
1International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Insights into the Grammar and Real User Connectivity for Choreography Patterns
of Microservices-based Insurance Processes

Arne Koschel
Andreas Hausotter

Hochschule Hannover
University of Applied Sciences & Arts Hannover

Faculty IV, Department of Computer Science
Hanover, Germany

Email: {arne.koschel, andreas.hausotter}
@hs-hannover.de

Christin Schulze
Alexander Link

Hochschule Hannover
University of Applied Sciences & Arts Hannover

Faculty IV, Department of Computer Science
Hanover, Germany

Email: {christin.schulze, alexander.link}
@stud.hs-hannover.de

Abstract—To avoid the shortcomings of traditional monolithic
applications, the Microservices Architecture (MSA) style plays an
increasingly important role in providing business services. This
is especially true for the insurance industry with its sophisticated
cross-domain business processes. Here, the question arises of how
workflows can be implemented to grant the required flexibility
and agility and, on the other hand, exploit the MSA style’s
potential. There are two competing approaches to workflow
realization, orchestration, and choreography, each with pros
and cons. Though choreography seems to be the method of
choice in MSA, it comes with some challenges. As the workflow
is implicit – it evolves as a sequence of events being sent
around – it becomes difficult to understand, change, or operate
the workflow. To manage the challenges of the choreography
approach, we use BPMN 2.0 choreography diagrams to model
the exchange of domain events between microservices, which
represent ‘participants’ in terms of BPMN. We aim to execute
choreography diagrams automatically. For this, we developed a
set of choreography patterns that represent frequently occurring
sequences. We present the pattern language and discuss five
patterns, a One-Way Task pattern, a Two-Way Task pattern, an
Event-based Gateway – Deadline pattern, and an Open Parallel
Gateway – different Senders pattern. Additionally, we present
how a real user may get integrated into these interactions and
provide insights into a grammar, which can validate the order of
use for patterns in a given choreography. This paper is part of our
ongoing research to design a microservices reference architecture
for insurance companies.

Keywords—Workflow; Choreography; BPMN; Patterns; Gram-
mar; Business Processes; Microservice.

I. INTRODUCTION

In this article, which is an extended version of our earlier
paper [1], we look at the realization of interactions within
a microservices-based reference architecture for German in-
surance companies. Business workflows and multistep busi-
ness processes are typical for insurance companies; see, for
example, the reference architecture for German insurance
companies (VAA) [2]. They are complemented by general
regulations, such as the European GDPR [3], as well as
insurance-specific laws and rules regarding, for example, fi-
nancial regulations, data protection, and security [4].

Recently, the Microservices Architecture (MSA) style
[5] [6] and cloud computing [7] became more and more in-

teresting for insurance companies. Traditionally, several tech-
nologies from monolithic mainframe applications, functional
decomposition-based software, traditional Service-Oriented
Architectures (SOAs), which often utilize some kind of En-
terprise Service Bus (ESB), Business Process and Workflow
Management Systems (BPMS, WfMS) for orchestration, and
3rd party software, such as SAP software, were and are used
together in insurance business applications, which implement
their business processes.

Taking all those typical cornerstones from (over time grown)
insurances into account, the goal of our currently ongoing
research [8] is to develop a ‘Microservice Reference Architec-
ture for Insurance Companies (RaMicsV)’ jointly with partner
companies from the insurance domain. Within our work, we
also look at the question: ‘how to implement (insurance) busi-
ness workflows with microservices, which potentially utilize
several logical parts from RaMicsV’?

Within the MSA style, the more decoupled choreography
is favored for this purpose [5] [6]. This is in some contrast,
however, for example, to SOAs, where such workflows are
mainly implemented using orchestration [9]. For example, one
of our partner companies utilizes Camunda [10], another one
a Java/Jakarta EE-based workflow tool.

However, since co-existence of all approaches is a ‘must
have’ for our insurance partner companies, RaMicsV aims to
address the combined usage of more traditional approaches
and the MSA style, the combination of choreography and
orchestration naturally comes to mind. As evolution is a key
demand for our business partners – they can and will not just
‘throw away’ their existing application landscape – concepts
such as orchestration and tools such as an ESB, whose use
within MSA style architectures are both clearly disputable,
have to be integrated reasonably well into our approach.

We thus started to look at the combination of choreogra-
phy and orchestration, including a look at insurance domain
specifics, in our work from [11]. In the present article, we
will now have a focus on choreography-based approaches for
(insurance) business processes. Particularly, we will examine
an initial set of emerged choreography patterns for this pur-

2International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

pose, which we will model using choreography diagrams from
the OMG BPMN 2.0 standard [12]. It should be noted that
our goal is not a general implementation of choreographies,
rather an implementation that orients itself toward real-world
scenarios. Thus, we inspected multiple use cases from the
insurance industry, one of which we will introduce later on.

In particular, we contribute in the present article our ongoing
work and intermediate results about:

• The integration of the choreography within our RaM-
icsV;

• BPMN 2.0 choreography diagrams and the utilization of
patterns;

• our pattern language for choreography patterns;
• four particular choreography patterns in depth, namely

the One-Way Pattern, Two-Way pattern Open-Parallel
Gateway – Different Senders pattern and the Event-based
Gateway – Deadline pattern;

• User Connectivity within these interactions;
• insights into a grammar, to validate those patterns;
• and finally, insurance business use cases for those pat-

terns.

The remainder of this article is structured as follows: After
discussing related work in Section II, we briefly look at our
current work within the RaMicsV context in Section III. Next,
Section IV looks at BPMN 2.0 choreography diagrams with
patterns. Section V then contributes our patterns usage and a
pattern language for them, as well as four identified patterns,
two of which are new to this version. Afterward, Section VI
shows a possible way of integrating real users into these
choreographies. Then, the current state of the choreography
grammar will be presented in Section VII.

Moreover, Section VIII looks at a usage of those patterns
within an insurance business use case. Finally, Section IX
summarizes our results and concludes with some outlook to
future work, with more patterns to follow.

II. RELATED WORK

The basis of our research builds on authors in the scope of
microservices, such as the work from Newman [6], as well
as Fowler and Lewis [13]. Within the design of our reference
architecture, we profit from different microservices patterns,
as they are discussed by Krause [14] and Richardson [5].

To model our business processes, we use OMG’s BPMN
2.0 specification. Also, we use as groundwork about business
processes and its development with BPMN the works from
Allweyer [15] [16], Rücker and Freund [17].

For the basics of service composition types, orchestration
and choreography, we chose to rely on Decker’s approach [18].
It is important that we define the choreography in terms of
workflows within a microservices architecture. Quite many
publications discuss the benefits of the choreography as a
composition between (micro-)services. In particular, in several
cases the theoretical benefit is presented or the combination

of different approaches with the choreography is shown, as
discussed by Rücker in his blog [19].

This paper ties in with our previous work on realizing a
choreography [11]. In our last paper, we experimented with
the implementation of a choreography using BPMN. The first
pattern ‘Any Problem becomes a Service’ appeared to be
difficult, since the monolithic BPMN does not support the
message exchange between different microservices.

In Mikalkinas’ [20] approach, a BPMN choreography dia-
gram is transformed into a BPMN collaboration diagram and
then executed. After this transformation, the BPMN collabo-
ration diagram is executed by an engine, in this case Camunda
[10]. We intend to bypass this conversion and provide direct
execution of the choreography diagram. Thereby, our goal is
to explore an implementation without an engine, since this
corresponds to an orchestration in the case of Camunda.

Milanović and Gasević also try to implement choreography
via BPMN and REWERSE II Rule Markup Language in their
work [21]. They developed a rule-based extension for BPMN
to realize choreography, called rBPMN. Ortiz et al. describe a
similar approach [22]: In their work, rules are also defined on
how to react based on which events in a choreography. This
work uses fragments of BPMN. In both approaches (only)
parts of the BPMN are considered, and in each case, only
collaboration diagrams.

Another related approach is Richardson’s SAGA pattern and
the Eventuate Framework [5] [23]. The pattern describes the
splitting of a transaction into several small local transactions.
The local transactions trigger each other by messages/events.
The error handling could become interesting for our further
work. The framework includes two manifestations: Tram and
Local. Eventuate Tram [24] so far only implements an or-
chestrated SAGA, so it does not yet include a choreography.
Eventuate Local [25] provides event sourcing to store events.
It also offers functions to perform transactions, through a
publish/subscribe realization. It maps the technical implemen-
tation of a transaction rather than the communication and
composition between services.

We try to implement a choreography in a more straight
way as a compositional approach between microservices. Our
vision is to use the choreography for the complete communi-
cation and workflow. We define the choreography as a global
approach to processing a workflow without the intervention of
a controlling part. This approach was described by us in our
previous paper [11] and is also defined by Decker [18].

In order to evaluate interactions created from the choreogra-
phy patterns using BPMN 2.0 choreography, we have created
a grammar. For the creation of the grammar, we have used
works by Vossen and Witt [26] and Priese and Erk [27] for
advice.

To achieve this goal, we define patterns for BPMN chore-
ography diagrams, which are supposed to be implemented
automatically. To model our BPMN choreography diagrams,
we used the framework chor-js developed by Ladleif et al. [28].

3International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We do not focus on the processes within the (micro-) services
themselves, rather only on the communication between them
and the infrastructure. The use of patterns should also mitigate
to some degree the complexity that can arise in (extensive)
choreography-based workflows. The developed patterns bor-
row in structure and approach from Barros et al. [29].

III. SERVICE-BASED REFERENCE ARCHITECTURE FOR
INSURANCE COMPANIES

This section presents our logical reference architecture for
microservices in the insurance industry (RaMicsV) as initially
started in [8].

RaMicsV defines the setting for the architecture and the
design of a microservices-based application for our industry
partners. The application’s architecture will only be shown
briefly, as it heavily depends on the specific functional re-
quirements.

When designing RaMicsV, a wide range of restrictions and
requirements given by the insurance company’s IT manage-
ment have to be considered. Regarding this contribution, the
most relevant are:

• Enterprise Service Bus (ESB): The ESB as part of the
SOA must not be questioned. It is part of a successfully
operated SOA landscape, which seems suitable for our
industry partners for several years to come. Thus, from
their perspective, the Microservices Architecture (MSA)
style is only suitable as an additional enhancement and
only a partial replacement of parts from their SOA or
other self-developed applications.

• Coexistence: Legacy applications, SOA, and
microservices-based applications will be operated
in parallel for an extended transition period. This means
that RaMicsV must provide approaches for integrating
applications from different architecture paradigms –
looking at it from a high-level perspective, allowing an
’MSA style best-of-breed’ approach at the enterprise
architectural level as well.

• Business processes are critical elements in an insurance
company’s application landscape. To keep their compet-
itive edge, the enterprise must change their processes in
a flexible and agile manner. RaMicsV must therefore
provide suitable solutions to implement workflows while
ensuring the required flexibility and agility.

Figure 1 depicts the building blocks of RaMicsV which
comprises layers, components, interfaces, and communication
relationships. Components of the reference architecture are
colored yellow; those out of scope are greyed out.

A component may be assigned to one of the following
responsibility areas:

• Presentation includes components for connecting clients
and external applications, such as SOA services.

• Business Logic & Data deals with the implementation
of an insurance company’s processes and their mapping

Figure 1. Building Blocks of the Logical Reference Architecture RaMicsV.

to microservices, using various workflow approaches to
achieve desired application-specific behavior.

• Governance consists of components that contribute to
meeting the IT governance requirements of our industrial
partners.

• Integration contains system components to integrate
microservices-based applications into the industrial part-
ner’s application landscape.

• Operations consist of system components to realize uni-
fied monitoring and logging, which encloses all systems
of the application landscape.

• Security consists of components to provide the goals of
information security, i.e., confidentiality, integrity, avail-
ability, privacy, authenticity & trustworthiness, nonrepu-
diation, accountability, and auditability.

Components communicate either via HTTP(S) – using a
RESTful API, or message-based – using a Message-Oriented
Middleware (MOM) or the ESB. The ESB is part of the
integration responsibility area, which itself contains a message
broker (see Figure 1).

In the next section, we will take a look at the choreography
in general and BPMN 2.0 choreography in particular as a lead-
in to this paper’s contribution, located in the responsibility area
Business Logic & Data.

IV. CHOREOGRAPHY

This section will present the core definition of choreography,
as described in [11]. We briefly outline the use of BPMN,
specifically the choice of BPMN 2.0 choreography diagrams.

A. Choreography

In a choreographed system, there exists no central coordi-
nator, unlike in orchestration [30]. Decker [18] describes the
definition of a choreography as a global view of how services

4International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

cooperate and the interaction between participants. This proves
to be a challenge when modeling and monitoring a workflow,
as the workflow is mapped by the interaction between the
participants. It follows that the responsibility of executing and
processing the workflow is transferred to each participant [31].

While choreography may be combined with other patterns,
like the event-driven architecture [32], we decided not to focus
on technical implementations yet, but will eventually.

B. BPMN 2.0 choreography

BPMN 2.0 choreography is chosen as the modeling lan-
guage, since BPMN is also used by our partners. In the BPMN
specification exist at least three significantly different diagram
types to describe processes:

• Process known as classic BPMN. It visualizes the entire
process.

• Collaboration splits a classic process into multiple par-
ticipants (or microservices). Each sub-process in a partic-
ipant can be recognized, but also the message exchange
between the participants.

• Choreography which visualizes only the exchange of
messages between participants.

In contrast to our previous work [11], we now focus only on
the implementation of BPMN 2.0 choreography diagrams [12],
as they visualize the interaction between microservices. In
these diagrams, a participant represents a microservice. We
aim to execute business processes using a choreographed
MSA. Choreography serves as a global composition pat-
tern [18]. We start with a collaboration diagram to map the
whole process, which we then transform into a choreography
diagram to focus on the communication. The processes within
the participants are out of scope as we focus on the means of
communication.

To automatically implement the choreography with BPMN
2.0 choreography, we develop patterns that map frequently
occurring sequences. It should be a wide selection of things
that must, should or can occur. The pattern language and the
yet-to-be-developed grammar will be used to create a tool that
automatically accepts modeled choreography diagrams and
generates the necessary infrastructure and message exchange.

V. CHOREOGRAPHY PATTERNS

In this section, we will present a pattern language, as well as
two patterns from our list. The language intends patterns to be
assembled to produce more extensive use cases. The patterns
originate from real-world use cases.

A. Pattern Language

A pattern language is utilized to describe the patterns
uniformly. It consists of the following elements (cf. [7]):

• Identification number (ID) of the pattern.
• Name of the pattern.

• Figures that visualize the pattern. Consisting of BPMN
2.0 choreography diagrams, BPMN collaboration dia-
grams, and UML Sequence diagrams.

• A Description which describes the use, content, and flow
of the pattern.

• Rules and conditions under which the pattern may be
used.

• A list of used BPMN elements from the choreography-
and collaboration diagrams, as named in [12].

• Used Patterns, which this pattern builds upon.
• Synonyms and similar patterns from literature and indus-

try.
• Variations where the core concept of the pattern stays

the same.
• Typical combinations and patterns with high compati-

bility.
• Example Use-Cases from the industry.

B. One-Way Task

Now that the pattern language has been introduced, we start
with the most atomic pattern, the One-Way Task.

• ID: BPMNChor01
• Name: One-Way Task
• Figures: See Figure 2, Figure 3, and Figure 4.
• Description: Participant A wants to deliver a message to

Participant B. The initiator (A) sends the message to the
receiver (B).

• Rules: None.
• Used BPMN Elements: startEvent (none), messageS-

tartEvent, participant (pool), Message originating from
the initiator, endEvent (none).

• Used Patterns: None, this pattern is atomic and depicts
the minimum amount of interaction.

• Synonyms: Fire-and-Forget, One-Way Notification
• Variations: None.
• Typical combinations: Due to the atomic properties of

this pattern, it may be combined with every other pattern.
• Use-Case: Sending an E-Mail or push-notification. For a

longer scenario, see Section VIII.

C. Two-Way Task

The Two-Way Task describes a bidirectional message ex-
change between two participants within a task.

• ID: BPMNChor02
• Name: Two-Way Task
• Figures: See Figures 5, 6, and 7.
• Description: Participant A initiates a message exchange

with participant B. Participant A waits for participant B’s
response.

• Rules: None.
• Used BPMN Elements: startEvent (none), messageS-

tartEvent, participant (pool), Message originating from
the initiator, endEvent (none).

5International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Task

Participant A

Message

Participant B

Figure 2. One-Way Task Choreography.

P
ar

tic
ip

an
t A

Send Message

P
ar

tic
ip

an
t B

Message
received

Message

Figure 3. One-Way Task Collaboration.

Participant A Participant B

Message

Figure 4. One-Way Task UML Sequence.

• Used Patterns: Two-Way Task is an extension of the
One-Way Task. The extension adds the response from
participant B.

• Synonyms: synchronous request-response.
• Variations: None.
• Typical combinations: Due to the atomic properties of

this pattern, it may be combined with every other pattern.
• Use-Case: Message exchange via SMS. For a longer

scenario, see Section VIII

This concludes the One-Way Task and the Two-Way Task as
the minimal way of communication, next we will introduce
Event-based Gateway – Deadline pattern.

D. Event-based Gateway – Deadline

The Event-based Gateway – Deadline pattern describes a
more complex, yet often occurring, scenario where the flow

Task

Participant A

Message 1

Participant B

Message 2

Figure 5. Two-Way Task Choreography.

Send Message

Send Message

Message 1 Message 2

Figure 6. Two-Way Task Collaboration.

Participant A Participant B

Message 1

Message 2

Figure 7. Two-Way Task UML Sequence.

of a process is determined by a temporal aspect.

• ID: BPMNChor11
• Name: Event-based Gateway – Deadline
• Figures: See Figure 8, Figure 9, and Figure 10.
• Description: An answer only has a limited time frame

to be received. Participant B receives a message from
Participant A. Participant B has to answer within a given
timeframe (N-Time) or else another workflow will be
triggered. Participant A has the timing responsibility.

• Rules: Participant B has to initiate the answering mes-
sage. A Two-Way communication is required.

6International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Used BPMN Elements: startEvent (none), messageS-
tartEvent, participant (pool), Message, originating from
the initiator, messageStartEvent, timerStartEvent, endE-
vent (none).

• Used Patterns: This pattern is based upon the Sequence
Flow – Two Participants pattern (to be published) with
the restriction that the receiving participant has to answer
in the given timeframe.

• Synonyms: Asynchronous Request-Response
• Variations: None.
• Typical combinations: This pattern may be inserted

into any request-response workflow when a timing-based
component is needed.

• Use-Case: Setting a Deadline for paying an invoice. If
the time is over, a reminder may be sent. For a longer
scenario, see Section VIII.

E. Open Parallel Gateway – Different Senders

The Open Parallel Gateway – Different Senders divides the
interaction into two paths, with different senders (initiators).
The order of the tasks in the respective paths can take place
in parallel, they have no fixed order.

• ID: BPMNChor09
• Name: Open-Parallel Gateway – Different Senders
• Figures: See Figures 11, 12, 13.
• Description: The parallel gateway with different senders

visualizes a parallel message dispatch of the participants
activated in the task before the gateway.

• Rules: Participant B has to initiate the answering mes-
sage. A Two-Way communication is required.

• Used BPMN Elements: startEvent (none), messageS-
tartEvent, participant (pool), Message, originating from
the initiator, messageStartEvent, timerStartEvent, endE-
vent (none).

• Used Patterns: None.
• Synonyms: Fire-and-Forget, Publish/Subscribe
• Variations: There can also be responses from the re-

ceivers, since the gateway is not associated with any
participant, it is never closed.

• Typical combinations: Basic patterns can be used within
the gateway.

• Use-Case: Send payment request and send policy, see
Section VIII.

VI. REAL USER CONNECTIVITY

Another challenge in choreography is to implement commu-
nication with a real user, such as a staff member or a customer.
In an orchestrated environment (e.g., using Camunda [10]), the
orchestrator would take over the management of communica-
tion and also the tasks for the respective user (called tasklist).

Since this coordinator does not exist in the choreography,
we have decided to abstract the user via an agent service.
Accordingly, another service is added to realize the communi-
cation with the user. We are currently planning to implement

Task 1

Participant A

Message 1

Participant B

Task 2

Participant A

Participant B

Message 2

N Time

Figure 8. Event-based Gateway – Deadline Choreography.

P
ar

tic
ip

an
t A

Send Message
Message
Received

N Time

P
ar

tic
ip

an
t B

Message
Received

Send Message

Message 1 Message 2

Figure 9. Event-based Gateway – Deadline Collaboration.

Participant A Participant B

Message 1

Time
Message 2

Figure 10. Event-based Gateway – Deadline UML Sequence.

7International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Task 1

Participant A

Message 1

Participant B

Task 2

Participant B

Message 2

Participant C

Task 3

Participant B

Message 3

Participant D

Figure 11. Open-Parallel Gateway – Different Senders Choreography.

P
ar

tic
ip

an
t A

Send Message Send Message

P
ar

tic
ip

an
t B

Send Message

P
ar

tic
ip

an
t D

P
ar

tic
ip

an
t C

Message 1

Message 3

Message 2

Figure 12. Open-Parallel Gateway – Different Senders Collaboration.

Participant C Participant A Participant B Participant D

Message 1
Message 3

Message 2

Figure 13. Open-Parallel Gateway – Different Senders UML Sequence.

this via a mail interface, but any other type of interface is
conceivable in the future.

As an initial example, some information is sent to a cus-
tomer (see Figure 14). The service represents an automated
service within an MSA. In this case, the agent also simulates
a task list for the user.

The actual implementation is visualized in Figure 15. In
addition to the service and the customer, a customer agent is
introduced that takes care of sending and receiving mail.

Sending mails is implemented in such a way that the
agent service listens for events for the respective user, reacts
to incoming events, generates and sends mails from these
events. Receiving mails works the opposite way. As soon as a
customer sends a mail to the agent service, the agent service
converts the mail into an event and publishes it. Services
within the MSA can then receive and process these events.

The agent service is not limited to an actual implementation
type. In the first iteration, we decided to use a mail service to
test the feasibility of this realization.

VII. CHOREOGRAPHY GRAMMAR

We are currently creating a grammar to specify the allowed
interactions. This grammar validates the order of the patterns
used to create valid interactions and prohibit invalid ones.
However, some rules coming from the patterns, for example
requirements for the participants, cannot be verified using the
grammar without overcomplicating it. Therefore, additional
constraints may be necessary.

The basic idea is that the letters of the grammar represent
the patterns and BPMN elements so that a created word is
an interaction to represent a choreography. Currently, it is a
context-free language, since all relations R correspond to the
form N×(N∪T)∗ [26]. The grammar contains all the patterns
in the catalog.

Due to the complexity of the language and the rule set,
only the non-terminals, terminals and the rules that describe
the patterns from Section V are introduced here.

A. Notations + and ∗

The Kleene plus notation is used to extend the Kleene star
notation for the grammar. This helps keep the derivation rules
more concise [26].

• Using X+ for at least once, or more
• Using X∗ for arbitrary amount, or zero

B. ANY

ANY is a placeholder non-terminal for any other non-
terminal of the pattern language, except start and end events.
The use of ANY makes the grammar more concise.

It can be replaced by epsilon ε, i.e., an empty letter.
Furthermore, there is no ANY ⇒ ANY ANY within Rule 2,
as precise rules are specified for each pattern as to when which
patterns can come before or after.

8International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Send Information

Service

Information

Customer

Figure 14. Abstract Example of Real User Connectivity — Choreography.

C
us

to
m

er
C

us
to

m
er

 A
ge

nt

Generate Mail

Send Mail

Receive
Information

S
er

vi
ce Send

Information

Figure 15. Abstract Example of Real User Connectivity — Collaboration.

C. Start and end event

Start and end are not necessary in a choreography. We force
them into the grammar to make them more explicit.

• Non-Terminals: Es for start event and Ee for end event
• Terminals: es for start event and ee for end event
• Therefore, Rule 3: Es ⇒ es, and Rule 4: Ee ⇒ ee

D. Atomic patterns

The atomic patterns are described as follows:

• Described by One-Way Task and Two-Way Task.
• Non-Terminals: Tow for One-Way Task and Ttw for Two-

Way Task

• Terminals: tow for One-Way Task and ttw for Two-Way
Task

• Therefore, Rule 5: Tow ⇒ ANY tow ANY and
Rule 6: Ttw ⇒ ANY ttw ANY

E. Gateway patterns

To differentiate the gateways and also the type of open
or closed, there are several non-terminals and terminals for
creating a gateway and one universal terminal for closing, i.e.,
gclose. This terminal defines whether paths are merged again.
As we have only used open gateways in our research work
so far, we will not go into this implementation in more detail
now, but in future work.

1) Event-based Gateway - Deadline: The Event-based
Gateway — Deadline pattern has the following structure:

• Non-Terminal: Grd for race-condition and deadline
• Terminal: grd
• Using Rule 7: Grd ⇒

ANY (tow|ttw)+ ((grd[ANY Ee]) (grd[eit ANY Ee]))
• where ANY (tow|ttw)+ is an exchange starting the race

condition,
• and (grd[ANY Ee]) as the path that can/should be

executed within the defined time,
• and (grd[eit ANY Ee]) as a path that describes the timer

(i.e., eit) and executes something and/or ends the process
after expiry.

2) (Open-)Parallel Gateway: Since there is no verification
of senders and receivers within the choreography task, there is
no differentiation in the grammar between the Open-Parallel
Gateway — Same Senders and Different Senders patterns. In
addition, the implementation using the terminal gclose means
that there is no direct distinction between open and closed
gateways at the time they are created. The following describes
the realization of an open parallel gateway:

• Non-Terminal: Gp

• Terminal: gp
• Using Rule 1: C ⇒ Es ANY Gp

• and using Rule 8: Gp ⇒
ANY (tow|ttw)+ (gp[ANY Ee])

+

• where ANY (tow|ttw)+ as an exchange starting the
parallel message flow,

• and (gp[ANY Ee])
+ as the definition of the parallel

paths.

F. Derivation Rules

The derivation rules for the grammar are defined as follows:
R = {

1) C ⇒ Es ANY (Gx|Gp),
2) ANY ⇒ Tow|Ttw|Gp|Grd|ε,
3) Es ⇒ es,
4) Ee ⇒ ee ,
5) Tow ⇒ ANY tow ANY ,
6) Ttw ⇒ ANY ttw ANY ,

9International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

7) Grd ⇒
ANY (tow|ttw)+ ((grd[ANY Ee]) (grd[eit ANY Ee])),

8) Gp ⇒
ANY (tow|ttw)+ (gp[ANY Ee])

+,

}

G. Structure of each interaction

Each choreography follows the same structure: C is the start
symbol of the choreography. The default structure is: C ⇒
Es ANY Ee. Alternatively, the structure may be as follows:
C ⇒ Es ANY (Gx|Gp) because in the case of open gateways
(exclusive or parallel) there exists more than one end event.

Therefore, the choreography grammar (G) is currently de-
scribed by G = (N,T,R, S) with:

• N = {ANY,Es, Ee, Tow, Ttw, Grd, Gp} as Non-
terminals, like a choreography, any patterns, or a specific
pattern defined by a non-terminal shortcut,

• T = {es, ee, eit, tow, ttw, grd, ggp} as terminals, for a
specific pattern defined by a terminal shortcut,

• R as rules for the derivation from non-terminal to termi-
nal, which are defined in Section VII-F,

• S = C, as a starting form of a choreography

The grammar is still in progress, so the content may change.
After the presentation of the theoretical concepts, we will look
at practical application in the next section.

VIII. PATTERN SCENARIOS IN INSURANCE COMPANIES

To realize the pattern language of the two introduced
patterns in Section V completely, this section evaluates use
cases of the patterns from the insurance industry and shows
the implementation of the user and grammar.

We consider a typical process where a new insurance ap-
plication is managed. The process New Insurance Application
adopted from Freund and Rücker [17], but can also be taken
directly from the insurance business model of our partners
in the insurance industry, thus mapping a real-world use case.
Due to the size of the process, it is only briefly described below
and the parts containing the patterns are further explained.

A. Process and patterns

In the process, a customer submits a new insurance appli-
cation. If the request is rejected, this information is noted in
the backend and the customer is informed. If the request is
accepted, a policy is created. After creation, the policy is sent
and the customer is requested to submit the first payment. If
the payment is not made within 60 days, the request, and the
policy are invalid. If the customer pays in time, the insurance
is valid.

The process starts with a synchronous communication using
Two-Way Task pattern. The Application Service and Policy
Service are then informed about the status of the interaction
and the process splits into two parallel (or two independent)

Set Up Policy

Application Service

Policy Request

Policy Service

Policy

Send Policy

Application Service

Policy

Consumer

First Payment
Invocation

Policy Service

Payment Request

Consumer

60 Days

Send Payment

Consumer

Payment

Payment Service Policy Successful

Policy Timeout

Policy Issued

Figure 16. New Insurance Application Process – Cutout.

paths, implemented by the Parallel Gateway — Different
Senders pattern.

In one path, the One-Way Task pattern is represented, by
sending the policy to the customer. In the other path, the Event-
based Gateway – Deadline pattern is utilized by the sending
and receiving of the payment request.

The process excerpt describes the happy path (see Fig-
ure 16), i.e., the customer obtains an insurance policy. It starts
with the creation of the policy by the Application Service
submitting a request to the Policy Service. The Policy Service
responds by sending the policy. This interaction is realized
using Two-Way Task pattern.

The interaction is then divided into two independent paths
using the Parallel Gateway — Different Senders pattern, which
means that the sequence of tasks in the respective paths can
take place in parallel, their order is not fixed.

In the right path, the One-Way Task pattern is implemented.
The application service sends the policy to the client. After
sending, the task is completed and the path ends.

The Event-based Gateway – Deadline pattern is shown in
the bottom path. The policy service sends the first payment
request to the client. Then a timer is started. If the customer
pays within 60 days, the policy, and the process are successful.
If the customer does not pay within 60 days, a timeout occurs
and the policy becomes invalid.

As shown with the payment request and the incoming
payment in Figure 16, the Event-based Gateway — Deadline
pattern contains the One-Way Task pattern. It shows that this

10International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

fundamental pattern is the basis of the minimal communication
for the choreography.

B. User Connectivity

This subprocess also involves communication with a user,
in this case the consumer. The Policy Service, which is an
automated service within the MSA, sends the consumer a
payment request. The consumer has to respond to this payment
request within 60 days by paying the first insurance premium.
Otherwise, the insurance status will expire.

The corresponding task in the choreography diagram is
within the Event-based Gateway – Deadline pattern in the
lower path of the Parallel Gateway — Different Senders
pattern. This example shows the two paths, communication to
the outside world and from the outside world to the system.
The conversion to the outside world is described in Figure 17.
The payment service generates a message, which the agent
service converts into an email and sends to the consumer.

The implementation from the outside world is described in
Figure 18. The consumer pays the first fee and an email is
sent to the system, which is received by the agent service.
The agent service converts the mail into a message and sends
it to the policy service.

C. Grammar

Section VII described the grammar limited to the patterns
presented here. Now the implementation is presented using a
scenario. As the subprocess is only an extract, we represent
the flow into the task Set Up Policy as a start event.

1) Start with the Rule 1: C ⇒ Es ANY Gp

2) Derive Es ⇒ es using Rule 3 and ANY ⇒ ε using
Rule 4, so that C ⇒ es Gp

3) Derive Gp ⇒ ANY (tow|ttw)+ (gp[ANY Ee])
+ using

Rule 8,
so that C ⇒ es ANY (tow|ttw)+ (gp[ANY Ee])

+

4) Select a Two-Way Task in front of the gateway and set
ANY to ε using Rule 4 after the start, so that
C ⇒ es ttw (gp[ANY Ee])

+

5) Create two paths, so that
C ⇒ es ttw (gp[ANY Ee])(gp[ANY Ee])

6) Replace ANY in the first path using Rule 3 with a One-
Way Task (Send Policy Task) and Ee ⇒ ee using Rule 4,
so that
C ⇒ es ttw (gp[Tow ee])(gp[ANY Ee])

7) Replace One-Way Task Non-Terminal with
its Terminal using Rule 5, so that C ⇒
es ttw (gp[tow ee])(gp[ANY Ee])

8) Replace ANY in the second path with an Event-based
Gateway — Deadline (Payment Procedure Task) using
Rule 2, so that
C ⇒ es ttw (gp[tow ee])(gp[Grd Ee])

9) Derive Grd using Rule 7, so that C ⇒
es ttw (gp[tow ee]) (gp[ANY (tow|ttw)+
((grd[ANY Ee]) (grd[eit ANY Ee]))])

C
on

su
m

er
C

on
su

m
er

 A
ge

nt

Receive Payment
Invocation

Generate Mail Send Mail

P
ol

ic
y

S
er

vi
ce

Send First
Payment

Invocation

Figure 17. Realization User connection — to the outside world.

C
on

su
m

er
C

on
su

m
er

 A
ge

nt

Receive Payment
Information

Generate
Message

Send Message

P
ol

ic
y

S
er

vi
ce

Payment

Figure 18. Realization of User connection - from the outside world.

10) Replace ANY before the first path of the race con-
dition with ε using Rule 2 and select One-Way
Task (First Payment Invocation Task), so that C ⇒
es ttw (gp[tow ee])(gp[(tow ((grd[ANY Ee])
(grd[eit ANY Ee]))])

11) Replace ANY in the first path of the race condition with
a One-Way Task (Send Payment Task) using Rule 2, so
that C ⇒ es ttw (gp[tow ee])(gp[(tow ((grd[Ttw Ee])
(grd[eit ANY Ee]))])

12) Derive the first path of the race-condition to the ter-

11International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

minals using Rule 6 and Rule 4, so that C ⇒
es ttw (gp[tow ee])(gp[(tow ((grd[ttw ee])
(grd[eit ANY Ee]))])

13) Derive ANY in the second path with ε using Rule 2 and
replace the non-terminal from the end event using Rule 4
so that C ⇒ es ttw (gp[tow ee])(gp[(tow ((grd[ttw ee])
(grd[eit ee]))])

The expression C ⇒ es ttw (gp[tow ee])(gp[(tow ((grd[ttw ee])
(grd[eit ee]))]) describes the process as shown in Figure 16.

IX. CONCLUSION AND FUTURE WORK

The effective modeling and implementation of business
processes is of crucial importance for an insurance company.
Coming from BPMN notation, there needs to be a concise
way of realizing the modeled process in the MSA style
using the choreography. In this article, we further solidified
the beginning of our choreography pattern language as the
first steps towards a clear realization approach with precise
implementation rules to map from BPMN diagrams to the
distribution of microservices.

A way of integrating real users has been presented, to
handle user interaction and allows the abstraction of these
interactions. The grammar can validate the order of pattern
usage, but cannot validate the rules of each individual pattern,
an extra step for rule validation may be needed.

Several more patterns are needed to cover a broader range
of different business use cases in the insurance industry. We
also plan to evaluate all theoretical patterns with our insurance
industry partners to ensure practical use. Additionally, an
extension of the XML schema of BPMN diagrams is needed
to serialize the patterns and validate them for correct usage.
In future work, we will thus present additional patterns and
an extension to the BPMN XML schema. We will also aim
to refine our choreography pattern language and evaluate its
additional benefit through a concrete implementation.

REFERENCES

[1] C. Schulze, A. Link, H. Meyer, A. Koschel, and A. Hausotter, “Towards
Patterns for Choreography of Microservices-based Insurance Processes,”
in SERVICE COMPUTATION 2023, 15th Intl. Conf. on Advanced
Service Computing. IARIA, ThinkMind, 2023, pp. 1–7, Online. Avail-
able: https://www.thinkmind.org/index.php?view=article&articleid=
service computation 2023 1 10 10003 [retrieved: 02, 2024].

[2] Gesamtverband der Deutschen Versicherungswirtschaft e.V. - General
Association o.t. German Insurance Industry, “VAA Final Edition. Das
Fachliche Komponentenmodell (VAA Final Edition. The Functional
Component Model),” 2001.

[3] European GDPR, “Complete guide to GDPR compliance,” Online.
Available: https://gdpr.eu/ [retrieved: 02, 2024].

[4] Bundesanstalt für Finanzdienstleistungsaufsicht (BaFin) - Federal Finan-
cial Supervisory (BaFin), “Versicherungsaufsichtliche Anforderungen an
die IT (VAIT) (Insurance Supervisory Requirements for IT (VAIT))
vom 03.03.2023,” 2023, Online. Available: https://www.bafin.de/DE/
Startseite/startseite node.html [retrieved: 02, 2024].

[5] C. Richardson, Microservices Patterns: With examples in Java. Shelter
Island, New York: Manning Publications, 2018.

[6] S. Newman, Building microservices: designing fine-grained systems.
Sebastopol, California: O’Reilly Media, Inc., 2015.

[7] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud
Computing Patterns Fundamentals to Design, Build, and Manage Cloud
Applications. Springer Vienna, 2014.

[8] A. Koschel, A. Hausotter, R. Buchta, A. Grunewald, M. Lange, and
P. Niemann, “Towards a Microservice Reference Architecture for In-
surance Companies,” in SERVICE COMPUTATION 2021, 13th Intl.
Conf. on Advanced Service Computing. IARIA, ThinkMind, 2021,
pp. 5–9, Online. Available: https://www.thinkmind.org/articles/service
computation 2021 1 20 10002.pdf [retrieved: 02, 2024].

[9] A. Hausotter, A. Koschel, M. Zuch, J. Busch, and J. Seewald, “Compo-
nents for a SOA with ESB, BPM, and BRM – Decision Framework and
architectural Details,” Intl. Journal od Advances in Intelligent Systems,
vol. 9, no. 3 & 4, pp. 287–297, 2016.

[10] “Workflow and decision automation platform,” Nov 2021, Online. Avail-
able: https://camunda.com/ [retrieved: 02, 2024].

[11] A. Koschel, A. Hausotter, R. Buchta, C. Schulze, P. Niemann,
and C. Rust, “Towards the Implementation of Workflows in a
Microservices Architecture for Insurance Companies – The Coex-
istence of Orchestration and Choreography,” in SERVICE COM-
PUTATION 2023, 14th Intl. Conf. on Advanced Service Com-
puting. IARIA, ThinkMind, 2023, pp. 1–5, Online. Avail-
able: https://www.thinkmind.org/index.php?view=article&articleid=
service computation 2023 1 10 10002 [retrieved: 02, 2024].

[12] OMG, Business Process Model and Notation (BPMN), Version 2.0, Ob-
ject Management Group Std., Rev. 2.0, January 2011, Online. Available:
http://www.omg.org/spec/BPMN/2.0 [retrieved: 02, 2024].

[13] M. Fowler and J. Lewis, “Microservices a definition of this new
architectural term,” 2014, Online. Available: https://martinfowler.com/
articles/microservices.html [retrieved: 02, 2024].

[14] L. Krause, Microservices: Patterns and Applications: Designing fine-
grained services by applying patterns. Lucas Krause, 2015.

[15] T. Allweyer, Kollaborationen,Choreographien und Konversationen in
BPMN 2.0 - Erweiterte Konzepte zur Modellierung übergreifender
Geschäftsprozesse - Collaborations,Choreographies and Conversations
in BPMN 2.0 - Advanced Concepts for Modeling Comprehensive Busi-
ness Processes. Fachhochschule Kaiserslautern, 2009.

[16] T. Allweyer, Geschäftsprozessmanagement: Strategie, Entwurf, Im-
plementierung, Controlling. - Business process management: strategy,
design, implementation, controlling. W3l GmbH, 2005.

[17] B. Rücker and J. Freund, Praxishandbuch BPMN 2.0 - Practice Hand-
book BPMN 2.0. Carl Hanser Verlag München Wien, 2014.

[18] G. Decker, O. Kopp, and A. Barros, An Introduction to Service Chore-
ographies, vol. 50, no 2 ed. Information Technology, 2008.

[19] B. Rücker, “The Microservices Workflow Automation
Cheat Sheet,” 2018, Online. Available: https://blog.bernd-
ruecker.com/the-microservice-workflow-automation-cheat-sheet-
fc0a80dc25aa[retrieved: 02, 2024].

[20] D. Mikalkinas, Situation-aware Modelling and Execution of Choreog-
raphy. Stuttgart University, 2015.

[21] M. Milanović and D. Gasević, “Modeling service choreographies with
rule-enhanced business processes,” in 2010 14th IEEE International
Enterprise Distributed Object Computing Conference, 2010, pp. 194–
203.

[22] J. Ortiz, V. Torres, and P. Valderas, “A catalogue of adap-
tation rules to support local changes in microservice composi-
tions implemented as choreographies of bpmn fragments,” 2023,
Online. Available:https://riunet.upv.es/bitstream/handle/10251/181551/
CatalogueOfAdaptationRules.pdf?sequence=1 [retrieved: 02, 2024].

[23] C. Richardson, “Eventuate Framework,” 2021, Online. Available: https:
//eventuate.io/[retrieved: 02, 2024].

[24] ——, “Eventuate Tram,” 2021, Online. Available: https://eventuate.io/
abouteventuatetram.html[retrieved: 02, 2024].

[25] ——, “Eventuate Local,” 2023, Online. Available: https://github.com/
eventuate-local/eventuate-local[retrieved: 02, 2024].

[26] G. Vossen and K.-U. Witt, Grundkurs Theoretische Informatik (Basic
Theoretical Computer Science), 6th ed. Wiesbaden: Springer Vieweg,
2016, publication status: Published.

[27] L. Priese and K. Erk, Theoreotische Informatik - Eine umfassende
Einführung (Theoretical computer science - A comprehensive introduc-
tion), 4th ed. Berlin, Heidelberg: Springer Vieweg, 2018, publication
status: Published.

[28] J. Ladleif, A. von Weltzien, and M. Weske, “chor-js: A modeling
framework for bpmn 2.0 choreography diagrams,” 2019.

12International Journal on Advances in Software, vol 17 no 1 & 2, year 2024, http://www.iariajournals.org/software/

2024, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[29] A. Barros, M. Dumas, and H. A.H.M, “Service interaction
patterns,” 2005, pp. 302–318, Online. Available:http:
//www.workflowpatterns.com/documentation/documents/
serviceinteraction BPM05.pdf [retrieved: 02, 2024].

[30] C. Chen, “Choreography vs orchestration,” Online. Available:
https://medium.com/ingeniouslysimple/choreography-vs-orchestration-
a6f21cfaccae [retrieved: 02, 2024].

[31] B. Rücker, “The Microservices Workflow Automation Cheat Sheet,”
Online. Available: https://blog.bernd-ruecker.com/the-microservice-
workflow-automation-cheat-sheet-fc0a80dc25aa [retrieved: 02, 2024].

[32] ——, Practical Process Automation - Orchestration and Integration in
Microservices and Cloud Native Architectures. O’Reilly, 2021.

