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Abstract—In environmental disaster management, due to the 

large impacted area or limited availability of labor and financial 

resources, setting priorities of where, how and when to act are 

indispensable. When prioritized interventions on spatially 

dispersed entities are costly and technically challenging to 

perform, clustering of individual entities in larger homogeneous 

actionable units can improve feasibility and reduce cost of the 

remediation. In this article, a spatio-temporal clustering 

approach under a budget constraint is presented to determine 

homogenous clusters of polygons and interventions to reduce 

cost while still attaining an overall optimal distribution of 

interventions. We demonstrate the effectiveness of this 

clustering algorithm with a hypothetical case study of 

contaminated agricultural land in Belgium. Finally, we 

demonstrate the capabilities of the proposed cluster algorithm 

to provide decision makers with a multi-period action plan, 

reducing the cost of intervention while still prioritizing 

resources for the most important sites. 

Keywords-Spatio-temporal clustering; Budget constraint; 

Disaster management; Multi-Attribute Decision Making; MADM. 

I. INTRODUCTION 

This paper extends a previous paper that was originally 

presented at the Fourteenth International Conference on 

Advanced Geographic Information Systems, Applications, 

and Services (GEOProcessing) [1]. 

When dealing with large natural or man-made disasters, 

decision makers are confronted with setting priorities of 

where, how and when to act because of the limited 

availability of labor and financial resources. This priority 

setting is particularly applicable when the impact of remedial 

actions is costly and has long-lasting influences. For spatially 

distributed sites with variable characteristics, priority setting 

among the sites and the determination of the most adequate 

remedial action per site are of major importance. The United 

States Environmental Protection Agency (US EPA) 

identified the following benefits of these optimization efforts: 

more cost-effective expenditure, lower energy use, reduced 

carbon footprint, improved remedy protectiveness, improved 

project and site decision making, and acceleration of project 

and site completion [2].  

Addressing the questions of where and how to act 

consecutively results in a nested ranking of sites and 

interventions per site. From those rankings, a spatio-temporal 

action plan can be determined. 

To assist decision makers in setting such priorities, spatial 

Decision Support Systems (sDSS) become of importance [3]. 

The effectiveness of related decisions is typically conditioned 

by multiple and often contradicting criteria of economic, 

social, technical, environmental, and human health-related 

nature [4]. These characteristics of the decision problem 

make it suitable for the application of a spatially discrete 

Multi-Attribute Decision Making (GIS-MADM) approach 

[5]. ‘GIS’ points to the spatial aspect of the decision problem, 

while MADM encompasses a subset of Multi-Criteria 

Decision Analysis (MCDA) methods. MADM supports the 

decision-maker by describing and evaluating the 

performance of a finite number of decision alternatives with 

respect to multiple criteria expressed as attributes of the 

alternatives, representing several points of view. The MADM 

results in a ranking of the alternatives based on the selected 

criteria and their relative importance [3]. The MADM 

framework is often applied because it supports a structured 

and inclusive decision process, addressing a plurality of 

preferences and socio-technical dimensions that cannot 

always be brought to a common monetary scale [6]. 

This paper presents a GIS-MADM approach that provides 

actionable support to decision makers by proposing a 

coherent action plan in space and time for decontamination 

of the agricultural domain in a region affected by the 

deposition of radionuclides. It uses a spatio-temporal 

approach to deal with the clustering of spatially scattered 

polygon-based parcels, whereby a budget constraint limits 

the extent and/or type of interventions that can be performed 

in each time step, i.e., in one year. The paper elaborates on 

the classic region-growing principles, adapted to polygon-

based data structures, and explicitly takes into account the 

attributes of the individual polygons to find the optimal 

compromise attribute for the whole cluster. Because a spatial 

and temporal clustering of sites and actions is likely to create 

“economies of scale” [7], the cost of remediation 

interventions will be lowered, resulting in an overall cheaper 

and faster remediation process.  

The rest of this paper is organized as follows: Section II 

presents related work where MADM is used to support 

prioritization of resources in environmental remediation. 



Section III provides an in depth explanation of the spatio-

temporal cluster approach. In Section IV, the approach is 

illustrated with a case study for an agricultural region in 

Belgium, contaminated after a hypothetical accidental release 

of Caesium-137 from a nuclear power plant. Section V 

discusses the applicability of the algorithm to help improve 

decision making, while Section VI draws the most pertinent 

conclusions. 

II. RELATED WORK 

The use of MADM approaches for supporting 

remediation on a regional scale by prioritization 

contaminated sites for decontamination (‘Where to act?’) was 

reported by several authors [8]–[10]. In addition, the support 

on a local scale by prioritization of the remedial technologies 

for a given site (‘How to act?’) was also addressed in several 

publications [11]–[13]. However, no reports were found, 

where MADM was used for simultaneously prioritizing of 

where and how to act decisions into a coherent spatio-

temporal action plan. When both prioritizations are done 

separately, the procedure typically yields a geographically 

distributed set of priority sites as well as neighbouring sites 

with different interventions. Different propositions were 

made to improve MADM on a regional scale, to reduce the 

scattered priorities. For example, by incorporating a 

compactness measure to ensure sites were big enough to 

ensure a feasible intervention [14]. 

MADM approaches have been used with raster as well as 

polygon-based datasets. For this application, it was chosen to 

use polygon-based data because they provide a natural 

representation for many types of geospatial entities, such as 

agricultural parcels, buildings, or polluted sites. In addition, 

these entities form the smallest units used in real-world 

decision making. Therefore, it is interesting to provide 

actionable support to decision makers based on polygon-

based representations. By addressing the problem with 

polygon-based data, the adaptations using compactness 

measures and clustering of entities are more complicated 

compared to raster-based datasets. Because the topology of 

spatially dispersed polygons is less straightforward when 

dealing with unlinked features [15]. 

Further, due to the limited availability of resources, a 

budget constraint limits the extent of interventions possible 

for each period; thus, a multiple-period action plan is 

required. A multi-period decision problem requires a 

Dynamic Multi-Attribute Decision Making (dMADM) 

methodology [17]–[19]. However, the majority of 

documented MADM applications only address a decision 

problem for a specific time period [16]. In contrast, dMADM 

determines the criteria scores and relative relevance for each 

time period to accurately reflect the decision variables at that 

time. 

Some spatial DSS tools were developed for supporting 

decisions with similar spatio-temporal aspects. These authors 

included a temporal dimension in their approach to determine 

how a set of land use types should be distributed over space 

and time in order to optimize the multi-dimensional land 

performance of a region over a period of 30 years [20]. 

However, they found that their approach, which was based on 

integer programming (IP), resulted in land use plans that were 

too spatially and temporally fragmented for real-world 

application and recommended that a clustering strategy could 

be a suitable next step. 

III. PROPOSED METHOD  

The spatio-temporal clustering approach combines a site 

priority score (PPS) and an action priority score (APS), as 

discussed in Section A. The iterative and dynamic cluster 

growing algorithm is discussed in Sections B and C. 

A. Distance based priority scores 

Different implementations of MADM exist, each with 

their own strengths and weaknesses. We opted for a distance-

based MADM, called Compromise Programming (CP), to 

rank the considered set of feasible alternatives [21]–[24]. CP 

uses the distance in the feature space to the so-called ideal 

point of each alternative to rank them. The feature space is 

constructed from independent, operational, non-redundant, 

and continuous attributes [25]. The criteria used vary 

significantly between different case studies, depending on the 

problem, the site characteristics and the available data. For 

each criterion, a weight reflecting the importance of the 

criterion is set by the stakeholders, preferably through a 

collaborative process [26]. This weight takes into account the 

relative importance of the criterion, where its value can be 

understood as a trade-off value between criteria. For this set 

of criteria and corresponding weights, the CP methodology 

determines the optimal point, a vector of performance 

attribute values corresponding to an alternative with the best 

observed performance on each criterion separately. This ideal 

point is mostly hypothetical, because multi-criteria decision 

problems involve conflicting criteria. The ideal point does 

however allow to determine a ranking of the alternatives 

based on each alternative’s distance to the ideal point, 

whereby the alternative that comes ‘closest’ to the ideal point 

is the most preferred. The definition of ‘closeness’ requires 

the formulation of a distance metric (1), where a larger 

distance equals a less optimal alternative [3]. Distances based 

on (1) fall within the range [0-1], with a distance of 0 being 

the best alternative that requires no compromise because it 

outperforms all other alternatives on all criteria. In contrast, 

a distance of 1 reflects an alternative that scores the lowest on 

all criteria. 
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 n is the number of criteria under consideration; 

 𝑤𝑖  is the relative importance (weight) assigned to 

performance attribute i;  



 p is a parameter that determines the type of distance 

function, where 2 represents the Euclidian distance; 

 𝑓𝑖
+ is the optimal value for performance criterion i; 

 fi(x) is the value of the ith performance criterion 

expressed as a function of the decision variables x; 

 𝑓𝑖
− is the anti-ideal corresponding to the ith attribute that 

is the “worst” value for this attribute. 

 

To determine the optimal remediation plan for a territory 

of interest two important questions need to be answered. The 

first question is “Where are the sites situated for which 

intervention is most urgent?”. The CP methodology returns a 

distance score for each polygon, representing the 

priority/urgency of a polygon to be intervened on. From these 

scores a ranking of the polygons from high priority (small 

distance) to low priority (large distance) can be made. For the 

case study in this paper, this score is referred to as Parcel 

Priority Score (PPS). The second question is “What is the 

most optimal action for each site?”. Therefore, for each 

polygon, the feasible intervention actions need to be ranked. 

In our proposed approach, the ranking of the alternative 

interventions is similarly based on a distance score, computed 

by CP. In the following case study, for each alternative 

intervention on a specific site, the Action Priority Score 

(APS) is calculated. The further clustering of parcels is based 

on the combination of PPS and APS. 

B. Temporal dynamics in MADM 

When actions are postponed in time, the initial decision 

variables (criteria scores for the alternatives and criteria 

weights) may alter, and the decision problem needs to be 

redefined, resulting in a multi-period MADM. The number 

and extent of polygons that can be acted on in each time 

period depends on the budget available in each period, which 

is set to one year in our case study. While performing actions 

on the most urgent polygons first, each of the actions comes 

at a cost. For each intervention, the cost can be calculated 

based on the cost per unit of area and the size of the polygon. 

Interventions can be done in one period until the total cost of 

remediation exceeds the period’s budget. When the budget is 

reached, the remaining polygons become candidates for the 

next period, where changes in the criteria scores and weights 

may occur and should be taken into account. 

C. Spatio-temporal clustering algorithm 

The algorithm operates in a similar fashion as a region-

growing algorithm, where it consecutively checks whether 

one of the neighbouring polygons can be added to the cluster, 

taking the similarity between the priority scores of the seed 

polygon and the neighbouring candidate into account. The 

clustering algorithm is iterative and consists of two phases: 

The cluster initialization phase is followed by the cluster 

growing phase, which ends as soon as one of the stopping 

criteria is met. The procedure is illustrated in Figure 1 and the 

pseudo code is given in Figure 2. 

 

1) Cluster initialisation 

To optimally allocate resources, the most urgent sites 

should be treated first. Therefore, the seed parcel is the one 

with the lowest PPS (smallest distance to the ideal point). 

2) Cluster growing procedure 

After the seed parcel has been determined, the cluster-

growing procedure attempts to find neighbouring parcels that 

can be added to the seed parcel or the growing cluster, where 

parcels in a cluster have the same intervention action to be 

performed in the same period. 

 

 
 

FIGURE 1. THE CLUSTER GROWING PROCEDURE APPLIED ON 12 PARCELS, 
CONSIDERING 3 POSSIBLE ACTIONS, RESULTING IN 2 CLUSTERS EACH WITH 

1 ACTION. 

 

  



 
 

FIGURE 2. PSEUDO CODE OF THE SPATIO-TEMPORAL CLUSTER APPROACH, 

DETERMINING THE REMEDIAL TECHNIQUE AND TIMING OF THE CLUSTERS. 

 

Adding more parcels to the cluster enlarges the cluster, 

therefore creating larger actionable units, which are preferred 

from the perspective of reducing the complexity and 

operational cost of the intervention. But since the parcels 

added to the cluster potentially have a different optimal 

action, it is important to find a compromise remediation 

action that minimizes the deviation in performance with the 

parcels considered individually. The cluster growing can be 

subdivided into three consecutive steps that are repeated until 

the constraints for the end of cluster growth are met. 

 

 Determination of the parcel neighbours 

Compared to a raster dataset, where pixels are spatially 

arranged in a systematic way and neighbours are easily 

defined, in a data set of spatially distributed polygons, 

determining the neighbours is more challenging. To define 

neighbouring polygons, which are not necessarily sharing a 

border but are rather separated by irrelevant space, a 

technique called morphologic tessellation (MT) is used. At 

the core of MT is the Voronoi tessellation (VT), a method of 

geometric partitioning of the 2D space, where a planar set of 

“seed points” generates a series of polygons known as 

Voronoi polygons (VP). Each VP encloses the portion of the 

plane that is closer to its seed than to any other polygon [27]. 

From the partitioned space, the neighbours of a VP can be 

determined by examining the VPs sharing borders. An 

example of the portioning by VPs is given in Figure 3. 

 

 
 To deal with the distributed nature of the polygons, use 

is made of an enclosed tessellation based on the enhanced 

morphological tessellation algorithm (EMT). EMT allows for 

setting limits to the expansion of the MT, limiting the allowed 

distance between polygons that can be considered to be 

neighbours. Furthermore, it allows for the establishment of 

break lines (e.g., rivers or administrative boundaries) beyond 

which the VPs are not permitted to trespass. The VP 

constructed by the EMT algorithm captures the spatial 

configuration of all parcels, from which the neighbouring 

parcels of each parcel can be determined. The EMT algorithm 

is accessible from an open-source Python package 

(http://docs.momepy.org). Fleischmann (2019, 2020) 

provides more information regarding the EMT methodology. 

 

 Determining the optimal neighbour 

To determine the neighbouring polygon that is best suited 

for growing the cluster, the sum of the PPS and APS scores 

of each neighbour is considered. Whereby the neighbour 

leading to the lowest increase in the composite score of the 

cluster is added. From this, it follows that adding a parcel to 

the cluster can change the remediation action to be applied to 

all the parcels in the cluster. Moreover, when the best 

candidate is found, it is verified whether the candidate 

neighbour is similar enough to the seed pixel to be added. If 

the similarity threshold is not exceeded, the parcel is added 

to the cluster, and this procedure is repeated; otherwise, the 

 
 

FIGURE 3. INITIAL SET OF DISTRIBUTED PARCELS (A) AND VP 

COMPUTED BY THE EMT, RESULTING IN A PARTITIONED COVERAGE 

(B). 



end of the cluster growing phase is reached. To highlight the 

process of finding a compromise between all parcels on the 

cluster level, five iterations of the growing procedure are 

shown in Table 1 and Table 2. The similarity threshold 

applied is 0.31 for Table 1 and 0.15 for Table 2. The cells 

with the same color show the current parcels in the cluster, 

and the remedial action of the cluster is shown with a 

subscript on the APS. The APS values in bold show the 

optimal action per parcel. Table 1 illustrates that while a 

cluster grows iteratively, the optimal remediation action for 

all parcels combined within the cluster changes. In iteration 

III, the optimal remediation on the cluster level is the worst-

performing action for the seed parcel (A) and the second-best 

action for parcel B. Nevertheless, from the perspective of the 

cluster, action 3 is the best compromise solution. In addition, 

Table 2 shows the impact of the similarity threshold: In 

iteration V, parcel E is not added to the growing cluster due 

to a difference larger than the similarity threshold between it 

and the seed parcel (parcel A). Parcel E will then be selected 

as the next seed parcel. The different cluster configuration (1 

vs. 2) in iteration V for both tables highlights that a lower 

similarity threshold will result in an overall lower (better) 

composite score for the solution.  

 
TABLE 1. THE GROWING PROCEDURE OF A CLUSTER FOR 5 ITERATIONS FOR 

A SIMILARITY THRESHOLD OF 0.3, RESULTING IN ONE CLUSTER  

 

 
 
TABLE 2. THE GROWING PROCEDURE OF A CLUSTER FOR 5 ITERATIONS FOR 

A SIMILARITY THRESHOLD OF 0.15, RESULTING IN TWO CLUSTERS. 

 

 
 

 

 Cost calculation  

Every intervention has a corresponding cost, determined 

by the intervention type and size of the parcel. Discounts can 

be taken into account when a cluster reaches a certain size 

(e.g., a 20% cost reduction for the whole cluster if a cluster 

reaches a size of 5 ha). Before a parcel is added to the cluster 

it is confirmed if there is still enough budget left for 

performing the intervention. If the budget constraint is 

exceeded when the parcel would be added to the cluster, the 

cluster growing is stopped and the remaining budget is 

transferred to the next year’s budget. 

 

3) End of growth 

The end of growth phase is reached when one of the two 

constraints is not met. 

 

 Similarity threshold 

The similarity threshold determines the variability of 

parcels that is allowed within the cluster. By lowering the 

threshold, only parcels with a similar composite score will be 

allowed to enter the cluster, resulting in a more homogenous 

cluster. As a consequence, the growth of clusters is more 

rapidly stopped, and the clusters tend to remain smaller, 

possibly not achieving a large enough size to be entitled to a 

discounted remedial cost. Therefore, the threshold should be 

chosen according to a tradeoff between the homogeneity of 

the clusters on the one hand and the ease and cost of 

implementing the remediation strategy on the other. The 

reasoning behind the threshold setting is that when the 

difference in performance between seed and candidate 

parcels is large, resources will be used for less urgent parcels 

or for suboptimal intervention. When the similarity threshold 

is not met, the cluster growing is stopped and a new seed 

polygon is found for building the next cluster. 

 

 Budget constraint 

The budget constraint limits the amount of resources that 

can be allocated to interventions in each period. The 

implementation of a budget constraint in the spatial clustering 

algorithm ensures that cluster growth cannot lead to exceedi,g 

the budget for the given period. Once the budget is reached, 

the attributes of the remaining (unclustered) polygons are 

adapted to reflect their status for the new period. Next, the 

clustering can be started for the new period. 

IV. CASE STUDY 

To demonstrate the capabilities of the proposed spatio-

temporal clustering model, it is applied to a case study 

addressing the remediation of contaminated agricultural 

parcels. The case study deals with a hypothetical deposition 

of radioactive Cesium-137 on 1257 agricultural parcels 

situated in the Maarkebeek Valley in Flanders, Belgium. A 

remediation plan must be designed for a budget of 500 000 

euros per year to ensure that all parcels are remediated so that 

food can be produced in accordance with the legally set 



contamination limits. In this case study, five possible 

remedial interventions are considered: potassium fertilizers, 

shallow ploughing, deep ploughing, skim and burial 

ploughing and topsoil removal (Table 5). 

 

 
 

FIGURE 4. LAND USE MAP OF THE MAARKEBEEK WATERSHED IN FLANDERS.  

 

A. Determination of the Parcel Priority Score 

A parcel is characterized by a set of attributes such as 

geographic location, environmental characteristics, and 

agricultural practices. These attributes form the basis for the 

decision criteria used for determining the PPS (Table 3). The 

criteria for assessing the priority for remediation of sites with 

polluted soils were determined from a literature review [28]. 

Furthermore, each of the criteria was assigned a relative 

weight based on expert assessment of its importance. The 

weight is expressed by a linguistic score, which corresponds 

to a triangular fuzzy number (TFN). TFN are then converted 

to a quantitative value using the center of gravity method 

[29]. 

 
FIGURE 5. MEMBERSHIP FUNCTIONS OF THE LINGUISTIC EXPERT RATINGS 

USED FOR QUANTIFYING THE CRITERIA WEIGHTS, WITH ABBREVIATIONS VL 

: VERY LOW, L:LOW, ML: MEDIUM LOW, M: MEDIUM, MH: MEDIUM HIGH, 

H: HIGH AND VH: VERY HIGH. 

 

The seven criteria and corresponding weights, shown in 

Table 3, are then used by the CP methodology to determine 

the feature distance of each parcel to the hypothetical parcel 

with the highest societal burden and therefore the need for 

remediation. In Figure 6, the CP methodology, limited to 

three alternatives and two criteria, is illustrated. The priorities 

based on this distance for each parcel are shown in Figure 7. 

Parcels with a low PPS are identified as the most urgent to 

remediate. 

 

 

 
FIGURE 6. REPRESENTATION OF A 2 DIMENSIONAL COMPROMISE 

PROGRAMMING DISTANCE FOR 3 PARCELS (BOTTOM) AND ITS GEOGRAPHIC 

REPRESENTATION (TOP). 

 

FIGURE 7. PARCEL PRIORITY SCORE (PPS) FOR THE AFFECTED 

AGRICULTURAL PARCELS, THE LOWER THE PPS THE MORE URGENT THE 

REMEDIATION. 

 



TABLE 3. CRITERIA USED TO DETERMINE THE PARCEL PRIORITY SCORES 

(PPS), WITH THE CORRESPONDING WEIGHTS DETERMINED BY EXPERTS  

 

Criterion Description Weight 

 

Activity in the 

food products 

The activity of Cs-137 found 

in the crop after harvest from 

this field [Bq/kg] 

VH 

Importance of 

the food in the 

local diet 

The amount consumed of this 

product on yearly basis 

[kg/year] 

M 

Distance to the 

urban 

infrastructure 

Distance to the closest urban 

infrastructure (houses and 

gardens) [meter] 

H 

Distance to 

nature 

reserves 

Distance to the closest nature 

reserve [meter] L 

Distance to 

surface water 

Distance to the closest 

surface water (lake/river) 

[meter] 

M 

Population 

density 

Population density of the 

municipality [pp/km2] 
H 

Erodibility of 

the parcel 

The erosion sensitivity of the 

field [scale (0 : None - 0.5 : 

medium - 1: very high)] 

L 

 

B. Determination of the Action Prority Score 

For the determination of the remedial intervention among 

the five potential remedial actions, six criteria have been 

selected (Table 4). The applicability of the intervention 

depends on the parcel’s contamination level and the crop 

type, because some remedial actions are unsuitable for 

specific agricultural crops or inadequate to reduce the 

contamination levels below the legal permissible levels. For 

example, ploughing actions are unfeasible for parcels with 

perennial crops. The criteria to assess remedial actions can 

vary largely based on the geographical region, contamination 

type, stakeholders, and data availability [28].  

 
TABLE 4. CRITERIA USED TO DETERMINE THE ACTION PRIORITY SCORE 

(APS) OF EACH REMEDIAL INTERVENTION, THE WEIGHTS ARE BASED ON 

EXPERT JUDGMENT. 

 

Criteria Description Weight 

Feasibility 

The probability that the 

remediation strategy is 

implemented successfully.  

MH 

Incremental 

Dose 

Exposure dose to the workers 

that need to implement the 

remediation technique.  

MH 

Environmental 

Impact 

Risk or actual impact on the 

living and or non-living 

environment due to the 

remediation.  

M 

Local Impact 
Changes to the landscape/ 

way of life of the population.  
MH 

The cost of 

remediation 

The total implementation cost 

of remediation minus the 

otherwise paid compensation 

to the farmer. The full 

remediation cycle is included 

from investigation to 

monitoring and waste 

treatment. [€/ha] 

H 

Reduction 

Effectivity 

Reduction in activity of 

agricultural product 

(compared to doing nothing). 

[%] 

VH 

 

The five remedial alternatives are scored on the six 

criteria that produce the alternative-criterion matrix (Table 

5), which is the basis for the distance calculations by the CP. 

More information on the determination of the criteria scores 

in the alternative-criterion matrix can be found in [30].  

 
TABLE 5. ALTERNATIVE-CRITERION MATRIX FOR THE FIVE REMEDIAL 

ALTERNATIVES, SCORING THEM ON SIX CRITERIA. 
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The incorporation of the temporal dynamics in this case 

study is necessary since the values of certain decision 

variables change through time. Because of natural 

attenuation, which causes the mass, toxicity, volume or 



concentration of contaminants in the soil or groundwater to 

reduce over time. This implies that the contamination 

decreases over time without the interference of specific 

remedial actions. For radioactive contaminations the 

reduction of the contaminant is strongly determined by the 

radioactive decay, the radionuclide’s half-live. For a remedial 

action to be considered feasible, it should be able to reduce 

the contamination levels below the legally allowed limits. 

From the dynamic nature of the contamination, it follows 

that, after a certain period of time other remedial options can 

become more effective and outperform the previously 

selected option. Consequently, the remedial actions for each 

parcel should be revised to ensure they are still optimal for 

this time period. For this case study, the weights are not 

considered to change between periods. 

C. Individual per parcel solution 

For each individual parcel and for each time period, an 

APS score for each feasible remediation technique can be 

calculated. This is illustrated in Figure 8 for a cereal parcel. 

For this specific field, only four remedial actions are feasible, 

and deep ploughing is considered the most optimal since it 

has the lowest value. Topsoil removal is the second-most 

optimal remedial technology. 

 

  
In Figure 9, the optimal remediation technique for each 

parcel, based on the technique with the lowest APS, is shown. 

  

 

 
FIGURE 9. PROPOSED REMEDIATION PLAN BASED ON THE OPTIMAL 

REMEDIAL ACTION FOR EACH PARCEL. 

 

D. Spatio-temporal cluster solution for the affected region 

With the spatio-temporal cluster approach, a multi-period 

action plan can be designed, taking into account when and 

how to remediate the parcels. For the same area, the model 

proposes a remedial technique and timing. Both can be found 

in Figures 10 and 11, respectively. 

The difference in remedial technologies between Figures 

9 and 10 can be explained by the clustering of parcels and the 

changing of some of the parcel characteristics due to the 

delayed remediation. The remedial action “food restriction” 

found in Figure 10 is for agricultural parcels where, due to 

the physical decay process described above, the food crops 

can be produced with radioactivity below the permissible 

levels without the need for a remedial action given the time 

elapsed since the deposition of the radionuclides. It is clear 

that the model will seek optimal homogenous clusters, where 

the solution is optimal overall and not for each individual 

parcel. 

 

 
 

FIGURE 8. ACTION PRIORITY SCORE (APS) FOR THE DIFFERENT 

CANDIDATE REMEDIAL ACTIONS ON AN AGRICULTURAL PARCEL WITH 

CEREAL CULTIVATION. 
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FIGURE 10: THE REMEDIAL TECHNOLOGIES PROPOSED BY THE SPATIO-

TEMPORAL CLUSTERING ALGORITHM WITH A SIMILARITY THRESHOLD OF 

0.025. 

 

  

 
 

FIGURE 11. THE TIMING OF REMEDIATION PROPOSED BY THE SPATIO-

TEMPORAL CLUSTERING ALGORITHM WHEN THE SIMILARITY THRESHOLD IS 

SET TO 0.025. 

 

 

E. Intracluster variability 

The variability of the PPS score within the cluster should 

be as low as possible to make sure that resources are used for 

the most urgent parcels. When the similarity threshold is set 

to 0, as in Figure 12, the clusters consists of only the seed 

parcel. It is clear that as cluster rank increases, so does the 

value of the cluster's PPS score, demonstrating the 

prioritization of resources for the most important parcels. 

 

 
FIGURE 12. PPS SCORE FOR THE 10 HIGHEST RANKED CLUSTERS, WHICH 

ARE EQUAL TO THE 10 HIGHEST RANKED SEED PARCELS FOR A SIMILARITY 

THRESHOLD OF 0. 

 

With an increasing similarity threshold (see Figures 13 

and 14), the variability of the PPS within the cluster is 

allowed to increase. Furthermore, it is important to observe 

the increased presence of outliers due to the higher similarity 

threshold. This can be important when the seed parcel is the 

outlier, because then resources are potentially used on a less 

important site first. 

 

 
 

FIGURE 13. BOXPLOTS REPRESENTING THE VARIABILITY OF THE PPS SCORE 

WITHIN THE 10 HIGHEST RANKED CLUSTERS, WHEN THE SIMILARITY 

THRESHOLD IS 0.025. 

 



 
 

FIGURE 14. BOXPLOTS REPRESENTING THE VARIABILITY OF THE PPS SCORE 

WITHIN THE 10 HIGHEST RANKED CLUSTERS, WHEN THE SIMILARITY 

THRESHOLD IS 0.05. 

 

It is clear that a higher similarity threshold results in more 

resources going to less important parcels, but on the other 

hand, it results in larger clusters and therefore lower 

operational costs. When lowering the similarity threshold for 

more optimal decision making, the overall cost of 

remediation will increase, resulting in more time needed for 

the remediation of the affected region. This effect can be seen 

in Figure 15, where the remediation will take nine years 

instead of seven, increasing the budget by around 1 million 

euros. 

 

 
 

FIGURE 15. THE TIMING OF REMEDIATION PROPOSED BY THE SPATIO-

TEMPORAL CLUSTERING ALGORITHM WHEN THE SIMILARITY THRESHOLD IS 

SET TO 0.01. 

V. DISCUSSION 

This case study shows the complexity of designing spatio-

temporal remedial schemes. Therefore, the use of a GIS-

MADM based DSS, as proposed in this paper, could help 

decision makers find clarity and see the impacts of certain 

decisions. A major benefit of these tools is the ability to do 

scenario analysis and uncertainty analysis. The impact of 

varying degrees of uncertainty in this decision context is 

described in [31]. Further the use of these dynamic MADM 

approaches allows for a shift to a more adaptive management 

paradigm [32]. 

The spatio-temporal MADM relies heavily on the PPS 

and APS of a parcel; therefore, the determination of these 

scores should be done with great care. The determination of 

the specific applicable criteria and weights is not only the 

work of experts, but it is highly suggested to take into account 

all stakeholders to ensure a solution supported by society is 

proposed [28].  

For the purpose of this research, CP was used with a 

Euclidean distance measure, but other distance metrics are 

possible (e.g., Manhattan distance). Because of the use of two 

distance-based metrics with similar range, the composite 

distance score still has a physical meaning (distance to the 

ideal or anti-ideal situation).  

Figures 12 to 14 show the effect of the increasing 

similarity threshold on the variability of PSS scores within 

clusters. A larger similarity threshold allows more variation 

within the cluster; therefore, less optimal clusters are formed 

and more deviation from the optimal per-parcel-solution is 

allowed. However, larger clusters give rise to lower 

operational costs, resulting in cheaper and faster remediation. 

Decision makers can decide what is the best setting for their 

own specific case, but a rule of thumb to determine the initial 

similarity threshold is half of the range of the APS values. 

The budget constraint limits the amount of interventions per 

year, therefore, a lower budget will spread the remediation 

over more years. This increase in remediation time could 

potentially change the remedial actions for parcels because of 

delayed remediation. 

The reduced cost of remediation for larger units is the 

main driver for the introduction of remedial management 

clusters. For this specific case study, expert-based 

estimations for the discounts were used because empirical 

data for these large-scale remedial actions is not widely 

available. Nevertheless, they should be determined with great 

care and potentially adapted during the remedial process to 

improve the model estimations. 

The proposed technical implementation of the budget 

constraint stops the remediation if the most optimal neighbor 

of the cluster with the specific remedial action exceeds the 

available budget, whereby the remaining budget is 

transferred to the next year. This transfer has a low impact, 

when the yearly budget exceeds largely the remediation cost 

of a single cluster. 
When working with polygon-based datasets, topological 

errors, such as gaps, may occur. Relying solely on these 
topological relationships can have major impacts on 
determining the neighbours. Our EMT approach is less 
impacted by these errors.  



Other cases could benefit from a similar approach. For 
example, when afforesting a large region, not all sites can be 
afforested at the same time because it is a very costly and labor 
intensive intervention. Additional, every plot has a certain 
suitability and urgency to be afforested. In addition, 
afforesting connected parcels with a similar tree composition 
would severely reduce the cost of planting and also improve 
the ecological connectivity of the landscape. Therefore, 
finding optimal clusters of parcels to be afforested with 
similar tree compositions could be facilitated with our 
approach. A similar approach for raster datasets was already 
reported by [14]. 

VI. CONCLUSIONS AND FUTURE WORK 

With the proposed spatio-temporal clustering approach, 

dispersed polygons can be clustered in space and time and be 

assigned the most optimal intervention type under a budget 

constraint. This allows decision makers to form multi-period 

remedial schemes to address the environmental disaster. The 

approach also gives decision makers the possibility to do 

scenario analysis and uncertainty analysis to better 

understand the impact of the different parameters in the 

model. In addition, the approach shows promise for other 

fields of application. More research on the impact of the 

similarity threshold is needed. In addition, the introduction of 

off-site impacts (e.g., transport and re-deposition of 

contaminated sediment) should be incorporated in the 

MADM criteria [33] to better mimic the contamination 

behavior. Future research should consider multiple 

consecutive remedial actions rather than single ones [20], to 

be more in line with the reality of remediation.  
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