional require-
ments and the diverse kinds of non-functional requirements.
Together, they form a first model of a software solution that,
however, is typically informal.

International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

Additionally, (project) constraints that limit the solution
space belong to this stage.

There are various tools to help managing functional require-
ments. Deductive databases can help validating and completing
requirements [7].

C. Subject Domain Model

The later stages of software design require a certain under-
standing of the problem domain, for example, typical concepts
of the area the software is to be applied in. The requirements
relate to the domain concepts.

Modeling means abstracting from the domain that is rep-
resented. Therefore, domain concepts cover a section of the
subject domain that is relevant for the solution.

In the MDA approach, the CIM may include the stage of
domain modeling.

D. Creative Tasks in Software Development

Requirements can be defined in different ways. In re-
quirements engineering, one aims at specifying properties of
the software to be built with adequate precision. In agile
approaches, requirements are formulated from a business per-
spective.

The formal models underlying the model-driven approaches
as discussed in Section II require abstraction capabilities
for viewers to imagine the software to be built and how it
will meet the requirements. The ability to work with such
abstractions cannot be taken for granted for domain experts
and various stakeholders in a software project.

Modern development approaches, in particular agile ones,
are based on the engagement of stakeholders, though, requiring
them to understand the outcome of each development step.
To this end, often visual communication is used for partic-
ipants who are not comfortable with working with abstract
representations of software as used by software developers
in an MDSE process. This visual communication is based
on the creative input contributed by a cross-functional team.
Such creative input is usually found in software development
processes with a high degree of creativity involved, like, for
example, solutions with a focus on human-machine interaction
or content-centric applications.

Creatively working team members and certain other domain
experts prefer using specific notations and tools. Creative tasks
are typically carried out on the basis of visual presentations
that lack formal completeness and soundness. Still, they
help develop a common understanding between the various
participants in a project and are, therefore, central to the
communication with stakeholders and domain experts to allow
them to judge the ongoing development on a subjective basis.

Formal models are well-suited to reason about the emerging
software solution, but not about the inputs that led to its design.

For all these reasons, informal means of communication
between creative workers, analysts, etc. and stakeholders in a
user-centered development process typically cannot be substi-
tuted by abstract models of software alone.

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

82

International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

CIM <> I I
[] Personas Customer Journey 1
Persona A Persona B Touchpoint 1.1 Touchpoint 1.2
0 : S
=
v

M <O I I |

Visualization Information architecture

Qe ?

Lo-Fi Prototypes —

Wireframes

:

Module catalog

Hi-Fi Prototypes

Click dummies Style guide

A

—

Functional mapping

Content Model Data at touchpoints

e

Navigation Model | Data flow between touchpoints

— Functionality at touchpoints

@@@

Figure 1. Creative tasks in software development processes.

In MDA terms, a CIM is elaborated to a “visual PIM”
that describes the software from the perspective of users (in
contrast to the developers’ perspective). In this PIM, there is
an emphasis on the user experience and the visual appearance
of software. This model defines how users of a service interact
with the provider of that service, for example, how customers
interact with an online shop.

Figure 1 sketches a typical user-centered development pro-
cess, with the sequence of models shown at the left of the
figure.

Conceptions of interactive applications for digital com-
munication typically begin by identifying personas as role
models of target groups, determine the customer journeys
as the sequence of interactions users have at different touch
points, before finally deriving artifacts like the information
architecture.

To design user interfaces, artifacts like wireframes and
sketches provide first impressions. Later, graphical details are

added in documents like style guides. Click dummies allow
stakeholders to get an impression on how the software is
intended to be operated.

All these conceptual and graphical descriptions are, on the
one hand, defining user experience aspects like navigation
and visual layout. On the other hand, they contribute to the
definition of subject domain concepts and requirements.

This phase of creating a visual PIM is not concerned about
software implementation. Feasibility studies for the realization
of the design in software should guide the creative activities,
though.

Software design is added at a subsequent stage by creating
a PIM in the sense of the MDA. Starting from this point, the
steps of typical MDSE processes follow.

The transition from a visual, user-centric PIM to a software-
centric PIM depends on the descriptions used. If the afore-
mentioned typical results like personas and customer journeys
are created, one step is to identify the information need of

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

83

users at each touch point, and the resulting data flows that are
required to fulfill the information needs. Likewise, the overall
functionality is broken down to functionality of each touch
point that results from the interface conception.

E. Solution Architecture

Solution architecture is the set of high-level definitions that
relate subject domain concepts to technical solutions.

As a high-level architecture, it does not prescribe an actual
implementation in full detail. It may contain the choice for
certain implementation technologies and products, though, in
particular if they are crucial to meeting some requirements or
to conform to the constraints.

Based on the chosen components, a solution architecture
defines the interfaces required to implement the processes and
data flows identified as requirements. For example, in a digital
communication like an e-commerce website, the information
demand at every touch point is derived from the customer
journeys, and data flows are designed accordingly.

F. Software Architecture

The detailed design of the software to be developed is part
of the software architecture. It details definitions from the
solution architecture up to the point where they are concrete
enough to guide the coding stage.

Shaw and Garlan [8] point out that there are different
approaches to the different perspectives on software. In a
structural approach, the software architecture is composed of
components, communication between the components, product
configurations, references to the requirements and constraints
from the requirements stage, boundaries within which the
software is designed to work as specified, the rationale of
design decisions, and design alternatives that were considered.

Many other architecture definitions contain similar modeling
entities. Architectural Description Languages (ADLs) allow
capturing these aspects.

Shaw and Garlan point out that besides structural models,
there are also framework models, dynamic models, and process
models. The latter, for example, focus on the dynamic aspects
of the software.

G. Code

When architecture models are precise enough, code can
be generated out of them using one of the approaches from
Section II-B.

In practice, coding is a manual task in most cases. The
architecture definition serves as a guideline to programming,
documentation, and quality assurance. Detailed design deci-
sions are added in the coding stage.

There may be another modeling step included, though. Soft-
ware may be defined in an abstract way, close to programming
but abstracting from concrete programming languages and
other base technologies. Software is derived from such abstract
code bases by means of code generation. This helps building
multi-platform software and avoiding repetitive coding tasks.
This topic is revisited in Section VI.

International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

H. Systems Architecture

The systems architecture describes how software is de-
ployed and set up. It defines computing and communication
infrastructure.

Deployment diagrams describe how software is packaged
and distributed on the infrastructure. Infrastructure and net-
work diagrams illustrate the technical setup.

Typically, infrastructure is virtualized and created automat-
ically from scripts in the Infrastructure as Code approaches.
This allows continuous deployments of many software compo-
nents, for example, in contemporary composable architectures.

1. Roll-out and Operations

MDSE processes are primarily concerned about the creation
of a software solution. The overall software lifecycle requires
the consideration of further phases. Modern development
approaches take these into account, for example, by providing
product increments in agile approaches and through DevOps
methods.

Consequently, model-supported processes should consider
project stages after software generation in due time, namely
roll-out, operations, maintenance, and support. Optimally,
there are explicit descriptions of the activities in those phases
and for the precautions to be taken by software.

For software roll-out, for example, deployment scripts can
be generated for software installation. On a higher level, and
International roll-out mean orchestrating a global team of
people in different roles. The orchestration needed is partly
dependent on the solution design.

Other activities of a software roll-out are concerned about
establishing user-acceptance, for example, by providing doc-
umentation and training. Documentation and training are,
of course, dependent on the software and may partially be
generated from the software models.

When it comes to operations, in particular in the presence
of virtualized, eventually cloud applications that are common
today, software is built in a way that allows utilizing the advan-
tages of the operations infrastructure. For example, scalability
and elasticity have to be considered in software architecture.
This way, software design decisions made early in the process
have have an impact on the operation of the software. For this,
the models of early software design contribute to operations
models.

Also, software needs to meet non-functional requirements
like maintainability for the operations phase. To this end, for
example a logging concept needs to be considered in the
MDSE models. Remote logging is particularly important in
distributed systems, for example, incorporating mobile apps.

Part of the requirements are typically formulated towards
operations. Service-Level Agreements (SLAs) define measur-
able goals to systems operation. Fulfillment of these goals is
controlled by means of monitoring and timely maintenance
in the case of incidents. To this end, monitoring and logging
concepts connect development and operations.

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

84

International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

Data model Progr. language 00 model Software model
Metameta Layer Data modeling style ng?n:'nsoer?; Class MetaClass Ms3L
Meta Layer Data definition lang. Programming lang. MetaClasses Metamodel
Abstract Layer Schema Programm Classes Software model
Concrete Layer Data Execution Instances Software solution

Figure 2. Modeling layers.

IV. MSSC INCLUDING NON-FORMAL ARTIFACTS

The integration of different kinds of descriptions into the
models on each modeling stage is a second respect in which
we feel that existing MDSE approaches need extension.

Descriptions range from software models with defined
semantics and other formalisms to unstructured media like
written text and images.

A. Formal Software Models

Existing MDSE approaches usually use formalisms that al-
low assigning formal semantics to models, and to apply model
transformations. The formal models that are used depend on
the utilization of the models, for example, UML diagrams if
there is an emphasis on software architecture, as in the MDA,
or Petri Nets to model behavior [9].

While these models are well-suited for MDSE approaches as
they allow model transformations, they are primarily appealing
to those with a formal background, for example, computer
scientists. Therefore, formalisms provide a sound basis for the
construction of, for example, scientific and engineering appli-
cations. But experts in other domains may be less comfortable
with providing abstract models of their domain and the desired
software solution.

B. Visual Descriptions of Software

MDSE typically is based on a modeling framework that
supports all stages of a software development process. This
requires that model artifacts on every stage can be expressed in
a language that is supported by that framework. In many cases,
it is even required that all models involved are formulated
within the same metamodel.

Some application domains call for specific kinds of artifacts
that rely on certain established notations and that cannot be
expressed in the form of a given central model. For such
application domains, the properties of software are designed
by experts who use specific notations and tools. Digital com-
munication like marketing and sales communication over a
website is an example of such an application domain.

In the retail sector, for example, we note that customers
interact with retail companies at different touch points, interact
on changing communication channels, use different payment
methods, are subject to different legal and tax systems, etc.
In such scenarios, a series of experts needs to gather (a part
of) the domain knowledge on one modeling stage in order to
communicate it to experts of the next stage (domain expert to

requirements engineers, these in turn to architects as well as
test engineers, architects to developers, and so on).

User experience designers and user interfaces designers, for
example, work with artifacts like personas, customer journeys,
wireframes, style guides, click dummies, prototypes, etc. Such
artifacts support creative processes. They are adequate means
to communicate with business experts, and they are used by
programmers to build usable software.

A pure MDSE approach of generating such artifacts from
models is not adequate for the work of experts and their clients.
It might be hindering the creative process.

C. Metamodeling

The heterogeneity of models that together build the basis for
MSSC raises the question of how to relate different models to
each other. Our answer to that question is a common modeling
base that provides a framework in which different modeling
approaches can be applied.

Modeling layers that build upon each other are found in
various places in computer science. A stack of four modeling
layers, where the topmost layer is recursively defining itself,
is found in various places. The layers range from a layer of
concrete entities to a meta meta layer in these cases [10].
Figure 2 illustrates this.

The four levels of modeling are found in database models,
for example, where data are on the concrete layer. Data is
described by a data model or schema, that in turn is given in
some data definition language. A data definition language is
formulated with respect to a data modeling style, for example,
the relational data model.

Also, we see for layers in programming language, where
a program is an abstract concept that is instantiated in a
program run on the concrete layer. The program is written in
a programming language (meta layer) that builds upon general
notions of syntax and semantics definitions.

In object-oriented modeling, these layers may all be ex-
pressed within one programming language. Objects are defined
by classes, classes are in turn defined by metaclasses that are
instances of one common metaclass.

In software engineering, there are different perspectives on
a software solution and the project in which it is created, and
models from different perspectives are formulated in different
notations. This means that there are different languages (aka
metamodels) for the co-existing perspectives that need to be
integrated in one holistic modeling process. This calls for

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

85

a meta-meta-model which establishes a common ground on
which metamodels are defined.

The rightmost column indicates that the modeling language
used for experiments in this article, the M3L, also fits into
the pattern. Being a metamodeling language, it is itself to be
located at the metameta level. We chose the M3L because it
allows to be applied on all levels and it does not differentiate
between relationships on one level (for example, subtyping
or aggregation) and relationships between level (for example,
instantiation). More on this in the subsequent section.

D. Model Refinement and Transformations

An MDSE process relies on a series of models where
models are created from existing models by means of model
transformation. A model on one stage is created based on
the input of models of earlier stages or by refining models
from the same stage. There are three typical kinds of model
transformations.

Figure 3a shows the basic structure of model transforma-
tions on one stage and between stages. Figures 3b to 3g show
examples of typical model transformations between different
stages.

a) Model Combination: Domains often rely on base
domains. For example, business tasks rely on mathematics.
Accordingly, models are defined by integrating (existing)
models of the base domains. This way, models are reused.

b) Model Refinement: Within one stage, models are
refined to more concrete models of the same stage. This way,
the work in each stage starts with first, coarse-grained models,
that are then transformed into more concrete models. Different
refinements of one model may cover different perspectives
on the (software) solution. The process of refining involves
decision making. Decisions can be documented by explicitly
stating delta models that explicitly represent the refinements.

c) Model Creation from Existing Models: When process-
ing from one stage to another, initial models are required for
the subsequent stage that is entered. These models shall be
related to the most concrete models of the preceding stage. In
some cases, models can be transformed when proceeding to a
subsequent stage. In this case, the transformation establishes
the relationship. If new models have to be created, the model
elements should be explicitly linked to the elements from
models on which they are based. For example, Shaw and
Garlan [8] demand that a software architecture description
refers to requirements.

V. A BRIEF INTRODUCTION TO THE M3L

In this paper, we propose using the Minimalistic Modeling
Language, ML (pronounced “mel”) [11], as the modeling
framework required for MSSC.

The M3L is a meta modeling language. As such, it can be
employed for models for different kinds of applications.

In this section, we give a brief overview over the syntax of
the language. Sample applications in the subsequent sections
demonstrate its use.

International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

Model refinement
Delta Models

Model creation
Selection
Prioritization

(a) General model transformations

Model on layer n

Model on layer n+1

(Business)

Goals — Requirements—

Product selection
Service design

Subject domain section

Conceptualization Solution

Architecture

Abstraction Systems architecture
. . Component configuration
Domain < Domain | Product customization
Model Model Interface specifications

Services
Component design

Goal selection .
General interfaces

Goal quantification Software

. 8 Processes Architecture
Solution hypothesis Data flows
Solution (d) Model transformations

Requirements €— <€— for software architecture

Architecture

(b) Model transforma- (c) Model transforma-
tions for subject domain tions for solution ar-

model chitecture
Requirements —
Non-functional requirements
Software System

Solution
Architecture

Architecture — Architecture

Infrastructure
SLAs
Monitoing points

Language selection
Software design
Choice of libraries

Communication paths

Software
Architecture

Code Operations

Runtime environments
Resource demand

(g) Model transforma-

< tions for operations

(e) Model transforma-
tions for code genera-
tion

Systems
Architecture

(f) Model transformations
for system architecture

Figure 3. Different kinds of model transformations.

A. Basic Definitions
A M3L statement
A

defines or references a concept named A. The M3L does not
distinguish definitions from references. If A does not exist, it
is defined.

Concepts can be refined with “is a”:

A is a C
Using the clause “is the” defines a concept to be the only
specialization of its base concept.

Concepts can be put in context. A statement
A { B}
defines B in the context of A. B is said to be the content of
A. References are valid in the context they are defined in and

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

86

in all subcontexts. This means, that statements
A { B}
C
make B and C visible in the context of A, but B is not part of
the content of C or of the topmost context.
Concepts can be defined differently in different contexts.
For example, the statements
A { B is a C }
B
define B as a specialization of C in the context of A, and
without base concept in the topmost context.
A concept in a nested context is referenced as

B from A

B. Concept Evaluation

Semantic rules can be defined on concepts, denoted by “I="".
A semantic rule references another concept that is delivered
when a concept with a semantic rule is referenced. Like for any
other reference, a non-existing concept is created on demand.

Context, specializations, and semantic rules are employed
for concept evaluation. A concept evaluates to the result of its
syntactic rule, if defined, or to its narrowing. A concept B is
a narrowing of a concept A if

o A evaluates to B through specializations or semantic rules,
and
« the whole content of A narrows down to content of B.

To evaluate a concept, syntactic rules and narrowing are
applied repeatedly.

With this evaluation, for example, a conditional statement
as found in imperative programming languages can be defined
as (given Statement, Boolean, True, and False):

IfThenElseStatement is a Statement ({
Condition is a Boolean
ThenStatement is a Statement
ElseStatement is a Statement }

IfTrueStmt is an IfThenElseStatement (
True is the Condition

} |= ThenStatement

IfFalseStmt is an IfThenElseStatement {
False is the Condition

} |= ElseStatement

A concrete program derives a conditional statement from
IfThenElseStatement:

Conditionall7 is a IfThenElseStatement ({
SomeBoolExpression is the Condition
SomeStatement is the ThenStatement
SomeOtherStatement is the ElseStatement}

When evaluated, such a conditional statement will match
(become a derived subconcept) of either IfTrueStmt or If-
FalseStmt, depending on the concept that SomeBoolExpression
evaluates to. from the derived base concept, the corresponding
semantic rule will be inherited, making the statement evaluate
to either then “then branch” or the “else branch”.

International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

Concepts are evaluated with respect to an evaluation context.
Concept definitions that contribute to the evaluation of a
concept are taken from that context.

C. External Concept Representations

Concepts can be marshaled/unmarshaled as text by syntactic
rules, denoted by “I-”. A syntactic rule names a sequence of
concepts whose representations are concatenated. A concept
without a syntactic rule is represented by its name. Syntactic
rules are used to represent a concept as a string as well as to
create a concept from a string.

For example, rules for language-dependent code generation
can be given as:

Java {
IfThenElseStatement
|- if (Condition)

ThenStmt
ElseStmt . }

In this example, an [fThenElseStatement will be used to
generate Java code when it is marshaled in the context of the
concept Java.

Not that the concepts if, (, and) are created in this syntactic
rule. Since every concept, by default, represented by its name,
these concepts can be used like string literals.

VI. AN MSSC APPROACH WITH THE M3L

An MSSC approach includes the creation and utilization of
diverse artifacts. Each of them serves a specific purpose, and
each is maintained by experts using established tools. Though
the artifacts from different stages of a software creation
process are related, they typically cannot be expressed using
the same language. They differ, for example, in the level of
detail, the degree to which they follow a formalism, and the
syntactic representation targeted at different audiences.

When, in contrast to MDSE, no single modeling language
can be used for a universal model, an overarching modeling
framework is required for model coherence [12]. Such a frame-
work cannot host the artifacts themselves. It shall, however,
put the artifacts in context and relate them to each other.

Relationships between artifacts clarify their contribution to
the software creation process. They explicate the provenance
of models, they put models in context, and they are the basis
for traceability and, therefore, the ability to cope with change.

The three model relationships named in Section IV-D can be
expressed with the M3L. This way, models are put in context.

Also, code can be generated from M3L models.

A. Combining Models

Let BaseModell and BaseModel2 be some models of some
domains whose concepts can be reused for the domain at hand.
Then, for example, concepts A and B can be integrated into a
new model SomeModel by definitions like

SomeModel {
A from BaseModell
B from BaseModel2 }

For example, on the layer of domain models, a model

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

87

ProductDescriptions is a DomainModel {

ProductData

PaymentMethods from Commerce

PackagingInformation from Logistics }
combines parts of product details that come from different spe-
cialized models (assuming that concepts for models Commerce
and Logistics are given).

Likewise, on the layer of solution architecture, a model
OurInfoSys is a PlatformIndependentModel ({

AppServer from SWComponents

DBMS from SWComponents

DataSchema from DBModeling

WebServer from SWComponents

WebPage from WebDesign }
combines technical components from different technical de-
scriptions.

B. Refining Models

One model can be created as a refinement of another.
Concepts in the content of the refined model are inherited
and can be refined further.

SomeModel { A { C } }
can be refined to
RefinedModel is the SomeModel {

A is a D {
C is an E }
B }

Making the RefinedModel the only specialization of Some-
Model, all references to SomeModel are then narrowed to
RefinedModel.

An example from the solution architecture layer is:

OurInfoSysConcept is an OurInfoSys {
RDBMS from SWComponents is the DBMS
ProductDataSchema

is an RDBSchema from DBModeling,
the DataSchema
WebServer from SWComponents
is a ServletEngine from Java }

In this example, two aspects of the conceptual model are
refined: From a technical perspective, the DBMS is more
concretely specified to be a relational DBMS (RDBMS), and
the WebServer to be implemented as a Java Servlet engine
(ServletEngine). Regarding the domain model, it is defined
that the data schema is defined to store products (Product-
DataSchema).

C. Creating Models of a Subsequent Stage

A model can be explicitly created as a transformation of
another model using a semantic rule. For example, a model
RefinedModel on a modeling stage Stagel,
Stagel ({

RefinedModel { A } }
can be amended with a semantic rule to produce a model in
a subsequent stage Stage2:

International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

Stage2 {

RefinedModel

F is an A {
G is the C }

H {
I} 1}

This way, the model SomeDerivedModel is connected to
SomeModel by the semantic rule, as it is its whole content.
The concept B is not considered in the derived model.

In the example of the information system:

|= SomeDerivedModel (

OurInfoSysConcept
RDBMS
ProductDataSchema ({

ProductsTable is a Table from DBModeling
ol

RDMBS from the source model OurinfoSysConcept is re-
introduced in the transformed model. The database schema
ProductDataSchema is additionally redefined by naming one
table. WebServer from OurlnfoSysConcept is not considered
in the transformed model, since it only models the data layer
of the information system.

D. Software Creation with the ML

The models in MDSE ultimately reach the stage of gen-
erating code. The M3L allows creating code using syntactical
rules that can be added to models with sufficient concreteness.

A simple example of Java code generation is shown in
Section V-C.

Using the example from above, part of the information
system based on a relational database can be defined to create
a relational schema by SQL statements as follows:

|= OurInfoSysDatalayer ({

OurInfoSysDBIm is an OurInfoSysDatalayer {

ProductDataSchema ({
ProductsTable
| - PRODUCTS (Columns)
ProductSKUColumn is a Columns
| - STOCK_KEEPING UNIT VARCHAR (50),
ProductNameColumn is a Columns
| - NAME VARCHAR (100), . }

|- "CREATE TABLE " ProductsTable . }

By defining the syntactical rules in the context of an
implementation model, different code generation schemes can
be defined for one software model.

In the example, in the context of a different implementation
model, syntactic rules for the generation of database access
code may be defined on the concepts like ProductDataSchema
and ProductData.

E. Metaprogramming with the M3L

Instead of generating code directly by syntactic rules, code
can first be modeled in an abstract way as indicated in Sec-
tion V-B by the example of the if.. . then. .. else statement. This
allows to consistently generate code in multiple languages.

For example, consistency of table and column names in data
definition code and data access code is achieved by using the
same concepts during code generation:

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

88

OurInfoSysDBIm
is an OurInfoSysDatalayer, an SQL {
ProductDataSchema is a Schema ({
PRODUCTS is a Table {
STOCK_KEEPING_UNIT is a Colum

NAME is a Colum } } }
OurInfoSysDBAccess
is an OurInfoSysDatalayer, a Java {
Product is an Interface { ... }

ProductImpl is a Class {
Product is an Interface
retrieve is a Method {
SELECT % FROM
PRODUCTS from OurInfoSysDBIm
WHERE ... } } }

In this example, the table PRODUCTS is referenced as
a concept, guaranteeing that the table and column names
included in the Java code are identical to the ones used in
the SQL data definition statements.

The syntactic code generation rules are inherited from the
concepts defined in the code models, SOQL and Java in this
example.

This way, we derive a PSM and finally code by means of
model transformation, where the syntactic rules are coming
from language models / metamodels. This meta level aspect
can be found even more explicitly in the GraSyLa [13], for
example.

VII. CONCLUSION

This section sums up this paper and outlines future work.

A. Summary

In this paper, we revisit MDSE approaches and conclude
that they are successful in certain application areas, while they
are not established in many other areas. In particular, in digital
communication, for example, in the construction of commerce
or marketing websites or mobiles apps, they are not used in
practice. One reason for this is a mismatch between established
means of conceptual work and formal models.

Under the name of Model-Supported Software Cre-
ation (MSSC) we study requirements to models for such kind
of applications. As early results, MDSE approaches cover the
stages of software creation well, but they do not cover early
inception phases. We claim that models used in MSSC need
to be able to cope with less formalism and preciseness as
required by typical MDSE approaches. Instead, they must deal
with heterogeneity and subjectivity.

We outline model creation with the M3L as a step towards
MSSC. It allows providing descriptive models of the artifacts
used in practical approaches and relating them as to drive
holistic software creation processes.

B. Outlook

We are at the beginning of our investigations towards
MSSC. Consequently, there are numerous questions to be
answered in the future. We highlight two of them.

International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

There are numerous approaches to generate code from
models, and code written in a formal language can be managed
in a structured way. The syntactic rules of the M3L, for
example, allow this. To include artifacts from other stages into
the modeling process (like requirements or design documents),
abstractions are needed to reference, include, or generate parts
of artifacts the same way it is possible for code.

Testing is typically not found in model-based processes.
Though there may be no need to test generated software, a kind
of testing is required, nevertheless. This may include model
checking on each stage of the process and analysis of models
that are the result of model transformations.

In MSSC processes, success should ultimately be judged
based on the degree to which business goals have been
reached. To this end, they must be formalized, and effects
of the running software need to be measured.

ACKNOWLEDGMENT

Numerous discussions on topics of modeling and software
engineering led with colleagues, partners, and clients are
highly appreciated.

The author thanks the Nordakademie University of Applied
Sciences for funding the publication of this work.

REFERENCES

[1] H.-W. Sehring, “Model-supported Software Creation: Towards Holistic
Model-driven Software Engineering,” Proc. Eighteenth International
Conference on Software Engineering Advances, 2023, pp. 113-118.

[2] J. Cabot, R. Claris6, M. Brambilla, and S. Gérard, S., “Cognifying
Model-Driven Software Engineering,” Proc. Software Technologies:
Applications and Foundations (STAF 2017), Springer, 2018, pp. 154-
160.

[3] Object Management Group. Model Driven Architecture (MDA), MDA
Guide rev. 2.0, OMG Document ormsc/2014-06-01, [Online] Available
from: https://www.omg.org/cgi-bin/doc?ormsc/14-06-01. 2024.3.11.

[4] H.-W. Sehring, S. Bossung, and J. W. Schmidt, “Content is Capricious:
A Case for Dynamic System Generation,” Proc. 10th East European
Conference (ADBIS 2006), Springer, 2006, pp. 430-445.

[5] T. Kiihne, “Matters of (Meta-) Modeling,” Software & Systems Model-
ing, vol. 5, pp. 369-385, Dec. 2006.

[6] E. S. K. Yu and J. Mylopoulos, “From E-R to “A-R” — Modelling
strategic actor relationships for business process reengineering,” Proc.
13th Int. Conf. on the Entity-Relationship Approach (ER’94), Springer,
1994, pp. 548-565.

[71 H. W. Nissen, M. A. Jeusfeld, M. Jarke, G. V. Zemanek, and H. Huber,
“Managing multiple requirements perspectives with metamodels,” in
IEEE Software, vol. 13, no. 2, pp. 37-48, March 1996.

[8] M. Shaw and D. Garlan, “Formulations and Formalisms in Software Ar-
chitecture,” Computer Science Today: Recent Trends and Developments,
Lecture Notes in Computer Science, vol. 1000, pp. 307-323, 1995.

[91 R. Koci and V. Janousek, “Prerequisites for Simulation-Based Software
Design and Deployment,” Proc. Eighteenth International Conference on
Software Engineering Advances, 2023, pp. 105-109.

[10] M. Jarke, Matthias, R. Klamma, K. Lyytinen, “Metamodeling,” in
Metamodeling for method engineering, M. A. Jeusfeld, M. Jarke, and
J. Mylopoulos, Eds. Cambridge, MA : The MIT Press, pp. 43-88, 2009.

[11] H.-W. Sehring, “On Integrated Models for Coherent Content Manage-
ment and Document Dissemination,” Proc. 13th International Conference
on Creative Content Technologies (CONTENT 2021), 2021, pp. 6-11.

[12] S. Bossung, H.-W. Sehring, M. Skusa, and J. W. Schmidt, “Concep-
tual Content Management for Software Engineering Processes,” Proc.
Advances in Databases and Information Systems, 9th East European
Conference (ADBIS 2005), Springer, 2005, pp. 309-323.

[13] V. Englebert and K. Magusiak, “The Grasyla 2.0 Language,”
Edition 1.2 (Draft), University of Namur, [Online] Available from:
https://staff.info.unamur.be/ven/metadone.site/documents/techreport-
grasyla-version-2.1.2.pdf. 2024.3.24.

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

89

