
Identification of Critical Groups and Other Supply Chain Vulnerabilities

Tim vor der Brück
Department of Computer Science

Distance University of Switzerland (FFHS)
Brig, Switzerland

email: tim.vorderbrueck@ffhs.ch

Abstract—The impact of a supplier or transportation link
breakdown in a supply chain can strongly differ depending on
which nodes/links are affected. While the breakdown of produc-
ers of rarely needed products or backup suppliers might result
in no or only minor repercussions, the breakdown of central
suppliers or transportation links, also called critical nodes/links,
can be fatal and may cause a severe delivery delay or even a
complete production failure of certain product lines. Therefore,
it is of high importance for a company to identify its critical
nodes/links in the supply chain and take precautionary actions
such as organizing additional backup suppliers or alternative
ways of transportation. In this paper, we describe a novel method
to identify critical groups, nodes, and links in a supply chain
based on robust optimization, which has the advantage that
supply chain risks are considered, and also precise risk cost
estimates regarding the possible breakdown of each supplier node
are provided. Afterwards, we introduce the concept of Critical
Groups, which is a generalization of Critical Nodes to potentially
more than one supplier. Finally, we demonstrate this method on
an example supply chain and discuss its distribution of critical
nodes, links, and groups.

Keywords—supply chain management; critical nodes; critical
groups; critical links; robust optimization; supply chain risks.

I. INTRODUCTION

Note that this paper is an extended version of [1]. In
comparison to the original paper, we revised and extended
our optimization model to include change-over costs and fixed
penalties. In addition, we discuss an important generalization
of critical nodes that we term critical groups.

Supply chain disruption may cause severe loss of sales and
revenue. Therefore, a thorough risk analysis of the supply
chain is of high importance. Falasca et al. [2] identified three
major determinants of supply chain risks, which are:

• Density (cf. Figure 1)
• Complexity (cf. Figure 2)
• Critical Nodes (cf. Figure 3)
The first determinant of supply chain risks according to

Falasca et al., supplier density relates to the number of
suppliers residing inside a certain region. In this paper, we
slightly generalize the concept of density according to Falasca
and Craighead [2], [3] and also refer to a high density if a
high number of suppliers reside in the same country even
if these suppliers might not be geographically located close
to each other. A high density increases the probability of
joint supplier failures due to similar geological, economic,
or political influences on neighboring suppliers. We will call
a group of neighboring suppliers with a high joint dropout
impact a critical group.

Craighead et al. [3] assess the complexity of a supply chain,
which is the second determinant of supply chain risks, by
the number of its nodes (suppliers) and edges (transportation
links). The more complex the supply chain is, the higher can
be the supply chain risk since a highly complex supply chain
structure can complicate the logistics as well as the production
processes. However, the authors point out that a high complex-
ity can also mean that the supply chain contains redundancies
and backup suppliers, which would increase its resilience.
Consider as an example the supply chain in Figure 2. If
supplier A breaks down on the low-complexity supply chain
on the left subfigure, the whole chain is interrupted and non-
operational because the goods on the left side of the subfigure
can no longer be transported to any of the suppliers on the right
side. However, on the more complex supply chain on the right
subfigure, supplier A can partly be bypassed by nodes B and
C, which effectively mitigates a potential failure of node A.
Thus, the effect that a high complexity has on the supply chain
risk is not as clear as for the other two determinants (density
and critical nodes). Therefore, we chose not to propose an
assessment measure for supply chain complexity and will not
discuss this topic any further in the remainder of this paper.

Finally, the third determinant of supply chain risk is given
by its critical nodes. Craighead et al. [3] define criticality as
the relative importance of a given node or set of nodes within a
supply chain (see Figure 3). A breakdown of a critical node has
typically severe implications, such as serious delay or even a
complete collapse of the production process for certain product
lines, which can result in non-fulfillment of customer demand.
Consequently, the affected company suffers lost revenue and
faces a potential non-delivery contract penalty. Thus, it is of
great importance to identify the critical nodes in the supply
chain and mitigate their possible breakdown risks by imple-
menting precautionary measures such as organizing backup
suppliers.

The concept of critical nodes can also be transferred to
important transportation links. A link in a supply chain de-
notes a certain transport mode (e.g., airplane, truck, or ship
transportation) and a route between two suppliers or between
a supplier and a customer. Analog to the definition of critical
nodes, a critical link denotes a link that is of high importance
for the total supply chain. Critical links should therefore be
secured by identifying alternative means of transportation.

The rest of the paper is structured as follows. Related work
is given in the upcoming section (Section II). The employed
optimization model is given in Section III. In Section IV, we
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Fig. 1. Different degrees of supply chain density [2].

Fig. 2. Different degrees of supply chain complexity, slightly modified from [2].

Fig. 3. Supply chain with (right) and without a critical node (left) [2].
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describe how the node criticality is assessed and discuss the
obtained results. Critical groups are discussed in Section V.
Finally, we conclude the paper with Section VI where we
summarize our contribution and give potential future work.

II. RELATED WORK

Zhang and Han [4] as well as Yan et al. [5] propose to use
network centrality (especially degree, betweenness centrality,
and eigenvalue centrality) as indicators for the criticality of a
node in a supply chain.

Gaura et al. [6] assess the criticality of a certain network
node by determining the decrease in network efficiency when
this node is removed from the network. The network efficiency
is measured by the normalized sum of the reciprocal of graph
distances between any two nodes in the network. Prior to
applying their approach, nodes with low clustering indices are
removed from the network, wherefore the authors termed their
approach clustering-based.

The approaches described so far assess a node’s criticality
alone by topological network measures. In contrast, Falasca et
al. [2] propose to also consider throughput through the supply
chain but fail to suggest a concrete measure. Sabouhi et al.
[7] consider a node as critical, if the throughput through this
node as determined by solving a linear optimization problem,
exceeds a certain predefined threshold. However, this measure
does not take the use of backup suppliers into account as we
do here, which can de facto reduce the node criticality of
alternative suppliers.

There are also some existing approaches to identify critical
links. Scotta et al. [8] introduce the so-called Network Ro-
bustness Index (NRI), “for evaluating the critical importance
of a given highway segment (i.e., network link) to the overall
system as the change in travel-time cost associated with
rerouting all traffic in the system should that segment become
unusable.” Note that the NRI only takes costs into account that
are directly transportation-related but disregards repercussions
of item non-delivery for downstream production processes as
we considered in our proposed method.

We chose to use a robust optimization model as a basis for
our risk cost estimation. Such a model is oftentimes employed
for supply chain optimization under uncertainties. Kim et
al. introduce [9] such a model, which maximizes profit in
a closed-loop supply chain scenario also considering repairs
and recycling of products and materials. The uncertainty
arises since the available budget for uncertainties and repairs
is unknown and can assume one of possible three values.
Babazadeh and Jafar Razmi [10] propose a mixed integer
linear programming model based on robust optimization that
minimizes production, inventory, and transportation costs un-
der 4 different economic growth scenarios.

Alternatives to the scenario-based robust/stochastic opti-
mization approach are the use of the value at risk and the
conditional value at risk. The value at risk specifies a certain
quantile of the probability density function of the production
loss. The closer this quantile is to the expected value of the
distribution, the less is the variance of the loss and therefore

also the risk. In contrast, if this quantile is located far away
from the expected value, the probability density curve must
be quite flat and therefore the variance and also the supply
chain risk are rather high. Thus, the distance between the
value at risk and expected value should be minimized for
obtaining a low-risk supply chain configuration. Khorshidi
and Ghezavati [11] use the value at risk approach to obtain
the best possible location of facilities to minimize production
loss. The downside of the value at risk-based methods is that
they consider only a single location on the probability density
curve, which can make this measure unreliable as risk estimate
in certain situations. Therefore, nowadays, the value at risk
is oftentimes replaced by the conditional value at risk that
considers the weighted average of the loss beyond the chosen
quantile. A supply chain optimization approach based on the
conditional value at risk is introduced by Azad et al. [12]. In
particular, they minimize the conditional value at risk of the
lost capacity to determine the optimal amount of investment
for opening and operating distribution centers. We opted for
the scenario-based robust optimization approach since value at
risk as well as conditional value at risk require the probability
distribution of the production loss/costs, which is difficult to
obtain in practice.

III. EMPLOYED OPTIMIZATION MODEL

Our approach is based on robust optimization, which itself
is based on stochastic optimization, which again is based on
a deterministic optimization model.

We describe each of these three models subsequently in the
following sections starting with the most basic one.

A. Deterministic optimization model

The deterministic model disregards any potential risk for
the supply chain and determines the minimum costs of the
so-called “happy flow”, which denotes the best-case situation
that no supply chain disruption occurs. Since such a model
contains no stochastic part, it can be computed very efficiently.
Note that we use, due to the computational complexity of the
stochastic and robust model, a single period of 12 months for
all of our 3 optimization models, over which we aggregate the
total customer demand.

The following constants must be specified beforehand:
• djz: demand at location j for product z
• cij : cost to move one kg over one km from location i to

j
• pciz: cost to produce one item of product z at supplier

location i
• axz: number of items of product x to produce one amount

of product z
• capiz: production capacity of product z at supplier loca-

tion i
• iniz: initial number of items of product z contained in

the inventory at supplier location i
• iciz: inventory cost for storing z at location i
• dist ij : geographical distance between locations i and j
• weightz: weight of product z
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• coci: change-over costs of supplier i. These costs arise
if the supplier produces at least one item. Later on in
the stochastic and robust optimization model, we assign
change-over costs to all suppliers that are not part of
the Happy Flow scenario, i.e., the scenario without any
supply chain disruptions.

The following decision variables are to be determined by the
optimizer:

• Tijz: number of items z that are moved from location i
to j

• IT il: internal transfer of item l from inventory at location
i

• Piz: number of items z produced at supplier i
• WT iz: number of items z removed from the warehouse

of supplier i
• US i: use supplier i in the supply chain
Model constraints:
• djz ≤

∑
i Tijz: demand of item z at location j is met

•
∑

z alzPiz = IT il+
∑

k Tkil: number of items l required
to build items z at location i

• Piz ≤ capiz: supplier at node i can at most produce capiz

items for product z
• Piz+WT iz ≥

∑
j Tijz+IT iz: produced + removed from

the inventory of supplier i ≥ number of items transported
from supplier i

• WT iz ≤ iniz for each item z and supplier i: inventory
contents cannot become negative

• US i = 1 ⇔
∑

z Piz > 0: A supplier i is considered to be
used in the supply chain if it produces at least one item.
This constraint is implemented by means of the so-called
big-M approach.

The following objective is used:
Min. coststotal with:

coststotal : =
∑
ijz

Tijzcijzdist ijweightz

+
∑
iz

(Pizpciz + iniziciz) +
∑
i

US icoci
(1)

B. Stochastic optimization model

The stochastic model takes supply chain risks into ac-
count and computes the expected value of the supply chain
costs (E(C)) determined over all generated risk scenarios.
In a stochastic optimization setting, the set of risk scenarios
describes the potential hazards for the whole supply chain.
Hence, the nine scenarios from our case company’s supply
network are used as input for the stochastic optimization
approach, which are given in Table I.

The stochastic optimization model determines the minimal
supply chain costs under these risks and estimates the supply
network resilience of the entire supply chain. Note that certain
inventory costs are currently still disregarded in our model
but may be considered for future work. We have expanded
our initial deterministic optimization model as follows. First,
each decision variable is assigned an additional index denoting

TABLE I
SUPPLY CHAIN DISRUPTION RISK SCENARIOS FOR OUR EXAMPLE SUPPLY

CHAIN.

Number Risk Scenario

1 Product line simplification of supplier 1 - supplier no
longer delivers the component due to strategy change

2 Product line simplification of supplier 2 - supplier no
longer delivers the component due to strategy change

3 Covid19 pandamic
4 Cyber attack
5 Transport disruption
6 Supplier disruption due to export restrictions
7 Delivery problems of a certain part from supplier 3
8 Delivery problems of a certain part from supplier 4
9 Happy Flow - no disruptions

the associated risk scenario. For instance: Pizs denotes the
number of item z produced at location i in risk scenario s.
Furthermore, an additional decision variable named Missed jzs

has been included to denote the shortfall of a produced
item z at location j for risk scenario s with respect to the
actual demand. To represent the effect of a missed demand,
we define a variable (per item) non-delivery penalty term
penjz . The penalty is invoked when the demand for item j
and location z cannot be met (Missed jzs > 0). The non-
delivery penalty comprises lost revenue and a possible contract
penalty. As a result, the demand constraint changes as follows:
djz ≤ Missed jzs +

∑
i PizsTijzs for every scenario s and the

objective function becomes:

Min. E(C) (2)

where

E(C) :=
∑
s

Csps

=
∑
ijzs

Tijzscijzdistijweightzps

+
∑
izs

(Pizspciz + iniziciz)ps

+
∑
jzs

vpjzMissed jzsps

+
∑
jzs

1Missedjzs>0fpjsps

( Missed demand is penalized.)

+
∑
is

US iscocips

(3)

with ps specifying the probability of occurrence of risk sce-
nario s and Cs denoting the total supply chain cost in the
broad sense (see Section III-C) as follows

Cs :=
∑
ijz

Tijzscijzdist ijweightz

+
∑
iz

(Pizspciz + iniziciz)
(4)
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+
∑
jz

vpjzMissed jzs

+
∑
jz

1Missedjzs>0fpjs

+
∑
i

US iscoci

The expression 1Missedjzs>0fpjs is modeled by means of a
big-M approach. The supply chain cost estimate is given by the
objective of this stochastic optimization problem formulation.

C. Robust optimization model

A supply chain disruption can cause an unmet demand,
which decreases the production, transportation and inventory
costs (costs in the narrow sense), since fewer items are
produced, transported and stored but increases the sum of
the costs in the narrow sense and non-delivery penalties
comprising of lost revenues and a potential contractually
agreed payment (costs in the broad sense). We differentiate
between a variable per-item penalty and a fixed non-delivery
penalty that is imposed as soon as a certain number (here 1)
of items could not be delivered. The aggregated variable non-
delivery penalties and the decrease in costs in the narrow sense
are considerably correlated with each other. Therefore, unmet
demand causes a non-negative costs variance for both the costs
in the narrow and in the broad sense. Furthermore, a supply
chain setting that minimizes the variance of the costs in the
narrow sense would also have a comparatively small variance
of the costs in the broad sense. A high variance of costs means
a high unsureness about the actual costs and therefore a high
risk. Thus, it is an important aim for a risk-averse decision
maker to reduce the unsureness and therefore also the costs
variance. We decided aiming to minimize the variance of the
costs in the broad sense, since otherwise, the imposition of a
fixed (item-independent) non-delivery penalty would not have
any influence on the costs variance since the optimization
objective already contains the variable non-delivery penalty.

The robust model introduces an additional constant σ that
specifies the risk affinity of the decision-maker [10] [13].
Large values of σ cause a considerable increase in the costs
accounting for the unsureness about the actual costs. Thus,
a risk-averse decision-maker would select a rather high σ,
whereas a risk-tolerant decision-maker would select a small
value or drop this term altogether. Thus, the objective function
changes to:

Min. E(C) + σV(C) (5)

where E(C) is defined in Equation 4. Since the computation
of the variance requires quadratic programming, we decided
to approximate it by the absolute variance [10] [14]:

Vabs(C) :=
∑
s

ps|Cs − E(C)| (6)

The absolute variance can be modeled by linear programming
as follows. First, we introduce additional non-negative de-

cision variables : ϕ(s)+ und ϕ(s)− with the following two
constraints:

ϕ+
s ≥ ps(Cs − E(C))

ϕ−
s ≥ ps(E(C)− Cs)

(7)

The objective function is then given by:

Min. E(C) +
∑
s

σ(ϕ+
s + ϕ−

s ) (8)

ϕ+
s captures the part of the variance, where the costs exceed

their expected value, whereas ϕ+
s captures the remaining part,

where the costs fall below their expected value. It can be
shown that for the absolute variance, both parts must coincide.
Thus:

ϕs := ϕ+
s = ϕ−

s (9)

With this, the constraints in (7) simplify to [14]:

ϕs ≥ ps(Cs − E(C)) (10)

and the objective function changes to

Min. E(C) +
∑
s

σ · 2ϕs (11)

We call the objective value of this optimization problem the
risk costs of the associated supply chain in the remainder of
the paper.

IV. ASSESSING NODE CRITICALITY

Thus far, we have explained our robust optimization model,
which is the basis for our proposed node criticality assessment.
In particular, the robust optimization method as described
above estimates the supply chain‘s risk costs that are com-
posed of the expected total supply chain costs considering
several disruption risk scenarios and their variance. A large
variance implies that the supply chain costs can vary strongly
depending on the occurred risk scenarios. In this case, there
is high uncertainty about the incurring costs and therefore
the overall supply chain risk is quite high. In contrast, low
variance means that the supply chain costs do not deviate much
across the scenarios. In this case, the overall supply chain risk
remains small. The risk costs are leveraged in our approach
for identifying the critical nodes of the supply chain.

By using risk costs instead of ordinary deterministic costs,
we obtain more accurate criticality assessments of the nodes.
Consider for example the case, that an important supplier S
is backed up by a second supplier, which is threatened by
probable bankruptcy. In a deterministic setup, the supplier S
would be assigned a low criticality because of the provided
backup supplier. However, in case supply chain risks are
considered, the criticality of supplier S remains high due to
the foreseeable default of the backup supplier.

In our approach, a supplier node is considered critical,
if its complete breakdown causes a high increase in risk
costs of the supply chain, which can be estimated by our
robust optimization approach. In contrast, a node is considered
uncritical, if the total risk costs of the supply chain do not
change in case the associated supplier breaks down and can no
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Fig. 4. Part of our example supply chain, where supplier nodes and transportation links are colored according to their criticality.

Fig. 5. Boxplot comparing the costs distribution of nodes and groups.

longer produce or deliver any goods. Therefore, we consider
the criticality of a node being proportional to the overall risk
costs increase of the supply chain when the node in question
is removed. We will call in the remainder of the paper the risk
costs of the supply chain, in which a certain supplier node n
is removed, the risk costs of this node n.

A node in the supply chain network can represent either a
supplier or a customer, while the edges represent transportation
links either between two suppliers or between a supplier and
a customer. We consider in the following an example supply
chain with 40 customers, 80 suppliers, 200 components and
products, 200 transportation links, and 400 product demands.
Due to its size, we only depict a part of the total supply
chain in Figure 4, which has similar characteristics in terms
of critical links and nodes as the total supply chain.

Each supplier node in this network is colorized according to

its criticality. Suppliers are colored green if the risk costs of the
supply chain are not increased by its potential breakdown, they
are colored yellow if the supply chain risk costs are increased
by a certain threshold factor f1 (we use 30%), and red if the
costs were increased by a second larger threshold factor f2
(we use 60%) or more. Note that the exact values of factors
f1 and f2 can vary depending on the corporate branch and the
degree of competition. For costs increases between 0 and f1,
we interpolate the RGB color values linearly between green
(red=0, green=255, blue=0) and yellow (red=255, green=255,
blue=0), for costs increased between f1 and f2, we interpolate
the color values between yellow and red (red=255, green=0,
blue=0). Customers are not associated with any production
risks and therefore their associated graph nodes are not colored
and instead visualized by unfilled circles. The entire process
is illustrated in the form of pseudocode in Figure 6.
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Like critical nodes, we also visualize critical links in the
supply chain. Analog to the node case, they are colored in
green if uncritical, in yellow if somewhat critical, and in red
if critical. Again, mixtures of the colors red and yellow as
well as green and red are possible. In case there are several
transportation modes available between two connected nodes,
we consider only the most critical mode for the visualization.
Note that a link originating from an uncritical supplier node
must also be uncritical. However, the opposite does not hold.
A link originating from a critical supplier node, can be con-
sidered uncritical, if alternative (backup) transportation modes
are available.

The most critical node in our example supply chain would
increase the risk costs by 50% in case of failure. Furthermore,
by far the largest part of the suppliers is considered rather crit-
ical by our chosen definition of f2, which is caused by the fact
that backup suppliers are missing in most cases. The remaining
suppliers are to the same part either non-critical (visualized in
green) or somewhat critical (visualized in yellow). In contrast,
the distribution of links is much more balanced. Almost
56% of the links are regarded as critical, the rest is either
somewhat critical or uncritical. In particular, transportation
links leading to a customer are all considered uncritical due
to existing alternative transportation modes, while most of the
inter-supplier links are critical. Optimally, the decision-maker
should supply backup suppliers/transportation modes for all
critical nodes and links so that all critical nodes / links become
somewhat critical or uncritical.

V. IDENTIFICATION OF CRITICAL GROUPS

A high supply chain density is not critical per se but only
if all suppliers located in a close proximity have a common
risk trigger like a natural disaster (see Figure 7) or certain
political or economic circumstances (cf. [15] for an overview
of major supply chain disruption risks). We call a group of
such suppliers critical if their common failure would have a
strong impact on the total supply chain costs. A critical group
is in principle an extension of the concept of a critical node.
Members of the same critical group are oftentimes located
in a geographical neighborhood, although this is not a strict
requirement. The criticality of a group is determined analogous
to the criticality for nodes or link as presented earlier by risk
costs. In particular, the risk costs of a group are given by
the risk costs of the supply chain (including lost revenue and
potential contract penalties due to missed demand) in which
all the individual group members are blocked and are not
able to produce (and potentially also deliver) any goods. A
group is considered critical if the failure of the entire group
considerably increases the supply chain costs so that they
exceed a certain predefined threshold value.

The identification of critical groups gives the decision
maker another criteria to identify potential weaknesses and
bottlenecks in the supply chain. After their identification, s(he)
has the following options to mitigate potential repercussions
of a complete group failure.

1: procedure GET RISK COSTS COLOR(nodes ,costshf )
2: Input nodes: list of total supply chain nodes
3: Input costshf : “happy flow” costs
4: red := (255, 0, 0)
5: green := (0, 255, 0)
6: yellow := (255, 255, 0)
7: hm := {} # associated risk costs of a node
8: hm color := {} # associated RGB values for a node
9: for n ∈ nodes do

10: if type(n)==Supplier then
11: costs := obj value(mincosts(nodes\{n}))
12: hm[n] := costs
13: if costs < (1 + f1)costshf then
14: w := (costs − costshf )/(f1 · costshf )
15: hm color[n] := w ·yellow+(1−w)·green
16: else if costs < (1 + f2)costshf then
17: df := f2 − f1
18: dcosts := costs − (1 + f1)costshf
19: w := dcosts/(df · costshf )
20: hm color [n] := w · red + (1−w) · yellow
21: else hm color [n] := red
22: end if
23: end if
24: end for
25: return hm, hm color
26: end procedure

Fig. 6. Identification of risk costs and node criticality for all suppliers.

Fig. 7. Supplier group with a volcano as a common risk trigger.

• (S)he can reduce the impact of an occurred risk, usually
by providing a backup supplier for each member of a
critical group.

• (S)he can reduce the probability that the risk occurs. Note
that this option might not always be available, since the
decision maker can oftentimes not directly influence the
underlying cause of the risk.

• (S)he can resolve the risk scenario altogether by replacing
all group members with equivalent suppliers that are not
affected by the risk in question. For instance, if a certain
set of suppliers is located in the immediate neighborhood
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TABLE II
RISK SCENARIO AND ASSOCIATED SUPPLIER GROUPS.

Risk Scenario Potential group members

Labour Strike suppliers in the same country and of identical
corporate branch

Natural Disaster suppliers in the vicinity of where the natural
disaster is expected to occur

Political Instability
(e.g., danger of coups)
in a certain country

all suppliers in this country

Vulnerability to cyber
attacks

suppliers with a strong dependencies on IT in-
frastructure that is accessible from outside, e.g.,
companies conducting e-commerce and selling
their goods and services directly to the end-
cunsumer over the internet.

of an active volcano, the decision maker can replace them
with suppliers in a different geographical area.

Note that different types of the same risk (e.g., political
instabilities of two different countries) should be modeled as
separate scenarios, since they usually have different repercus-
sions and occurrence probabilities.

In Table II we give some examples of risk scenarios and
associated potential supplier groups. The groups and supplier
we used in our evaluation are specified in Table I. Note that
all risk scenarios, affected supplier groups, and risk occurrence
probability are currently manually specified. In principle, the
affected supplier groups could be at least partially determined
automatically by statistical analysis if enough background data
is available.

The 8 groups in our supply chain are displayed in Figure 8.
The nodes are colored from light to dark according to their
criticality ranking ranging from 1 (most uncritical) to 8 (most
critical) whereas darker color means a higher criticality. In
case, a supplier belongs to several groups, the supplier is
drawn in the color of its most critical group (associated colors:
yellow, light orange, dark orange, green, blue, purple, brown,
black). In this figure, the coloring only depends on the ranking
from 1 to 8, while the costs are not directly reflected. In
addition, all groups with a criticality level nearer to critical
than to somewhat critical are displayed in an increased size.
The figure shows that most groups in our example supply chain
are critical, that the group size is rather moderate ranging from
1 to 4 suppliers and that several times a supplier belongs to
different groups, thus the most uncritical group colored in
yellow does not show up at all in the graph. In addition, it
can be perceived that suppliers belonging to the same group
show up in neighboring locations of the supply chain.

We also compared the risk costs distribution of critical nodes
and critical groups. As can be seen in Figure 5, the risk costs
of the groups usually exceed the ones of the nodes but not
by a high margin. This might seem slightly surprising at first
sight, since a group usually contains of several suppliers, thus
a group failure should normally have a higher impact than
a failure of a single supplier. Furthermore, the interquartile
range (IQR) of the risk costs is considerably lower for the
groups than for the nodes, i.e., for the former, the risk costs

are more concentrated around the median of the distribution.
This effect is mainly caused by the fact that there are some
uncritical nodes, whose failure do not cause a considerable
risk cost increase, while a group failure has almost always a
large impact on the supply chain.

However, only our example scenarios 3 and 4 involve the
failure of several suppliers and these suppliers are highly
dependent of each other since a supplier as well as its direct
upstream suppliers are affected by the risk scenario.

VI. CONCLUSION

We described a method for identifying critical groups,
nodes, and groups in a supply chain based on robust optimiza-
tion. In contrast to other state-of-the-art methods, our method
is very precise since it not only considers network topology
but also network throughput as well as possible supply chain
disruption risks. Furthermore, our method provides a concrete
risk costs estimate for the breakdown of each supplier, group,
and transportation link. In addition, we provided a represen-
tation as a risk graph that allows for easily pinpointing the
supply chain vulnerabilities by a decision maker.

Furthermore, we applied our method on a real-world supply
chain to analyze its vulnerbilities. The analysis revealed that
most of the supplier nodes were considered critical with our
employed threshold. Moreover, it could be shown that in
average, the groups were only slightly more critical than node
in terms of cost increase, which is caused by our specific risk
scenario setup.

Currently, risk scenarios, supplier groups, and risk occur-
rence probabilities are all specified manually. A potential fu-
ture work is to obtain the supplier groups affected by a certain
risk by using statistical analysis of available background data.
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Fig. 8. Identified critical groups in our supply chain (selected part of the total supply chain contains all group nodes).
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