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Abstract– This paper reviews suggestions for changes to  

database technology coming from the work of many 

researchers, particularly those working with evolving big data. 

We discuss new approaches to remote data access and standards 

that better provide for durability and auditability in settings 

including business and scientific computing. We propose ways 

in which the language standards could evolve, with proof-of-

concept implementations on Github. 
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I. INTRODUCTION 

The design of relational database management systems 
(RDBMS) has always focused on the management of 
structured and evolving data, such as customer accounts and 
scientific results, where shared access and long-term 
durability are important [1]. The Standard Query Language 
SQL, developed in the 1970s, rapidly became an international 
standard [2] with many features, and its evolution has been 
followed by most database products. Many researchers have 
been inspired to develop the theoretical underpinning for the 
implementation of these products, and this work continues 
today [3][4][5][6]. 

With all forms of evolution, some inherited aspects 
become awkward over time, for example, the early use of 
fixed-size fields and limited precision primitive types persists 
in database storage, limiting backwards compatibility of 
newer product versions and affecting durability and 
portability [7]. Some research projects including PyrrhoDB 
have chosen instead to use new globalized primitive types to 
avoid dependency on machine architecture and locale [8]. 
Avoiding such dependency facilitates data import and sharing, 
and the construction of data warehouses [9]. 

The development of data warehouses has led to a focus on 
metadata and semantics and has led many systems to use 
document-based NoSQL systems while other researchers 
have developed ways of including semantics in relational 
systems [10]. With these developments, it is natural to seek 
ways of adapting the relational DBMS paradigm to manage 
evolving data warehouse content (big live data) [11].  

The tension between evolution and durability of data has 
always been a feature of relational database management 
systems (RDMS) and the associated technology. The use 
cases that inspired RDBMS development were business 
records such as customer accounts and inventories, and 
collaborative science, where support for shared access by 

many users with the responsibility for keeping data up to date 
needs to be balanced by the requirements for long-term 
storage, consistency, and audit. Over the years, such support 
has evolved, by the addition of powerful declarative and 
processing features in the evolving standard language SQL 
[2], and this evolution has come with a cost in compatibility 
between systems, since not all RDBMS implement the same 
version of the standard, and in durability, since RDBMS 
products also evolve, and not all RDBMS provide adequate 
backward compatibility to work with databases developed for 
a previous version. For these reasons, legacy data and systems 
are a continuing concern in all forms of business and scientific 
endeavor. 

The starting point in this contribution is that the DBMS 
should generally support enterprise data integration where 
appropriate, and co-operative data sharing where this is useful. 
That is, the DBMS itself should support, but not require, ways 
of extending a data model through the enterprise, while 
providing mechanisms for supporting useful applications for 
the situations where the responsibility for data evolution is in 
another organization. In both cases the resulting structure will 
be a federation allowing some local management, with a 
hierarchy of delegation and responsibility, to avoid over-
centralization on the one hand, or wasteful duplication on the 
other. This paper considers a number of improvements to 
DBMS technology designed to achieve this aim, while 
maintaining strong safeguards for preserving consistency for 
such complex systems where shared data evolves through 
supported activities in all parts of the system. 

In the next section we consider an important set of use 
cases where people are interested in very targeted real-time 
data, gathered from many sources, where queries often lead to 
a unique entity on a single server. SQL remains a popular way 
of implementing database applications and even more general 
query systems, and ideally any changes should remain close 
to its original intent. In later sections of this paper, we examine 
some novel open-source approaches to such use cases in the 
PyrrhoDB project, which are based in widely used 
technologies and so have the potential to be useful in future 
big data developments. PyrrhoDB itself is a research project 
dating from before 2005 [12] rather than a product, but from 
its beginnings it has used globalized and machine-independent 
structures and the international standards and has always 
supported both evolution and backward compatibility. 

In Section II we consider the state of the art, with an 
analysis of recent research papers that draw attention to 
changing requirements in database support for large and 



 

 

evolving data sets. This section also creates an agenda for the 
rest of the paper, to consider and suggest changes to relational 
data technology: serialized transactions and hierarchical 
privileges in Section III, proposals for the data type system 
and metadata in Section IV, virtual data warehousing (view-
mediated remote access) in Section V, a suggestion to build 
implementations using shareable data structures in Section 
VI. Section VII looks at the implications for query processing, 
and Section VIII proposes a versioned API alongside the usual 
SQL data access methods and compares them with those of 
other database products. These sections include examples, and 
proof-of-concept implementations of these ideas are offered 
on Github. 

II. THE USE CASE OF BIG LIVE DATA 

 
Raw scientific and administrative data are often 

meaningless to the general public but is usually carried on the 
public web and usually has a significant real-time aspect. 

Examples:  

• The DNA signature of the latest Covid variants (whose 
data is progressively refined) [13],  

• the latest data from sensors mapping a tsunami [14],  

• the treatment history of a patient with a serious illness 
[15],  

• the results from a particular fluid calculation that has 
taken a supercomputer three days to compute [16],  

• the history of a piece of steel reinforcement in a tower 
block [17],  

• the availability of intensive-care equipment for an 
emergency hospital admission [18], 

• a particular sensor or actuator in the Internet of Things 
[19]. 

In some cases, there may be expectations coming from 
modeling (or AI) but a lot of important people in WHO, 
NASA, etc. want the scientists or investigators to get the right 
data. In some cases, the data (e.g., from sensors) is real-time, 
in others (e.g., the supercomputer example) the results may be 
a high-resolution image from numerical results that might not 
even be stored anywhere. Often such requests have life-and-
death implications, and in order to guard against receiving 
approximate or out-of-date information, people resort to email 
or telephone.  

In all such cases the data is conceptually part of a giant 
sparse database that no-one could possibly construct. Any 
individual observations would have lots of dependent 
metadata (provenance, device-specific details, confidence 
etc.). But often, the questions that the scientists want to ask 
are phrased in database terms, e.g., to examine the outcomes 
of patients with rare diseases and specific treatments, the 
quality of steel used in a component that needs to be replaced 
etc. 

If SQL querying and secure remote update is also 
considered desirable, the above use cases point to some 
potentially desirable features. Excluding already-standard 
aspects such as authorization, universal time, international 
standards, auditing and linked data, and including features that 

not everyone would require, we can easily come up with the 
following wish list for SQL support: 

• Search current data from a named collection of remote 
data sets 

• Allow searching by metadata such as the resource 
description framework (RDF) or provenance where 
available 

• Ensure transmitted data comes with timed provenance 
and ownership information 

• Ensure remote updates (if permitted) are directly handled 
by the data owner, and fully recorded with user 
information of sender 

• Avoid second-hand or out-of-date data by directly 
accessing the data’s “transaction master” 

• Specify service quality. e.g., to prioritize correctness over 
availability, report on out-of-date data or servers offline 

• Minimize the amount of data that needs to be obtained or 
preloaded from remote servers 

• Allow for transformation during retrieval, with inverses 
for updates if permitted 

• Ensure changes are securely transacted, and durably 
recorded. 

From the above discussion, in what follows we are 
motivated by the following general considerations: 

• A focus on the need to support legacy data should 
motivate the separation of durable data from volatile data. 
The current state of any individual account or evolving 
record needs to be accessible from memory, but as in 
archiving, durable systems should prioritize and enable 
auditing of primary data such as particular inputs, 
changes, and deletions. In what follows, we reserve the 
concept of durable storage for this archive. 

• On the other hand, access to and modification of the 
shared state of evolving data needs effective transaction 
control. The capturing of the desired durable archive then 
amounts to a log of such transactions, and the best way to 
prove the serializability of recorded transactions is that 
this log should itself record them atomically, in commit 
order, with all the steps of each commit kept together. 
Implementation of this log should be as append storage 
[20]. We note that some widely-supported DBMS 
features such as constraints, cascades and triggers 
complicate this requirement. 

• Most DBMS are wary of the use of the Internet and prefer 
managing all network interaction using custom features. 
In our view this is now a mistake and ignores the 
opportunities for globalization that the evolving Internet 
standards offer. Greater opportunities for access should 
be balanced by better recording of data ownership, 
provenance, and responsibility, and these would help to 
address the concerns noted above for the ability in special 
cases to obtain results from (or even to update) sources 
rather than copies. We will demonstrate that such 
increased use of Internet standards has the potential to 
reduce wasteful data replication, especially for “live” 
data. 

In considering the requirements for DBMS evolution, 
therefore, we consider the following aspects: 



 

 

• The validation of transaction serialization, taking account 
of all side effects of transactions, so that transactions that 
violate constraints should not commit, nor if a resulting 
cascade or triggered action will conflict with other 
transactions. This requirement is mandated by the 
international SQL standard [2] but rarely implemented in 
commercial DBMS. 

• We suggest a modified approach to DBMS design and 
security that places the data model and security model in 
the database rather than in applications. The SQL 
standard provides almost all of the support needed to 
achieve this: we take this forward by highlighting the 
definer’s role for precompiled code and constraints, and 
through the creation of metadata features for the database 
itself. There are some consequential suggestions for 
enhancing SQL’s extensive data type system. 

• As in the US Department of Defense Orange Book 
standards for mandatory access control, we place the 
focus on user responsibility and security, while granting 
permissions to roles rather than users. Our proof-of-
concept code includes the features required to implement 
the Orange Book levels B and C for users and database 
objects. Roles offer privileges on objects, and users are 
granted roles. We suggest however that the SQL standard 
should be modified so that a user can only use one role at 
a time. This is a practical suggestion since a user can be 
allowed to substitute for a sick colleague, but all actions 
are recorded in a way that identifies both the user and 
their declared role at the time. 

• The SQL programming model is computationally 
complete: we recommend that the use of external code 
and procedures is disallowed, so that the DBMS can 
manage all of the validation and auditing required. 

• In these circumstances, we support ways to allow better 
remote access to databases in SQL. 

The remaining sections of this paper deal with practical 
proposals for all these aspects, making minimal changes to the 
SQL standard. Proof-of-concept code for these ideas already 
exists in PyrrhoDB on Github. Details are provided here in the 
following feature groupings: serialized transactions, DBMS 
accountability and data ownership, metadata, and view-
mediated remote access.  

III. SERIALIZED TRANSACTIONS 

From the above discussion, we implement a validation 
step for all transaction commits, to ensure that the requirement 
for fully serialized transactions is met. This renders obsolete 
the list of isolation levels (READ_UNCOMMITTED, 
READ_COMMITTED, REPEATABLE_READ, SERIALIZABLE) in the ISO 
standard, as there is only one possible isolation level, which 
could be called SERIALIZED [21],[22],  reduces the number of 
available actions for integrity constraints by disallowing NO 
ACTION and limiting the extent to which constraints can be 
DEFERRED. The validation step guarantees fully isolated 
transactions. This means that changes made during a 
transaction are never visible to other users, but will prevent 
commit of conflicting transactions. 

During a transaction, new records and database objects are 
temporarily given locations in memory, so that they are 
accessible and work as expected within the transaction thread. 
On commit, following the validation step, these objects are 
relocated in a cascade to the file positions where they will be 
recorded in the transaction log, and re-installed in the in-
memory database.  More details of this process are to be found 
in [23]. 

The granularity of the test for transaction conflict that is 
applied in this validation step is that (a) changes to the same 
database object (other than tables) will always conflict, (b) for 
tables, we report conflict if any columns read have been 
updated by another transaction, but if only specific rows have 
been read, we can limit the validation step to these rows. 
Validation for this level of granularity is practical even in 
situations of high concurrency [25]. The most recent 
implementation of this test (August 2022) uses two simple tree 
structures for columns and rows for any affected table, and 
also demonstrates correct behavior for cascades, constraints 
and triggers (files in [23] have been updated to show this). 

For the best implementation of the optimistic concurrency 
control implied by the existence of the validation step in the 
commit algorithm, we advocate the use of shareable data 
structures. When discussing the sharing of modifiable data 
such as arrays, computer science textbooks often contrast the 
two approaches of copy on read and copy on write. From our 
point of view both are wasteful of time and resources, and the 
use of shareable data structures provides a different approach, 
which is well suited for the many tree-like structures found in 
database technology. A good way of motivating the concept 
is to consider the implementation of strings in programming 
languages.  

In Unix, traditionally, strings (char *) are mutable: anyone 
with access to the string can modify individual characters in 
the string. In Java, C# and Python, strings are shareable: the 
only way to modify an individual character is to create a new 
string, so if a string is shared between two threads, any change 
to the string in one thread is not seen in the other thread unless 
it is explicitly given the new version.  

Apart from strings, the most popular data structure in 
database technology is the B-tree, where each node apart from 
the root has at least n children and not more than 2n, where 
n>1, and information is placed in the leaves. In order to make 
database structures shareable, therefore, the key step is to use 
a shareable sort of B-tree. The model for this dates from 1982 
[26], and the illustration reproduced in Figure 1 below shows 
that when a change to a tree is made to a leaf, we get a new 
root and the change requires O(lognN) new nodes, where N is 
the number of leaves. 

This means that the old and new version continue to share 
most of the nodes of the structure. With a little thought we can 
see that this is more storage-efficient than any of the 
approaches mentioned above (string implementation, copy on 
read, copy on write), but imposes a greater load on memory 
allocation and garbage collection. Crucially though, it is safe, 
and if we use this kind of structure for to implement all of the 
indexes and lists in the database many database operations 
such as starting a new transaction are made much simpler [27]. 
We return to these aspects in Section VII below.  



 

 

The DBMS should specify and provide auditing support 
for a security model that allows local management. There is 
an opportunity for the SQL standard to encourage good 
practice in this area. PyrrhoDB has implemented the following 
practical steps for the local database: 

A. Maintenance of the full transaction log as the only 

artefact placed in non-volatile memory.  

There were good reasons for placing volatile information 
in non-volatile storage in 1972, but they are not valid now. It 
is understandable that where a database occupies large 
amounts of physical storage, a database administrator would 
regard the additional storage required for a transaction log as 
a luxury. PyrrhoDB’s full transaction log is also serialized, so 
that it is evident that concurrent transactions have been 
correctly handled. Even in situations of high concurrency, the 
algorithms and solutions offered here have been shown to be 
practical [21]. 

When the only data written to disk is the inserted or 
updated record, or an indication that a record has been deleted, 
disk activity required for database traffic is drastically 
reduced, especially where the database has indexes that are 
stored on disk [12].  

B. Recording the user and role for each change to the 

database 

This is relatively easy to implement, though strongly 
resisted by database professionals and accountants, who 
dislike leaving their fingerprints all over the databases they 
administer or client account they prepare. However, it requires 
several departures from the SQL standard [2]: its features 
F771 and F321 allow the “current user” to be declared in the 
query language rather than being guaranteed by the operating 
system, and it does not demand that a user sets a single role. 
For forensic purposes, and to allow staff to substitute in 
different roles (due to illness etc) it is important to identify 
both user and declared role and is a simple matter if the 
transaction log is being maintained as suggested in Section 
III.A above.  

In order to make the role and user information useful for 
forensic analysis, the grant of object ownership and role usage 
to roles should be deprecated, and the grant of anything other 
than these privileges to users should be deprecated. 

As suggested in Section III.C, it should be possible to use 
the definer’s role of an object to grant ownership to another 
user. 

C. Database objects should be modified only by their 

owner, and all execution should use definer’s role  

From III.B, when objects are defined there is a current 
role: this is the definer’s role, and it must be one of the roles 
that the user is permitted to use. This role and the owner’s 
identity become properties of the object and can be modified 
by grant. The details of the new definition are checked both 
during parsing on every subsequent execution of the object.  

The SQL standard specifies a context stack for procedure 
invocation, so it is again relatively easy to extend the use of 
such a stack for access to table columns, the sources of views, 
and the execution of constraints and triggers.  

The execution engine then simply sets the current role for 
the called context to that of the definer of the table, view, 
procedure, constraint, or trigger, which it knows because of 
III.B. The invoker still needs appropriate permissions to 
initiate the process (by accessing or modifying the table or 
view or calling the procedure) and to access the columns of 
any table or row result.  

The specifications in the standard make it very difficult to 
create a usable set of permissions for database operations, 
because users require usage permissions on every data type 
and column.  

Two additional simplifications are recommended: the 
REFERENCES privilege in the standard then becomes redundant 
as it becomes the same thing as SELECT, and it simplifies the 
security model if all data types are usable by PUBLIC (though 
there may be restrictions on access to their fields if any). Using 
definer’s role as described here, together with these changes, 
make the security model much easier to operate. New objects 
can be owned by the user that defines them (with their 
declared role as the definer’s role) and the granting of 
privileges on an object does not need to consider data types or 
dependent definitions. Thus, it is much easier to maintain a 
usable set of privileges on even a large set of database objects. 

With these provisions, Pyrrho’s security model is simpler 
to administer and check for validity, but of course it makes 
execution somewhat slower: to check access permission on a 
single object requires a single access to the tree of properties 
of the object, which is typically of depth 3 (see below).  

We believe this is an improvement on the arrangements 
used in Oracle [28] and PostgreSQL [29]. The cautionary 
words used about definer’s role by these products are correct 
since they are installing native external procedures. Execution 
by the database server is safe because it  can check all object 
permissions as they are accessed.  

By using the role declaration model discussed above, all 
security settings for a relational database can and should be 
managed by the database itself, rather than in the database 
applications. The standard SQL model allows for hierarchical 
delegation of management of roles and permissions, separate 
from the authentication of users. 

For example, consider the following simple database for a 
table-tennis club. It allows select access to the two tables 
shown, but changes to the database by ordinary members must 
be done with the help of the two procedures provided: 

 
create table members (id int primary key, firstname char) 
[create table played (id int primary key,  
  winner int references members,  
  loser int references members, agreed boolean)] 
grant select on members to public 
grant select on played to public 
[create procedure claim(won int, beat int)  
  insert into played(winner, loser)  
    values(claim.won, claim. beat)] 
[create procedure agree(p int)  
  update played set agreed=true  
   where winner=agree.p and loser in 
    (select m.id from members m where user like 
       '%'||firstname escape '^')] 
create role admin 
create role membergames 
[grant execute on procedure claim(int, int) to role  



 

 

  membergames] 
grant execute on procedure agree(int) to role membergames 
grant membergames to public 
 

To use the given procedures, a member of the public who 
is allowed to login to the system should set their role to 
membergames. 

IV. THE TYPE SYSTEM AND METADATA 

A major difficulty in both enterprise data integration and 
data collaboration is the definition of a data model that 
supports application development in different parts of the 
enterprise.  We consider it useful for databases to provide as 
much support for data semantics where possible, while 
retaining as much flexibility as possible for local 
development.  

As a first step, we introduce the primitive Document type 
for JSON values and allow the braces '{' and '}' to delimit row 
values in SQL, the brackets '[' and ']' as string subscripts for 
Document values and a built-in Document-valued function 
HTTP whose parameters are the verb and url, with an optional 
third parameter being a Document for posted data. 

Many DBMS have found the need to embellish their data 
access methods and database applications in various ways: 

• Controlling XML and JSON output for queries, to 
identify whether table columns are output as 
attributes/fields or children/subdocuments of the table. 

• For data visualization, e.g., charts 

• Entity data models: Declaring classes in a database 
application corresponding to base tables in the database, 
with derived class references associated with foreign 
keys, lookup functions etc. 

We consider it is good practice to include all such 
metadata in the database design, and it should be done on a 
per-role basis, to allow for suites of database applications for 
different business purposes. 

 In PyrrhoDB, we have come up with a list of useful 
metadata identifiers.  

 
Metadata  = CAPTION | LEGEND  |  X | Y | 

((HISTOGRAM | LINE | PIE | POINTS) ['(' id ',' id ')'])   
| ([URL | MIME | SQLAGENT | USER | PASSWORD] string) 

| JSON | CSV | ETAG | MILLI 
| MONOTONIC | ((INVERTS|FORMATS) id)  
| ATTRIBUTE | ENTITY | ((SUFFIX|PREFIX) id) | iri . 
 

This syntax is a Pyrrho extension, and metadata can be 
added to a database object (or dropped) by almost any DDL 
command. Most of the options affect query output for a role 
in Pyrrho’s Web service. The above list provides a rough 
grouping of these keywords into four groups: (1) data 
visualization for specific tables and views, (2) provision for 
collaboration with remote data, (3) provision for adapter 
functions, and (4) support for local data models. ATTRIBUTE if 
present for a column indicates a preference for XML output 
for the containing table.  HISTOGRAM, LEGEND, LINE, POINTS, 
PIE (for table, view or function metadata), CAPTION, X and Y 
(for column or sub-object metadata) specify JavaScript added 
to HTML output to draw the data visualizations specified. The 
syntax allows a string for a description. For INVERTS the id 
should be the name of the function being inverted, while for 

FORMATS the id is a type. PREFIX and SUFFIX define ids added to 
the client output string and in SQL triggers a default 
constructor for the type, as explained in the currency example 
at the end of this section. 

Pyrrho helps with data visualizations defined using the 
keywords in group (1) above, using a simple URL-mapped 
HTTP service, as the following example shows: 

With the database E created by 
 
[create table sales (cust char(12) primary key, 
custSales numeric(8,2))] 
[insert into sales values ('Bosch' , 17000.00),('Boss' 
,  13000.00), ('Daimler',20000.00)] 
[insert into sales values 
('Siemens',9000.00),('Porsche', 5000.00), ('VW', 
8000.00), ('Migros' , 4000.00)] 
create role E 
grant E to "usermachine/username" 
 

The data visualization output uses HTML returned to the 
client application or for immediate display. Here, if the 
browser is asked for 
 
http://localhost:8180/E/E/SALES/?PIE(CUST,CUSTSALES)LEGEND 
 

The browser will display the following output from the 
PyrrhoDB server:  

 

 
 
We return to this example below. 
User-defined types can nominate a primitive type in the 

UNDER clause, and this can be useful for distinguishing data that 
has been imported or used in different suborganisations. The 
SQL standard already provides the OF predicate for selecting a 
value of a type, a TREAT function for specifying the subtype for 
a scalar value, and a “create table of type” mechanism for 
specifying row types. Pyrrho adds the ability to specify a 
subtype for VALUES. 

As an example of the resulting syntax, if we defined: 
 
[create type currency as(amt numeric,unit char) 
  method exchange(tounit char) returns currency,  
  method tonumeric() returns numeric]  

 

The exchange method here would be implemented for the 
database using the above-mentioned HTTP function. There 

http://localhost:8180/fl/FL/UMSATZ/?PIE(KUNDE,KDUMSATZ)LEGEND


 

 

are many currency converters available on the Internet, for 
example 
 
[create method exchange(tounit char) returns currency 
for currency 
    begin 
      if unit=tounit return this;  
      declare rates document;  
      declare roe numeric; 
      set rates=http('post', 
'http://www.floatrates.com/daily/'||unit||'.json'); 
      set roe=rates[lower(tounit)]['rate']; 
      return currency(amt*roe,tounit) 
    end]  

 

 Then we could have 
 
[create type dollars under currency check(unit='USD')    
   constructor method dollars(x numeric),  
   constructor method (x currency) prefix "$"] 
[create constructor method dollars(x numeric)  
   begin set amt = x; set unit = 'USD' end] 
[create constructor method dollars(x currency)  
   begin set amt=x.exchange('USD').amt;  
   set unit='USD' end] 

 

If we have similar declarations for euros, we could write 
things as simple as 

 
select euros("$" 10) 
create table money (cur currency) 
insert into money values ("$" 34), ("€" 212.7) 
select * from money where cur is of(dollars) 

 

 
 
 We give an example using the data model metadata 

directive ENTITY in Section VIII below.  

V. VIEW-MEDIATED REMOTE ACCESS 

Data warehousing involves creating central data 
repositories (using extract-transform-load technologies) to 
enable analytic processing of a combined data set. There are 
several situations where this is undesirable, for example where 
the resulting data protection responsibility at the central 
repository is excessive, where the data is volatile and it 
becomes expensive to maintain all of the centrally-held data 
in real time, or where it is better to leave the data at its sources 
where the responsibility lies [10]. With database technology, 
a View (if defined but not materialised) allows access to data 
defined in other places. The virtual data warehouse concept 
exploits this notion, and endeavours to avoid the central 

accumulation of data. Pyrrho uses HTTP to collect data from 
the remote DBMS using a simple REST interface [22], and so 
the resulting technology here is called RESTView. 

Thus, with RESTView, a Pyrrho database allows 
definition of views where the data is held on remote DBMS(s), 
and is accessible via SQL statements sent over HTTP with 
Json responses. Pyrrho itself provides such an HTTP service 
and the distribution includes suitable interface servers (RestIf) 
to provide such a service for remote MySQL and SqlServer 
DBMS. The implementation allows for authentication as an 
ordinary client of the remote DBMS, whose administrator can 
grant access to a suitably defined view. 

The HTTP access provides the user/password 
combinations set up for this purpose within MySQL by the 
owners of contributor databases. In the use cases considered 
here, where a query Q references a RESTView V, we assume 
that (a) materializing V by Extract-transform-load is 
undesirable for some legal reason or because of the high data 
volumes required, and (b) we know nothing of the internal 
details of contributor databases. A single remote select 
statement defines each RESTView: the agreement with a 
contributor does not provide any complex protocols, so that 
for any given Q, we want at most one query to any contributor, 
compatible with the permissions granted to us by the 
contributor, namely grant select on the RESTView columns. 

Crucially, though, for any given Q, we want to minimize 
the volume D of data transferred. We can consider how much 
data Q needs to compute its results, and we rewrite the query 
to keep D as low as possible. Obviously, many such queries 
(such as the obvious select * from V) would need all of the 
data. At the other extreme, if Q only refers to local data (no 
RESTViews) D is always zero, so that all of this analysis is 
specific to the RESTView technology.  

During query processing views are replaced by their 
definitions, so that the overall query becomes a selection from 
the tables they reference. The process deals with the situation 
that a table can be referenced in more than one place by adding 
unique identifiers for each table reference. 

Filters are applied at the lowest level of the query (e.g., 
directly on a remote table), and traversal of a remote table 
creates a roundtrip of the REST service to the given URL. The 
JSON representation of the result returned is slightly enhanced 
to add the registers used to compute any remote aggregations 
[23]. 

The syntax is 
 

ViewDefinition = [ViewSpec] AS  
(QueryExpression | GET [USING Table_id]) {Metadata}.  
 
The alternative shown by the vertical bar corresponds to 

whether the view has one single contributor or multiple 
remote databases. The QueryExpression option here is the 
normal syntax for defining a view. The REST options both 
contain the GET keyword. The simplest kind of RESTView is 
defined as GET from a url defined in the Metadata. The types 
of the columns need to be specified in a slightly extended 
ViewSpec syntax. If there are multiple remote databases, the 
GET USING table_id option is available. The rows of this 
table describe the remote contributions: the last column 



 

 

supplies the metadata for the contributor including a url, and 
data in the other columns (if any) is simply copied into the 
view. For example: 

 

 
 
Depending on how the remote contributions are defined, 

RESTViews may be updatable, and may support insert and 
delete operations.  

The implementation of these ideas was demonstrated in 
[23]. 

With these arrangements it is important to consider 
transaction requirements for multiple-host scenarios. The 
fundamental difficulty is the so-called two-army problem, 
according to which all data needs a single transaction master. 
Every transaction is initiated at one database (call its server’s 
host local), and then accesses remote data via a view definition 
of the type described above. The transaction can commit 
changes on the local server and at most one remote server 
update, assuming the transaction provides suitable credentials 
for that database. The commit takes place according to the 
following mechanism (a) the local database is locked, (b) the 
local changes are validated, (c) HTTP 1.1 is used to perform 
the single remote update (using the RFC7232 mechanisms), 
(d) then the local commit can complete and unlock. With just 
one remote update this mechanism is safe and can be rolled 
back on any exception. 

It is possible to imagine interworking between 
heterogeneous DBMS using these techniques, so that it is 
important to maintain the use of standard industry approaches 
for REST services. Many systems have implemented a URL 
and XML/JSON to database mapping, and the ETag 
mechanism from RFC7232 [24] can be leveraged to provide 
transactional features [20]. Currently in Pyrrho there are 
several options for this, determined by the metadata flags URL 
and ETAG listed above.  

Consider again the sales database E from Section IV, 
which over time gains a great many sales records. Suppose E 
offers to role rs_V a view into the data that includes a 
computation of the current runningSalesShare as a number 
between 0 and 1: 
 
[create view sales_V(cust, custSales, runningSalesShare) 
 as select cust, custSales, 
  (select sum(custSales) from sales where custSales >= 
u.custSales) / 
   (select sum(custSales) from sales) 
from sales as u] 
create role rs_V 
grant rs_V to "user\machine" 
 

Then this view can be accessed from the named machine 
using dashboard-style queries that categorize the customers A, 
B or C depending on the current runningSalesShare without 
having to be told all of the individual sales. 
 
[select case when runningSalesShare <= 0.5 then 'A'  
  when runningSalesShare > 0.5  and  
   runningSalesShare <= 0.85 then 'B'  
  when runningSalesShare > 0.85 then 'C'  
  else null 
  end as Category, 
 cust, custSales, 
 cast(cast(custSales / (select sum(custSales) from 
sales_V) * 100  
   as decimal(6, 2)) 
  as char(6)) || ' %' as share  
from sales_V  
order by custSales desc] 
 

The output, and a pie chart derived from it, are shown in 
Figure 2. 

VI. IMPLEMENTATION USING SHAREABLE DATA 

STRUCTURES 

This section provides some details of the implementation 
for the above features, following the philosophy outlined 
above using globalized and architecture-independent data 
formats.  PyrrhoDB uses 64-bit uids for all database objects, 
log entries, and table rows. It uses a representation for variable 
length primitives Integer (up to 2040 bits), Real (Integer 
mantissa, int scale) and Char (Unicode strings up to 260 bytes). 
The naming of database objects (except data types) is on a per-
role basis.  

As mentioned above, the database is represented on disk 
by a transaction log, consisting of a sequence of “physicals”: 
there are roughly 70 physical formats: one of these is for 
transaction details, another for a table identifier, another for 
column details etc. The details are in the Pyrrho manual in the 
Github distribution. The transaction log uses append storage.  

On first access by the server a database’s entire transaction 
log is read and the live database objects constructed in 
memory. 

Following the success of StrongDBMS [21] in performing 
serializable transactions in a high-concurrency demonstration, 
PyrrhoDB has been re-implemented to use shareable data 
structures throughout. A shareable data structure cannot be 
updated or modified, so any change involves creation of a new 
instance. Examples of shareable data structures are primitive 
data types such as integer or float, the string type in C#, Java 
or Python, and classes whose fields are all readonly shareable 
data structures. With the help of some simple shareable 
building blocks (BList<V> and BTree<K,V>) it is 
straightforward to build up shareable data structures 
representing tables, indexes and even databases.  

A Domain class specifies a base type and many other 
properties. If it has columns (e.g., a user-defined type or base 
table) the Domain will also specify a list of column uids, and 
a tree giving the Domain of each field. The primitive types 
have system-allocated (negative) uids, and any other Domain 
is created as physical objects in the database that defines it. 



 

 

Table rows are composed of TypedValues: a TypedValue is 
defined by a Domain and a shareable data structure. 

The BTree<K,V> implementation was described above: it 
is an unbalanced B-Tree that gives worst-case O(logN) 
performance for inserting, changing or deleting a node. Any 
of these changes creates a new root node and new internal 
nodes to the new leaf node, making at most logN new nodes, 
while the rest of the nodes are shared between the old and new 
version of the tree. This is therefore surprisingly efficient. 

BList<V> is not so clever. It is implemented as a BTree, 
but it renumbers its nodes 0, 1, 2, … resulting in a worst-case 
performance of O(N). 

BList and BTree are shareable data structures provided 
their contents (all K and V objects) are shareable. Instead of 
the enumerators found in Java and C#, traversal of BTrees and 
BLists uses “bookmarks” that are also shareable data 
structures: two-way traversal is possible, and traversal 
continues to traverse from the root it was given and so is 
unaffected by changes to the tree it is traversing. 

All classes that make up database objects are shareable. 
For example, Rowsets are basically a BTree of rows that are 
TypedValues, traversed by Cursors, which are a subclass of 
the bookmark class mentioned above. 

A new server thread is started for each connection to a 
database. Protocol requests typically create a Transaction to 
query or modify the database or read the next group of data 
from the result of a query, which is confined to the connection 
thread The creation of a transaction is a simple matter: each 
transaction starts with a copy of the root node of the database 
(a snapshot). On rollback or disconnect, the transaction can 
simply be forgotten, as no other thread has seen it.  

VII. QUERY PROCESSING AND COMPILED OBJECTS 

During parsing, uids are allocated for the resulting 
expressions, and for anything that may be committed as a new 
database object. Uids in the range above (currently) 4×260 are 
allocated as required: there are several ranges for these 
depending (for example) on whether their lifetime is the 
current session, the current transaction, or the current lexical 
input. SQL expressions all have Domains discovered during 
parsing, and RowSets all have Domains that specify their 
columns, so that ad-hoc Domains are constructed as required 
during query processing. Since a query may reference a table 
source more than once (via a TableRowSet), the column uids 
for TableRowSets need to be specific to such a reference and 
are allocated in the heap range (above 7×260): this process is 
called instancing in the implementation. Views may also 
reference more than one source, so the instancing process also 
applies to them. A similar requirement exists for table-valued 
functions. 

In this section we also consider how the concept of local 
data management can be realized. As mentioned in Section 
III.C, the server should remain in control of execution of 
stored procedures, triggers, and constraints, so that such 
features should be written in SQL. Since the definer of a 
compiled object generally has different privileges from the 
user making a query or update, it is important to ensure that 
executable code is compiled in advance. For reasons of 
forward and backward compatibility the database file contains 

only the SQL source code for stored procedures, constraints, 
triggers, etc. The compiled components are constructed when 
the database is loaded in the server (after a cold start). 

As mentioned above, many database objects correspond to 
permanent physical records in the transaction log, and so their 
defining position is fixed and they can be shared with all 
transactions for this database. Objects constructed by the 
server during compilation (also in fact shareable) do not have 
physical file positions, so instead receive uids in a dedicated 
range (currently 6×260 .. 7×260-1), and form a collection stored 
with the in-memory version of the compiled object. Most 
compiled objects contain executable code, but this mechanism 
is also used for the Domain of a base table or view. The actual 
uids allocated to these compiled objects will depend on the 
order of the physical objects in the log, and will depend on the 
current version of the server. During instancing, column uids 
will be allocated in a cascade, since many compiled objects 
will contain references to the columns being instanced. 

Cascades are also used in the process of RowSet review, 
in which the RowSet pipeline is simplified wherever possible 
based on the existence of indexes and filters that were not 
available at compilation time. 

VIII. THE VERSIONED LIBRARY AND DATA MODELS 

The above discussion described how the data model for a 
database could be represented in the database implementation. 
The real benefit of placing the data model in the database is to 
make it available to the application programmer, so that all 
applications targeting a database can agree on the structure 
and semantics of its data. At present, Pyrrho provides such 
support for applications written in C#, Java, and Python, in 
addition to a thread-safe version of the 
Command/ExecuteReader/Read programming interface 
familiar from ADO.NET and JDBC. 

The current implementation was inspired by Microsoft’s 
Entity Framework [30] and Java Persistence Architecture [31] 
but differs from these in the crucial proviso that application 
programmers should start with class definitions generated by 
(and at runtime checked by) the server, rather than writing 
their own version of the model in the form of annotations or 
code attributes. 

The following example illustrates the type of support 
available. Suppose a database ABC contains a role “Sales” 
that defines the following tables: 

 
[create table "Customer"(id int primary key, "NAME" 

char unique)] 
[create table "Order"(id int primary key, cust int 

references "Customer", "OrderDate" date, "Total" 
numeric(6,2))] 

 

Then the system table "Role$ClassValue" will provide 
code fragments similar to the following: 

 
using System; 
using Pyrrho; 
 
/// <summary> 
/// Class Customer from Database ABC, Role Sales 
// PrimaryKey(ID) 
// Unique(NAME) 



 

 

/// </summary> 
[Table(23,122)] 
public class Customer : Versioned { 
[Field(PyrrhoDbType.Integer)] 
[AutoKey] 
  public Int64? ID; 
[Field(PyrrhoDbType.String)] 
  public String? NAME; 
  public Order[] orders => 
     conn.FindWith<Order>(("CUST",ID)); 
} 
/// <summary> 
/// Class Order from Database ABC, Role Sales 
// PrimaryKey(ID) 
// ForeignKey, RestrictUpdate, CascadeDelete(CUST) 
/// </summary> 
[Table(175,362)] 
public class Order : Versioned { 
[Field(PyrrhoDbType.Integer)] 
[AutoKey] 
  public Int64? ID; 
[Field(PyrrhoDbType.Integer)] 
  public Int64? CUST; 
[Field(PyrrhoDbType.Date)] 
  public Date? OrderDate; 
[Field(PyrrhoDbType.Decimal,"Domain NUMERIC Prec=6 
Scale=2")] 
  public Decimal? Total; 
  public Customer customer => 
     conn.FindOne<Customer>((“ID”,CUST)); 
} 

 
The numbers 23 and 175 are references to the defining 

positions of these objects in the database, and the other 
numbers are schema keys, which will be checked by the server 
when the application runs to ensure that the table definition 
has not changed. We can see that the columns defined for the 
table are publicly accessible in these classes (while the server 
will check the user and role on access), and Pyrrho’s data 
types of these columns are provided as attributes. 

Importantly, the foreign key relationship between the 
tables has resulted in two additional “navigation” fields in the 
classes above, providing quick access to the customer for an 
order, and the orders for a customer. The primary and unique 
key declarations also allow quick access. 

A simple program to use the above class definitions could 
begin 
 
static void Main 
{ 
 conn = new PyrrhoConnect("Files=Demo;Role=Sales"); 
 conn.Open(); 
 try 
 { 
// Get a list of all orders showing the customer name 
   var aa = conn.FindAll<Order>(); 
   foreach (var a in aa) 
    Console.WriteLine(a.ID + ": " + a.customer.NAME); 
   if (aa.Length == 0) 
   { 
    Console.WriteLine("The Order table is empty"); 
    goto skip; 
   } 
 // change the customer name of the first  
 // (update to a navigation property) 
   var j = aa[0].customer; 

   j.NAME = "Johnny"; 
   j.Put(); 
 // add a new customer (autokey is used here) 
   var g = new Customer() { NAME = "Greta" }; 
   conn.Post(g); 
 // place a new order for Mary  
 // (secondary index, single quotes optional here!)  
   var m = conn.FindOne<Customer>(("NAME","Mary")); 
   var o = new Order()  
    { CUST = (long)m.ID,  
      OrderDate = new Date(DateTime.Now) }; 
    conn.Post(o); 
 

The Versioned base class above uses ETags, allowing the 
library to associate object references in the code to rows in the 
database, and this enables the shorthand notation in the above 
sample program, in addition to providing automatic 
transaction validation when committing an explicit 
transaction is started, using an API similar to ADO.NET and 
JDBC. For further details see the Pyrrho manual [32]. 

IX. CONCLUSIONS 

This paper has reviewed a number of desirable changes to 
the relational database model that have been signaled in recent 
literature and outlined implementations of these 
improvements that can be found in the 
ShareableDataStructures project on Github [32]. The 
implementation of PyrrhoDB v7 is currently at the alpha stage 
and feedback on these ideas is welcomed. The authors are 
grateful for the many expressions of support and 
encouragement we have received during this project. 
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Figure 1.  Operation of B-Trees [26] 

 

 
Figure 2:  ABC analysis from Section VI example (as output from PyrrhoDB client and server) 

 

 

 
 


