

Database Technology Evolution

Malcolm Crowe

Emeritus Professor, Computing Science

University of the West of Scotland

Paisley, United Kingdom

Malcolm.Crowe@uws.ac.uk

Fritz Laux

Emeritus Professor, Business Computing

Universität Reutlingen

Reutlingen, Germany

Fritz.Laux@reutlingen-university.de

Abstract– This paper reviews suggestions for changes to

database technology coming from the work of many

researchers, particularly those working with evolving big data.

We discuss new approaches to remote data access and standards

that better provide for durability and auditability in settings

including business and scientific computing. We propose ways

in which the language standards could evolve, with proof-of-

concept implementations on Github.

Keywords– big live data; remote data; RDBMS; SQL;

standards.

I. INTRODUCTION

The design of relational database management systems
(RDBMS) has always focused on the management of
structured and evolving data, such as customer accounts and
scientific results, where shared access and long-term
durability are important [1]. The Standard Query Language
SQL, developed in the 1970s, rapidly became an international
standard [2] with many features, and its evolution has been
followed by most database products. Many researchers have
been inspired to develop the theoretical underpinning for the
implementation of these products, and this work continues
today [3][4][5][6].

With all forms of evolution, some inherited aspects
become awkward over time, for example, the early use of
fixed-size fields and limited precision primitive types persists
in database storage, limiting backwards compatibility of
newer product versions and affecting durability and
portability [7]. Some research projects including PyrrhoDB
have chosen instead to use new globalized primitive types to
avoid dependency on machine architecture and locale [8].
Avoiding such dependency facilitates data import and sharing,
and the construction of data warehouses [9].

The development of data warehouses has led to a focus on
metadata and semantics and has led many systems to use
document-based NoSQL systems while other researchers
have developed ways of including semantics in relational
systems [10]. With these developments, it is natural to seek
ways of adapting the relational DBMS paradigm to manage
evolving data warehouse content (big live data) [11].

The tension between evolution and durability of data has
always been a feature of relational database management
systems (RDMS) and the associated technology. The use
cases that inspired RDBMS development were business
records such as customer accounts and inventories, and
collaborative science, where support for shared access by

many users with the responsibility for keeping data up to date
needs to be balanced by the requirements for long-term
storage, consistency, and audit. Over the years, such support
has evolved, by the addition of powerful declarative and
processing features in the evolving standard language SQL
[2], and this evolution has come with a cost in compatibility
between systems, since not all RDBMS implement the same
version of the standard, and in durability, since RDBMS
products also evolve, and not all RDBMS provide adequate
backward compatibility to work with databases developed for
a previous version. For these reasons, legacy data and systems
are a continuing concern in all forms of business and scientific
endeavor.

The starting point in this contribution is that the DBMS
should generally support enterprise data integration where
appropriate, and co-operative data sharing where this is useful.
That is, the DBMS itself should support, but not require, ways
of extending a data model through the enterprise, while
providing mechanisms for supporting useful applications for
the situations where the responsibility for data evolution is in
another organization. In both cases the resulting structure will
be a federation allowing some local management, with a
hierarchy of delegation and responsibility, to avoid over-
centralization on the one hand, or wasteful duplication on the
other. This paper considers a number of improvements to
DBMS technology designed to achieve this aim, while
maintaining strong safeguards for preserving consistency for
such complex systems where shared data evolves through
supported activities in all parts of the system.

In the next section we consider an important set of use
cases where people are interested in very targeted real-time
data, gathered from many sources, where queries often lead to
a unique entity on a single server. SQL remains a popular way
of implementing database applications and even more general
query systems, and ideally any changes should remain close
to its original intent. In later sections of this paper, we examine
some novel open-source approaches to such use cases in the
PyrrhoDB project, which are based in widely used
technologies and so have the potential to be useful in future
big data developments. PyrrhoDB itself is a research project
dating from before 2005 [12] rather than a product, but from
its beginnings it has used globalized and machine-independent
structures and the international standards and has always
supported both evolution and backward compatibility.

In Section II we consider the state of the art, with an
analysis of recent research papers that draw attention to
changing requirements in database support for large and

evolving data sets. This section also creates an agenda for the
rest of the paper, to consider and suggest changes to relational
data technology: serialized transactions and hierarchical
privileges in Section III, proposals for the data type system
and metadata in Section IV, virtual data warehousing (view-
mediated remote access) in Section V, a suggestion to build
implementations using shareable data structures in Section
VI. Section VII looks at the implications for query processing,
and Section VIII proposes a versioned API alongside the usual
SQL data access methods and compares them with those of
other database products. These sections include examples, and
proof-of-concept implementations of these ideas are offered
on Github.

II. THE USE CASE OF BIG LIVE DATA

Raw scientific and administrative data are often

meaningless to the general public but is usually carried on the
public web and usually has a significant real-time aspect.

Examples:

• The DNA signature of the latest Covid variants (whose
data is progressively refined) [13],

• the latest data from sensors mapping a tsunami [14],

• the treatment history of a patient with a serious illness
[15],

• the results from a particular fluid calculation that has
taken a supercomputer three days to compute [16],

• the history of a piece of steel reinforcement in a tower
block [17],

• the availability of intensive-care equipment for an
emergency hospital admission [18],

• a particular sensor or actuator in the Internet of Things
[19].

In some cases, there may be expectations coming from
modeling (or AI) but a lot of important people in WHO,
NASA, etc. want the scientists or investigators to get the right
data. In some cases, the data (e.g., from sensors) is real-time,
in others (e.g., the supercomputer example) the results may be
a high-resolution image from numerical results that might not
even be stored anywhere. Often such requests have life-and-
death implications, and in order to guard against receiving
approximate or out-of-date information, people resort to email
or telephone.

In all such cases the data is conceptually part of a giant
sparse database that no-one could possibly construct. Any
individual observations would have lots of dependent
metadata (provenance, device-specific details, confidence
etc.). But often, the questions that the scientists want to ask
are phrased in database terms, e.g., to examine the outcomes
of patients with rare diseases and specific treatments, the
quality of steel used in a component that needs to be replaced
etc.

If SQL querying and secure remote update is also
considered desirable, the above use cases point to some
potentially desirable features. Excluding already-standard
aspects such as authorization, universal time, international
standards, auditing and linked data, and including features that

not everyone would require, we can easily come up with the
following wish list for SQL support:

• Search current data from a named collection of remote
data sets

• Allow searching by metadata such as the resource
description framework (RDF) or provenance where
available

• Ensure transmitted data comes with timed provenance
and ownership information

• Ensure remote updates (if permitted) are directly handled
by the data owner, and fully recorded with user
information of sender

• Avoid second-hand or out-of-date data by directly
accessing the data’s “transaction master”

• Specify service quality. e.g., to prioritize correctness over
availability, report on out-of-date data or servers offline

• Minimize the amount of data that needs to be obtained or
preloaded from remote servers

• Allow for transformation during retrieval, with inverses
for updates if permitted

• Ensure changes are securely transacted, and durably
recorded.

From the above discussion, in what follows we are
motivated by the following general considerations:

• A focus on the need to support legacy data should
motivate the separation of durable data from volatile data.
The current state of any individual account or evolving
record needs to be accessible from memory, but as in
archiving, durable systems should prioritize and enable
auditing of primary data such as particular inputs,
changes, and deletions. In what follows, we reserve the
concept of durable storage for this archive.

• On the other hand, access to and modification of the
shared state of evolving data needs effective transaction
control. The capturing of the desired durable archive then
amounts to a log of such transactions, and the best way to
prove the serializability of recorded transactions is that
this log should itself record them atomically, in commit
order, with all the steps of each commit kept together.
Implementation of this log should be as append storage
[20]. We note that some widely-supported DBMS
features such as constraints, cascades and triggers
complicate this requirement.

• Most DBMS are wary of the use of the Internet and prefer
managing all network interaction using custom features.
In our view this is now a mistake and ignores the
opportunities for globalization that the evolving Internet
standards offer. Greater opportunities for access should
be balanced by better recording of data ownership,
provenance, and responsibility, and these would help to
address the concerns noted above for the ability in special
cases to obtain results from (or even to update) sources
rather than copies. We will demonstrate that such
increased use of Internet standards has the potential to
reduce wasteful data replication, especially for “live”
data.

In considering the requirements for DBMS evolution,
therefore, we consider the following aspects:

• The validation of transaction serialization, taking account
of all side effects of transactions, so that transactions that
violate constraints should not commit, nor if a resulting
cascade or triggered action will conflict with other
transactions. This requirement is mandated by the
international SQL standard [2] but rarely implemented in
commercial DBMS.

• We suggest a modified approach to DBMS design and
security that places the data model and security model in
the database rather than in applications. The SQL
standard provides almost all of the support needed to
achieve this: we take this forward by highlighting the
definer’s role for precompiled code and constraints, and
through the creation of metadata features for the database
itself. There are some consequential suggestions for
enhancing SQL’s extensive data type system.

• As in the US Department of Defense Orange Book
standards for mandatory access control, we place the
focus on user responsibility and security, while granting
permissions to roles rather than users. Our proof-of-
concept code includes the features required to implement
the Orange Book levels B and C for users and database
objects. Roles offer privileges on objects, and users are
granted roles. We suggest however that the SQL standard
should be modified so that a user can only use one role at
a time. This is a practical suggestion since a user can be
allowed to substitute for a sick colleague, but all actions
are recorded in a way that identifies both the user and
their declared role at the time.

• The SQL programming model is computationally
complete: we recommend that the use of external code
and procedures is disallowed, so that the DBMS can
manage all of the validation and auditing required.

• In these circumstances, we support ways to allow better
remote access to databases in SQL.

The remaining sections of this paper deal with practical
proposals for all these aspects, making minimal changes to the
SQL standard. Proof-of-concept code for these ideas already
exists in PyrrhoDB on Github. Details are provided here in the
following feature groupings: serialized transactions, DBMS
accountability and data ownership, metadata, and view-
mediated remote access.

III. SERIALIZED TRANSACTIONS

From the above discussion, we implement a validation
step for all transaction commits, to ensure that the requirement
for fully serialized transactions is met. This renders obsolete
the list of isolation levels (READ_UNCOMMITTED,
READ_COMMITTED, REPEATABLE_READ, SERIALIZABLE) in the ISO
standard, as there is only one possible isolation level, which
could be called SERIALIZED [21],[22], reduces the number of
available actions for integrity constraints by disallowing NO
ACTION and limiting the extent to which constraints can be
DEFERRED. The validation step guarantees fully isolated
transactions. This means that changes made during a
transaction are never visible to other users, but will prevent
commit of conflicting transactions.

During a transaction, new records and database objects are
temporarily given locations in memory, so that they are
accessible and work as expected within the transaction thread.
On commit, following the validation step, these objects are
relocated in a cascade to the file positions where they will be
recorded in the transaction log, and re-installed in the in-
memory database. More details of this process are to be found
in [23].

The granularity of the test for transaction conflict that is
applied in this validation step is that (a) changes to the same
database object (other than tables) will always conflict, (b) for
tables, we report conflict if any columns read have been
updated by another transaction, but if only specific rows have
been read, we can limit the validation step to these rows.
Validation for this level of granularity is practical even in
situations of high concurrency [25]. The most recent
implementation of this test (August 2022) uses two simple tree
structures for columns and rows for any affected table, and
also demonstrates correct behavior for cascades, constraints
and triggers (files in [23] have been updated to show this).

For the best implementation of the optimistic concurrency
control implied by the existence of the validation step in the
commit algorithm, we advocate the use of shareable data
structures. When discussing the sharing of modifiable data
such as arrays, computer science textbooks often contrast the
two approaches of copy on read and copy on write. From our
point of view both are wasteful of time and resources, and the
use of shareable data structures provides a different approach,
which is well suited for the many tree-like structures found in
database technology. A good way of motivating the concept
is to consider the implementation of strings in programming
languages.

In Unix, traditionally, strings (char *) are mutable: anyone
with access to the string can modify individual characters in
the string. In Java, C# and Python, strings are shareable: the
only way to modify an individual character is to create a new
string, so if a string is shared between two threads, any change
to the string in one thread is not seen in the other thread unless
it is explicitly given the new version.

Apart from strings, the most popular data structure in
database technology is the B-tree, where each node apart from
the root has at least n children and not more than 2n, where
n>1, and information is placed in the leaves. In order to make
database structures shareable, therefore, the key step is to use
a shareable sort of B-tree. The model for this dates from 1982
[26], and the illustration reproduced in Figure 1 below shows
that when a change to a tree is made to a leaf, we get a new
root and the change requires O(lognN) new nodes, where N is
the number of leaves.

This means that the old and new version continue to share
most of the nodes of the structure. With a little thought we can
see that this is more storage-efficient than any of the
approaches mentioned above (string implementation, copy on
read, copy on write), but imposes a greater load on memory
allocation and garbage collection. Crucially though, it is safe,
and if we use this kind of structure for to implement all of the
indexes and lists in the database many database operations
such as starting a new transaction are made much simpler [27].
We return to these aspects in Section VII below.

The DBMS should specify and provide auditing support
for a security model that allows local management. There is
an opportunity for the SQL standard to encourage good
practice in this area. PyrrhoDB has implemented the following
practical steps for the local database:

A. Maintenance of the full transaction log as the only

artefact placed in non-volatile memory.

There were good reasons for placing volatile information
in non-volatile storage in 1972, but they are not valid now. It
is understandable that where a database occupies large
amounts of physical storage, a database administrator would
regard the additional storage required for a transaction log as
a luxury. PyrrhoDB’s full transaction log is also serialized, so
that it is evident that concurrent transactions have been
correctly handled. Even in situations of high concurrency, the
algorithms and solutions offered here have been shown to be
practical [21].

When the only data written to disk is the inserted or
updated record, or an indication that a record has been deleted,
disk activity required for database traffic is drastically
reduced, especially where the database has indexes that are
stored on disk [12].

B. Recording the user and role for each change to the

database

This is relatively easy to implement, though strongly
resisted by database professionals and accountants, who
dislike leaving their fingerprints all over the databases they
administer or client account they prepare. However, it requires
several departures from the SQL standard [2]: its features
F771 and F321 allow the “current user” to be declared in the
query language rather than being guaranteed by the operating
system, and it does not demand that a user sets a single role.
For forensic purposes, and to allow staff to substitute in
different roles (due to illness etc) it is important to identify
both user and declared role and is a simple matter if the
transaction log is being maintained as suggested in Section
III.A above.

In order to make the role and user information useful for
forensic analysis, the grant of object ownership and role usage
to roles should be deprecated, and the grant of anything other
than these privileges to users should be deprecated.

As suggested in Section III.C, it should be possible to use
the definer’s role of an object to grant ownership to another
user.

C. Database objects should be modified only by their

owner, and all execution should use definer’s role

From III.B, when objects are defined there is a current
role: this is the definer’s role, and it must be one of the roles
that the user is permitted to use. This role and the owner’s
identity become properties of the object and can be modified
by grant. The details of the new definition are checked both
during parsing on every subsequent execution of the object.

The SQL standard specifies a context stack for procedure
invocation, so it is again relatively easy to extend the use of
such a stack for access to table columns, the sources of views,
and the execution of constraints and triggers.

The execution engine then simply sets the current role for
the called context to that of the definer of the table, view,
procedure, constraint, or trigger, which it knows because of
III.B. The invoker still needs appropriate permissions to
initiate the process (by accessing or modifying the table or
view or calling the procedure) and to access the columns of
any table or row result.

The specifications in the standard make it very difficult to
create a usable set of permissions for database operations,
because users require usage permissions on every data type
and column.

Two additional simplifications are recommended: the
REFERENCES privilege in the standard then becomes redundant
as it becomes the same thing as SELECT, and it simplifies the
security model if all data types are usable by PUBLIC (though
there may be restrictions on access to their fields if any). Using
definer’s role as described here, together with these changes,
make the security model much easier to operate. New objects
can be owned by the user that defines them (with their
declared role as the definer’s role) and the granting of
privileges on an object does not need to consider data types or
dependent definitions. Thus, it is much easier to maintain a
usable set of privileges on even a large set of database objects.

With these provisions, Pyrrho’s security model is simpler
to administer and check for validity, but of course it makes
execution somewhat slower: to check access permission on a
single object requires a single access to the tree of properties
of the object, which is typically of depth 3 (see below).

We believe this is an improvement on the arrangements
used in Oracle [28] and PostgreSQL [29]. The cautionary
words used about definer’s role by these products are correct
since they are installing native external procedures. Execution
by the database server is safe because it can check all object
permissions as they are accessed.

By using the role declaration model discussed above, all
security settings for a relational database can and should be
managed by the database itself, rather than in the database
applications. The standard SQL model allows for hierarchical
delegation of management of roles and permissions, separate
from the authentication of users.

For example, consider the following simple database for a
table-tennis club. It allows select access to the two tables
shown, but changes to the database by ordinary members must
be done with the help of the two procedures provided:

create table members (id int primary key, firstname char)
[create table played (id int primary key,
 winner int references members,
 loser int references members, agreed boolean)]
grant select on members to public
grant select on played to public
[create procedure claim(won int, beat int)
 insert into played(winner, loser)
 values(claim.won, claim. beat)]
[create procedure agree(p int)
 update played set agreed=true
 where winner=agree.p and loser in
 (select m.id from members m where user like
 '%'||firstname escape '^')]
create role admin
create role membergames
[grant execute on procedure claim(int, int) to role

 membergames]
grant execute on procedure agree(int) to role membergames
grant membergames to public

To use the given procedures, a member of the public who
is allowed to login to the system should set their role to
membergames.

IV. THE TYPE SYSTEM AND METADATA

A major difficulty in both enterprise data integration and
data collaboration is the definition of a data model that
supports application development in different parts of the
enterprise. We consider it useful for databases to provide as
much support for data semantics where possible, while
retaining as much flexibility as possible for local
development.

As a first step, we introduce the primitive Document type
for JSON values and allow the braces '{' and '}' to delimit row
values in SQL, the brackets '[' and ']' as string subscripts for
Document values and a built-in Document-valued function
HTTP whose parameters are the verb and url, with an optional
third parameter being a Document for posted data.

Many DBMS have found the need to embellish their data
access methods and database applications in various ways:

• Controlling XML and JSON output for queries, to
identify whether table columns are output as
attributes/fields or children/subdocuments of the table.

• For data visualization, e.g., charts

• Entity data models: Declaring classes in a database
application corresponding to base tables in the database,
with derived class references associated with foreign
keys, lookup functions etc.

We consider it is good practice to include all such
metadata in the database design, and it should be done on a
per-role basis, to allow for suites of database applications for
different business purposes.

 In PyrrhoDB, we have come up with a list of useful
metadata identifiers.

Metadata = CAPTION | LEGEND | X | Y |

((HISTOGRAM | LINE | PIE | POINTS) ['(' id ',' id ')'])
| ([URL | MIME | SQLAGENT | USER | PASSWORD] string)

| JSON | CSV | ETAG | MILLI
| MONOTONIC | ((INVERTS|FORMATS) id)
| ATTRIBUTE | ENTITY | ((SUFFIX|PREFIX) id) | iri .

This syntax is a Pyrrho extension, and metadata can be
added to a database object (or dropped) by almost any DDL
command. Most of the options affect query output for a role
in Pyrrho’s Web service. The above list provides a rough
grouping of these keywords into four groups: (1) data
visualization for specific tables and views, (2) provision for
collaboration with remote data, (3) provision for adapter
functions, and (4) support for local data models. ATTRIBUTE if
present for a column indicates a preference for XML output
for the containing table. HISTOGRAM, LEGEND, LINE, POINTS,
PIE (for table, view or function metadata), CAPTION, X and Y
(for column or sub-object metadata) specify JavaScript added
to HTML output to draw the data visualizations specified. The
syntax allows a string for a description. For INVERTS the id
should be the name of the function being inverted, while for

FORMATS the id is a type. PREFIX and SUFFIX define ids added to
the client output string and in SQL triggers a default
constructor for the type, as explained in the currency example
at the end of this section.

Pyrrho helps with data visualizations defined using the
keywords in group (1) above, using a simple URL-mapped
HTTP service, as the following example shows:

With the database E created by

[create table sales (cust char(12) primary key,
custSales numeric(8,2))]
[insert into sales values ('Bosch' , 17000.00),('Boss'
, 13000.00), ('Daimler',20000.00)]
[insert into sales values
('Siemens',9000.00),('Porsche', 5000.00), ('VW',
8000.00), ('Migros' , 4000.00)]
create role E
grant E to "usermachine/username"

The data visualization output uses HTML returned to the
client application or for immediate display. Here, if the
browser is asked for

http://localhost:8180/E/E/SALES/?PIE(CUST,CUSTSALES)LEGEND

The browser will display the following output from the
PyrrhoDB server:

We return to this example below.
User-defined types can nominate a primitive type in the

UNDER clause, and this can be useful for distinguishing data that
has been imported or used in different suborganisations. The
SQL standard already provides the OF predicate for selecting a
value of a type, a TREAT function for specifying the subtype for
a scalar value, and a “create table of type” mechanism for
specifying row types. Pyrrho adds the ability to specify a
subtype for VALUES.

As an example of the resulting syntax, if we defined:

[create type currency as(amt numeric,unit char)
 method exchange(tounit char) returns currency,
 method tonumeric() returns numeric]

The exchange method here would be implemented for the
database using the above-mentioned HTTP function. There

http://localhost:8180/fl/FL/UMSATZ/?PIE(KUNDE,KDUMSATZ)LEGEND

are many currency converters available on the Internet, for
example

[create method exchange(tounit char) returns currency
for currency
 begin
 if unit=tounit return this;
 declare rates document;
 declare roe numeric;
 set rates=http('post',
'http://www.floatrates.com/daily/'||unit||'.json');
 set roe=rates[lower(tounit)]['rate'];
 return currency(amt*roe,tounit)
 end]

 Then we could have

[create type dollars under currency check(unit='USD')
 constructor method dollars(x numeric),
 constructor method (x currency) prefix "$"]
[create constructor method dollars(x numeric)
 begin set amt = x; set unit = 'USD' end]
[create constructor method dollars(x currency)
 begin set amt=x.exchange('USD').amt;
 set unit='USD' end]

If we have similar declarations for euros, we could write
things as simple as

select euros("$" 10)
create table money (cur currency)
insert into money values ("$" 34), ("€" 212.7)
select * from money where cur is of(dollars)

 We give an example using the data model metadata

directive ENTITY in Section VIII below.

V. VIEW-MEDIATED REMOTE ACCESS

Data warehousing involves creating central data
repositories (using extract-transform-load technologies) to
enable analytic processing of a combined data set. There are
several situations where this is undesirable, for example where
the resulting data protection responsibility at the central
repository is excessive, where the data is volatile and it
becomes expensive to maintain all of the centrally-held data
in real time, or where it is better to leave the data at its sources
where the responsibility lies [10]. With database technology,
a View (if defined but not materialised) allows access to data
defined in other places. The virtual data warehouse concept
exploits this notion, and endeavours to avoid the central

accumulation of data. Pyrrho uses HTTP to collect data from
the remote DBMS using a simple REST interface [22], and so
the resulting technology here is called RESTView.

Thus, with RESTView, a Pyrrho database allows
definition of views where the data is held on remote DBMS(s),
and is accessible via SQL statements sent over HTTP with
Json responses. Pyrrho itself provides such an HTTP service
and the distribution includes suitable interface servers (RestIf)
to provide such a service for remote MySQL and SqlServer
DBMS. The implementation allows for authentication as an
ordinary client of the remote DBMS, whose administrator can
grant access to a suitably defined view.

The HTTP access provides the user/password
combinations set up for this purpose within MySQL by the
owners of contributor databases. In the use cases considered
here, where a query Q references a RESTView V, we assume
that (a) materializing V by Extract-transform-load is
undesirable for some legal reason or because of the high data
volumes required, and (b) we know nothing of the internal
details of contributor databases. A single remote select
statement defines each RESTView: the agreement with a
contributor does not provide any complex protocols, so that
for any given Q, we want at most one query to any contributor,
compatible with the permissions granted to us by the
contributor, namely grant select on the RESTView columns.

Crucially, though, for any given Q, we want to minimize
the volume D of data transferred. We can consider how much
data Q needs to compute its results, and we rewrite the query
to keep D as low as possible. Obviously, many such queries
(such as the obvious select * from V) would need all of the
data. At the other extreme, if Q only refers to local data (no
RESTViews) D is always zero, so that all of this analysis is
specific to the RESTView technology.

During query processing views are replaced by their
definitions, so that the overall query becomes a selection from
the tables they reference. The process deals with the situation
that a table can be referenced in more than one place by adding
unique identifiers for each table reference.

Filters are applied at the lowest level of the query (e.g.,
directly on a remote table), and traversal of a remote table
creates a roundtrip of the REST service to the given URL. The
JSON representation of the result returned is slightly enhanced
to add the registers used to compute any remote aggregations
[23].

The syntax is

ViewDefinition = [ViewSpec] AS
(QueryExpression | GET [USING Table_id]) {Metadata}.

The alternative shown by the vertical bar corresponds to

whether the view has one single contributor or multiple
remote databases. The QueryExpression option here is the
normal syntax for defining a view. The REST options both
contain the GET keyword. The simplest kind of RESTView is
defined as GET from a url defined in the Metadata. The types
of the columns need to be specified in a slightly extended
ViewSpec syntax. If there are multiple remote databases, the
GET USING table_id option is available. The rows of this
table describe the remote contributions: the last column

supplies the metadata for the contributor including a url, and
data in the other columns (if any) is simply copied into the
view. For example:

Depending on how the remote contributions are defined,

RESTViews may be updatable, and may support insert and
delete operations.

The implementation of these ideas was demonstrated in
[23].

With these arrangements it is important to consider
transaction requirements for multiple-host scenarios. The
fundamental difficulty is the so-called two-army problem,
according to which all data needs a single transaction master.
Every transaction is initiated at one database (call its server’s
host local), and then accesses remote data via a view definition
of the type described above. The transaction can commit
changes on the local server and at most one remote server
update, assuming the transaction provides suitable credentials
for that database. The commit takes place according to the
following mechanism (a) the local database is locked, (b) the
local changes are validated, (c) HTTP 1.1 is used to perform
the single remote update (using the RFC7232 mechanisms),
(d) then the local commit can complete and unlock. With just
one remote update this mechanism is safe and can be rolled
back on any exception.

It is possible to imagine interworking between
heterogeneous DBMS using these techniques, so that it is
important to maintain the use of standard industry approaches
for REST services. Many systems have implemented a URL
and XML/JSON to database mapping, and the ETag
mechanism from RFC7232 [24] can be leveraged to provide
transactional features [20]. Currently in Pyrrho there are
several options for this, determined by the metadata flags URL
and ETAG listed above.

Consider again the sales database E from Section IV,
which over time gains a great many sales records. Suppose E
offers to role rs_V a view into the data that includes a
computation of the current runningSalesShare as a number
between 0 and 1:

[create view sales_V(cust, custSales, runningSalesShare)
 as select cust, custSales,
 (select sum(custSales) from sales where custSales >=
u.custSales) /
 (select sum(custSales) from sales)
from sales as u]
create role rs_V
grant rs_V to "user\machine"

Then this view can be accessed from the named machine
using dashboard-style queries that categorize the customers A,
B or C depending on the current runningSalesShare without
having to be told all of the individual sales.

[select case when runningSalesShare <= 0.5 then 'A'
 when runningSalesShare > 0.5 and
 runningSalesShare <= 0.85 then 'B'
 when runningSalesShare > 0.85 then 'C'
 else null
 end as Category,
 cust, custSales,
 cast(cast(custSales / (select sum(custSales) from
sales_V) * 100
 as decimal(6, 2))
 as char(6)) || ' %' as share
from sales_V
order by custSales desc]

The output, and a pie chart derived from it, are shown in
Figure 2.

VI. IMPLEMENTATION USING SHAREABLE DATA

STRUCTURES

This section provides some details of the implementation
for the above features, following the philosophy outlined
above using globalized and architecture-independent data
formats. PyrrhoDB uses 64-bit uids for all database objects,
log entries, and table rows. It uses a representation for variable
length primitives Integer (up to 2040 bits), Real (Integer
mantissa, int scale) and Char (Unicode strings up to 260 bytes).
The naming of database objects (except data types) is on a per-
role basis.

As mentioned above, the database is represented on disk
by a transaction log, consisting of a sequence of “physicals”:
there are roughly 70 physical formats: one of these is for
transaction details, another for a table identifier, another for
column details etc. The details are in the Pyrrho manual in the
Github distribution. The transaction log uses append storage.

On first access by the server a database’s entire transaction
log is read and the live database objects constructed in
memory.

Following the success of StrongDBMS [21] in performing
serializable transactions in a high-concurrency demonstration,
PyrrhoDB has been re-implemented to use shareable data
structures throughout. A shareable data structure cannot be
updated or modified, so any change involves creation of a new
instance. Examples of shareable data structures are primitive
data types such as integer or float, the string type in C#, Java
or Python, and classes whose fields are all readonly shareable
data structures. With the help of some simple shareable
building blocks (BList<V> and BTree<K,V>) it is
straightforward to build up shareable data structures
representing tables, indexes and even databases.

A Domain class specifies a base type and many other
properties. If it has columns (e.g., a user-defined type or base
table) the Domain will also specify a list of column uids, and
a tree giving the Domain of each field. The primitive types
have system-allocated (negative) uids, and any other Domain
is created as physical objects in the database that defines it.

Table rows are composed of TypedValues: a TypedValue is
defined by a Domain and a shareable data structure.

The BTree<K,V> implementation was described above: it
is an unbalanced B-Tree that gives worst-case O(logN)
performance for inserting, changing or deleting a node. Any
of these changes creates a new root node and new internal
nodes to the new leaf node, making at most logN new nodes,
while the rest of the nodes are shared between the old and new
version of the tree. This is therefore surprisingly efficient.

BList<V> is not so clever. It is implemented as a BTree,
but it renumbers its nodes 0, 1, 2, … resulting in a worst-case
performance of O(N).

BList and BTree are shareable data structures provided
their contents (all K and V objects) are shareable. Instead of
the enumerators found in Java and C#, traversal of BTrees and
BLists uses “bookmarks” that are also shareable data
structures: two-way traversal is possible, and traversal
continues to traverse from the root it was given and so is
unaffected by changes to the tree it is traversing.

All classes that make up database objects are shareable.
For example, Rowsets are basically a BTree of rows that are
TypedValues, traversed by Cursors, which are a subclass of
the bookmark class mentioned above.

A new server thread is started for each connection to a
database. Protocol requests typically create a Transaction to
query or modify the database or read the next group of data
from the result of a query, which is confined to the connection
thread The creation of a transaction is a simple matter: each
transaction starts with a copy of the root node of the database
(a snapshot). On rollback or disconnect, the transaction can
simply be forgotten, as no other thread has seen it.

VII. QUERY PROCESSING AND COMPILED OBJECTS

During parsing, uids are allocated for the resulting
expressions, and for anything that may be committed as a new
database object. Uids in the range above (currently) 4×260 are
allocated as required: there are several ranges for these
depending (for example) on whether their lifetime is the
current session, the current transaction, or the current lexical
input. SQL expressions all have Domains discovered during
parsing, and RowSets all have Domains that specify their
columns, so that ad-hoc Domains are constructed as required
during query processing. Since a query may reference a table
source more than once (via a TableRowSet), the column uids
for TableRowSets need to be specific to such a reference and
are allocated in the heap range (above 7×260): this process is
called instancing in the implementation. Views may also
reference more than one source, so the instancing process also
applies to them. A similar requirement exists for table-valued
functions.

In this section we also consider how the concept of local
data management can be realized. As mentioned in Section
III.C, the server should remain in control of execution of
stored procedures, triggers, and constraints, so that such
features should be written in SQL. Since the definer of a
compiled object generally has different privileges from the
user making a query or update, it is important to ensure that
executable code is compiled in advance. For reasons of
forward and backward compatibility the database file contains

only the SQL source code for stored procedures, constraints,
triggers, etc. The compiled components are constructed when
the database is loaded in the server (after a cold start).

As mentioned above, many database objects correspond to
permanent physical records in the transaction log, and so their
defining position is fixed and they can be shared with all
transactions for this database. Objects constructed by the
server during compilation (also in fact shareable) do not have
physical file positions, so instead receive uids in a dedicated
range (currently 6×260 .. 7×260-1), and form a collection stored
with the in-memory version of the compiled object. Most
compiled objects contain executable code, but this mechanism
is also used for the Domain of a base table or view. The actual
uids allocated to these compiled objects will depend on the
order of the physical objects in the log, and will depend on the
current version of the server. During instancing, column uids
will be allocated in a cascade, since many compiled objects
will contain references to the columns being instanced.

Cascades are also used in the process of RowSet review,
in which the RowSet pipeline is simplified wherever possible
based on the existence of indexes and filters that were not
available at compilation time.

VIII. THE VERSIONED LIBRARY AND DATA MODELS

The above discussion described how the data model for a
database could be represented in the database implementation.
The real benefit of placing the data model in the database is to
make it available to the application programmer, so that all
applications targeting a database can agree on the structure
and semantics of its data. At present, Pyrrho provides such
support for applications written in C#, Java, and Python, in
addition to a thread-safe version of the
Command/ExecuteReader/Read programming interface
familiar from ADO.NET and JDBC.

The current implementation was inspired by Microsoft’s
Entity Framework [30] and Java Persistence Architecture [31]
but differs from these in the crucial proviso that application
programmers should start with class definitions generated by
(and at runtime checked by) the server, rather than writing
their own version of the model in the form of annotations or
code attributes.

The following example illustrates the type of support
available. Suppose a database ABC contains a role “Sales”
that defines the following tables:

[create table "Customer"(id int primary key, "NAME"

char unique)]
[create table "Order"(id int primary key, cust int

references "Customer", "OrderDate" date, "Total"
numeric(6,2))]

Then the system table "Role$ClassValue" will provide
code fragments similar to the following:

using System;
using Pyrrho;

/// <summary>
/// Class Customer from Database ABC, Role Sales
// PrimaryKey(ID)
// Unique(NAME)

/// </summary>
[Table(23,122)]
public class Customer : Versioned {
[Field(PyrrhoDbType.Integer)]
[AutoKey]
 public Int64? ID;
[Field(PyrrhoDbType.String)]
 public String? NAME;
 public Order[] orders =>
 conn.FindWith<Order>(("CUST",ID));
}
/// <summary>
/// Class Order from Database ABC, Role Sales
// PrimaryKey(ID)
// ForeignKey, RestrictUpdate, CascadeDelete(CUST)
/// </summary>
[Table(175,362)]
public class Order : Versioned {
[Field(PyrrhoDbType.Integer)]
[AutoKey]
 public Int64? ID;
[Field(PyrrhoDbType.Integer)]
 public Int64? CUST;
[Field(PyrrhoDbType.Date)]
 public Date? OrderDate;
[Field(PyrrhoDbType.Decimal,"Domain NUMERIC Prec=6
Scale=2")]
 public Decimal? Total;
 public Customer customer =>
 conn.FindOne<Customer>((“ID”,CUST));
}

The numbers 23 and 175 are references to the defining

positions of these objects in the database, and the other
numbers are schema keys, which will be checked by the server
when the application runs to ensure that the table definition
has not changed. We can see that the columns defined for the
table are publicly accessible in these classes (while the server
will check the user and role on access), and Pyrrho’s data
types of these columns are provided as attributes.

Importantly, the foreign key relationship between the
tables has resulted in two additional “navigation” fields in the
classes above, providing quick access to the customer for an
order, and the orders for a customer. The primary and unique
key declarations also allow quick access.

A simple program to use the above class definitions could
begin

static void Main
{
 conn = new PyrrhoConnect("Files=Demo;Role=Sales");
 conn.Open();
 try
 {
// Get a list of all orders showing the customer name
 var aa = conn.FindAll<Order>();
 foreach (var a in aa)
 Console.WriteLine(a.ID + ": " + a.customer.NAME);
 if (aa.Length == 0)
 {
 Console.WriteLine("The Order table is empty");
 goto skip;
 }
 // change the customer name of the first
 // (update to a navigation property)
 var j = aa[0].customer;

 j.NAME = "Johnny";
 j.Put();
 // add a new customer (autokey is used here)
 var g = new Customer() { NAME = "Greta" };
 conn.Post(g);
 // place a new order for Mary
 // (secondary index, single quotes optional here!)
 var m = conn.FindOne<Customer>(("NAME","Mary"));
 var o = new Order()
 { CUST = (long)m.ID,
 OrderDate = new Date(DateTime.Now) };
 conn.Post(o);

The Versioned base class above uses ETags, allowing the
library to associate object references in the code to rows in the
database, and this enables the shorthand notation in the above
sample program, in addition to providing automatic
transaction validation when committing an explicit
transaction is started, using an API similar to ADO.NET and
JDBC. For further details see the Pyrrho manual [32].

IX. CONCLUSIONS

This paper has reviewed a number of desirable changes to
the relational database model that have been signaled in recent
literature and outlined implementations of these
improvements that can be found in the
ShareableDataStructures project on Github [32]. The
implementation of PyrrhoDB v7 is currently at the alpha stage
and feedback on these ideas is welcomed. The authors are
grateful for the many expressions of support and
encouragement we have received during this project.

REFERENCES

[1] Crowe, M. K. and Laux, F.: Data Evolution and Durabiility:
Lessons from the PyrrhoDB experiment, keynote speech,
ICSEA 2022, Lisbon, Portugal October 2022,
https://www.iaria.org/conferences2022/filesICSEA22/Keynot
e_MalcolmCrowe_FritzLaux_DataEvolutionAndDurability.p
df (accessed 4 December 2022).

[2] ISO. (2016). IEC 9075: 2016: Information technology:
Database languages: SQL, International Organization for
Standardization.

[3] Schüle, M. E., Kemper, A., and Neumann, T. (2022, July).
Recursive SQL for Data Mining. In 34th International
Conference on Scientific and Statistical Database
Management (pp. 1-4).

[4] Stockinger, K., Bundi, N., Heitz, J., and Breymann, W. (2019).
Scalable architecture for Big Data financial analytics: user-
defined functions vs. SQL. Journal of Big Data, 6(1), 1-24.

[5] Khine, P. P. and Wang, Z. (2019). A review of polyglot
persistence in the big data world. Information, 10(4), 141.

[6] Aluko, V. and Sakr, S. (2019). Big SQL systems: an
experimental evaluation. Cluster Computing, 22(4), 1347-
1377.

[7] Antonopoulos, P., Budovski, A.,Diaconu, C., Hernandez
Saenz, A., Hu, J… (2019, June). Socrates: The new sql server
in the cloud. In Proceedings of the 2019 International
Conference on Management of Data (pp. 1743-1756).

[8] Crowe, M. K. (2015). The Pyrrho Book, University of the West
of Scotland, ISBN 978-1-903978-50-4.

[9] Alam, F. and Kamal, N.(2019): Survey on Data Warehouse
from Traditional to Realtime and Society Impact of Real Time
Data, Inl Jnl Computer Applications 177.9 p.20-24.

[10] Interlandi, M., Ekmekji, A., Shah, K., Gulzar, M. A., Tetali, S.
D. et al. (2018). Adding data provenance support to Apache
Spark. The VLDB Journal, 27(5), 595-615.

[11] Crowe, M. K., Begg, C. E., and Laux, F. (2017), Data
validation for big live data, In DBKDA 2017, The Ninth
International Conference of Advances in Databases,
Knowledge, and Data Applications, Barcelona, ISBN 978-1-
61208-558-6 (pp 30-36)

[12] Crowe, M. K. (2005): Transactions in the Pyrrho database
engine, in Hamza, M. H. (ed.): DBA 2005, Proceedings of the
IASTED International Conference on Databases and
Applications, Innsbruck, ISBN: 0-88986-460-8 (pp 71-76)

[13] de Moura, M. C., Davalos, V., Planas-Serra, L., Alvarez-
Errico, D., Arribas, et al. (2021). Epigenome-wide association
study of COVID-19 severity with respiratory failure.
EBioMedicine, 66, 103339.

[14] Parsi, M. and Akbarpour Jannat, M. R. (2021). Tsunami
warning system using of IoT. Journal of Oceanography,
11(44), 1-17.

[15] Soriano, A., Carmeli, Y., Omrani, A. S., Moore, L. S.,
Tawadrous, M., and Irani, P. (2021). Ceftazidime-avibactam
for the treatment of serious Gram-negative infections with
limited treatment options: a systematic literature review.
Infectious Diseases and Therapy, 10(4), 1989-2034.

[16] Gorobets, A. and Bakhvalov, P. (2022). Heterogeneous CPU+
GPU parallelization for high-accuracy scale-resolving
simulations of compressible turbulent flows on hybrid
supercomputers. Computer Physics Communications, 271,
108231.

[17] Bai, Y., Ma, Y., Yang, Q., Florez-Lopez, J., Li, X., and
Biondini, F. (2021). Earthquake-induced damage updating for
remaining-life assessment of steel frame substructure systems.
Mechanical Systems and Signal Processing, 159, 107782.

[18] Komenda, M., Černý, V., Šnajdárek, P., Karolyi, M., Hejný,
M., Panoška, P., et al. (2022). Control Centre for Intensive Care
as a Tool for Effective Coordination, Real-Time Monitoring,
and Strategic Planning During the COVID-19 Pandemic.
Journal of medical Internet research, 24(2), e33149.

[19] Meana Llorián, D., González García, C., Pelayo García-
Bustelo, B. C., and Cueva Lovelle, J. M. (2021). BILROST:
Handling actuators of the internet of things through tweets on
twitter using a domain-specific language. International Journal
of Interactive Multimedia and Artificial Intelligence.

[20] Finlayson, R and Cheriton, D. "Log files: An extended file
service exploiting write-once storage." ACM SIGOPS
Operating Systems Review 21.5 (1987): 139-148.

[21] Crowe, M. K. and Fyffe, C. (2019): Benchmarking
StrongDBMS, (Keynote speech) at DBKDA 2019, The

Eleventh International Conference of Advances in Databases,
Knowledge, and Data Applications
https://www.iaria.org/conferences2019/filesDBKDA19/Malco
lmCrowe_CallumFyffee_Keynote_BenchmarkingStrongDBM
S.pdf (accessed 4 December 2022)

[22] Crowe, M. K. and Laux, F.: Implementing True Serializable
Transactions, Tutorial video, DBKDA 2021, The Thirteenth
International Conference on Advances in Databases,
Knowledge, and Data Applications, Valencia, Spain.
https://www.youtube.com/watch?v=t4h-zPBPtSw&t=39s,
(accessed 4 December 2022)

[23] Crowe, M. K. and Laux, F.: Implementing True Serializable
Transactions, Tutorial files, DBKDA 2021, The Thirteenth
International Conference on Advances in Databases,
Knowledge, and Data Applications, Valencia, Spain.
https://www.iaria.org/conferences2021/filesDBKDA21/

[24] Fielding, R. T. and Reschke, J (eds) (2014): RFC 7232:
Hypertext Transfer Protocol (HTTP/1.1): Conditional
Requests, IETF.org

[25] Crowe, M. K. and Laux, F.: Reconsidering Optimistic
Algorithms for Relational DBMS, DBKDA 2020 The Twelfth
International Conference on Advances in Databases,
Knowledge, and Data Applications, Lisbon, Portugal

[26] Krijnen, T. and Meertens, G. L. T.: “Making B-Trees work for
B”. Amsterdam : Stichting Mathematisch Centrum, 1982,
Technical Report IW 219/83

[27] Crowe, M. K. and Matalonga, S. (2019): StrongDBMS: built
from immutable components, In DBKDA 2019, The Eleventh
International Conference of Advances in Databases,
Knowledge, and Data Applications, Athens, ISBN 978-1-
61208-715-3 (pp. 11-16)

[28] Oracle.com Product Documentation:
https://docs.oracle.com/en/database/oracle/oracle-
database/19/dbseg/managing-security-for-definers-rights-and-
invokers-rights.html (Accessed 4 December 2022)

[29] PostgreSQL Product Documentation
https://www.postgresql.org/docs/current/sql-
createfunction.html (Accessed 4 December 2022)

[30] Microsoft Product Software on Github:
https://github.com/dotnet/efcore (Accessed 4 December 2022)

[31] Oracle Product Documentation
https://docs.oracle.com/javaee/7/tutorial/persistence-
intro.htm#BNBPZ (Accessed 4 December 2022)

[32] Crowe, M. K.: PyrrhoDB manual on Github;
https://github.com/MalcolmCrowe/ShareableDataStructures/b
lob/master/PyrrhoV7alpha/doc/Pyrrho.pdf (Accessed 4
December 2022)

https://www.iaria.org/conferences2019/filesDBKDA19/MalcolmCrowe_CallumFyffee_Keynote_BenchmarkingStrongDBMS.pdf
https://www.iaria.org/conferences2019/filesDBKDA19/MalcolmCrowe_CallumFyffee_Keynote_BenchmarkingStrongDBMS.pdf
https://www.iaria.org/conferences2019/filesDBKDA19/MalcolmCrowe_CallumFyffee_Keynote_BenchmarkingStrongDBMS.pdf

Figure 1. Operation of B-Trees [26]

Figure 2: ABC analysis from Section VI example (as output from PyrrhoDB client and server)

