
Automatic Generation of Geographically Accurate Bus Route Maps and
its Evaluation

Sogo Mizutani, Yonghwan Kim, and Daisuke Yamamoto
Nagoya Institute of Technology, Nagoya, Japan.

emails: s.mizutani.814@stn.nitech.ac.jp, kim@nitech.ac.jp, daisuke@nitech.ac.jp

Abstract—There have been many studies on the automatic
generation of deformed route maps, but there have only been a
few studies on the automatic generation of geographically
accurate route maps. This is because mapping route data and
bus route data and drawing them on a map are difficult tasks
due to various constraints, such as route placement problems.
In this study we estimate bus routes that use bus stop coordinate
series and strokes and propose an automatic bus route map
generation method based on this estimation. In the proposed
method, bus stop nodes are first generated on the road network
from the bus stop coordinate series. Then, the route between two
adjacent bus stop nodes is estimated using the road priority
search method, and this is set as the bus route. In the road
priority search method, the route with the fewest number of left
and right turns between bus stop nodes is estimated as the bus
route. Additionally, when drawing multiple routes, the
placement order of overlapping sections is dynamically
calculated so that intersections when turning left or right are
reduced. The experimental results applying the proposed
method to 30 bus routes show that the geographically accurate
route maps with few intersections among these routes can be
generated correctly.

Keywords-network; bus route map; stroke.

I. INTRODUCTION
The preliminary version of this paper is presented in [1].

This paper includes more detailed evaluations and additional
experiments to help understand this work and provides a
more detailed discussion about the contribution of this study.

The advancement of public transportation has received
considerable attention recently, as typified by Mobility as a
Service (MaaS). Among these advancements, buses and bus
routes are one of the means of transportation that are at the
core of public transportation, and they are of high importance.
In a metropolitan area, these transportation systems can be
very complex with over hundreds of bus routes. Generally,
when using public transportation such as trains and buses,
users think about how to get to their destination by looking at
route maps. Therefore, there is a need for more
understandable and accurate bus route maps.

There are two types of route maps: deformed route maps
and geographically accurate route maps. Deformed route
maps schematically show the locations and connections of
stations and bus stops. As shown in Figure 1, a deformed

route map does not necessarily need to be geographically
accurate in terms of direction and distance, and knowing the
relative positions of stations on a route and their connections
is sufficient. Geographically accurate route maps are drawn
on a route map based on accurate location information, as
shown in Figure 2. As a result, there is an advantage in that it
is possible to obtain information about the bus stop and the
nearby amenities in addition to its position with respect to the
bus line. Moreover, when multiple routes are drawn on one
route, the routes overlap each other, thereby reducing
visibility. Improving visibility requires arranging routes to
minimize overlap between routes. This is called the route
placement problem. The route placement problem is a type of
combinatorial optimization problem which is known as NP-
hard.

Furthermore, online map systems such as Google Maps
[2] and OpenStreetMap [3] have become popular in recent
years. The online map system allows users to freely change
the scale and position of the map and view the desired
location. Some APIs, such as Leaflet [4], can control the
online map system and permits the drawing of lines and
objects on the online map. The use of these technologies
enables the expression of geographically accurate route maps
by drawing route maps on online maps. Furthermore, the
popularization of the General Transit Feed Specification
(GTFS) [5] standard has led to transportation system data
such as route buses and subways being open to the public.
GTFS includes not only timetable data but also bus stop
coordinates (expressed by latitude and longitude) and route
connection data. Moreover, there has been a problem where
the route coordinate series is an optional item and is not
necessarily included.

The purpose of this research is to propose a method that
generates highly visible and geographically accurate bus
routes by estimating routes on road networks from bus stop
coordinates and route data included in GTFS and minimizing
the overlap between routes.

The remainder of this paper is organized as follows.
Section 2 describes the problems that are to be addressed in
this study. Section 3 describes the related work. Section 4
outlines the proposed system. The details of the proposed
method are described in Section 5. Section 6 reports the
experimental results, and Section 7 provides a summary.

Figure 1. Example of deformed route map (cited from

Nagoya City Transportation Bureau.)

Figure 2. Example of geographically accurate route map

(cited from Nagoya City Transportation Bureau.)

II. PROBLEMS
There have been many previous studies on the automatic

generation of deformed route maps [6-12], but there have
been few studies on the automatic generation of
geographically accurate route maps associated with road
networks [13]. In practice, most geographically accurate
route maps are created manually, but it is very difficult to
draw understandable route maps on a road map by associating
the road and bus route coordinates. In particular, the number
of bus routes is greater than that of railway networks, and
there are many routes that overlap each other, so creating
these maps require considerable time.

The automatic generation of geographically accurate bus
route maps can raise the following issues:

Issue 1) GTFS includes bus stop coordinates, but the

coordinates of the routes that connect them are optional
items and not necessarily included. Therefore, when
trying to draw a geographically accurate route on a road
network, the path of the route needs to be estimated

from the bus stop coordinates and road network.
Additionally, estimating the path requires a bus stop
node on the road network. However, the bus stop
coordinates indicate the position of the boarding point,
and they do not necessarily exist on roads.

Issue 2) A method of determining the placement order
between routes by brute force for each road link can be
used to minimize the overlap between routes. However,
this is an NP-hard problem, and this method has the
drawback of exponentially increasing the computational
load.

Issue 3) Improving the visibility of the route map requires
drawing the routes by shifting them, but the placement
order of the routes results in a route map with many
intersections. The placement order of routes with fewer
intersections needs to be automatically obtained.

Figure 3. Bus stop coordinates and road network.

Therefore, in this research, we propose a system with the
following features:

Feature 1) Stroke-based route generation function

A bus stop node to the nearest point on the road link
closest to the bus stop is added from the road network
and bus stop coordinates, as shown in Figure 3.
Furthermore, the path between the adjacent bus stop
nodes is estimated with the road priority search, and
that path is set as the bus route path.

Feature 2) Bus stroke (BS)/bus stroke fragment (BSF)
generation function
First, a path composed of road links that are estimated
by the route path generation function is converted into
a BS set composed of strokes. Then, we create a
function that generates a BSF set from the BS set that
considers bus route overlap. The BS/BSF model can be
used to aggregate many road links into the minimum
necessary number of BSFs. As a result, the number of
combinations can be minimized, and the placement
order can be determined efficiently.

Feature 3) Route placement/drawing function
The route placement order is decided from the route
map composed of the BSF set to reduce the number of
intersections. The routes are drawn on the online map
based on these results.

III. RELATED WORK
Previously, research on route maps was mainly research

on deformed maps, as shown below, unlike the proposed
method. Hong et al. [6] proposed a method for the problem
of the automatic generation of deformed route maps of
subways. Onda et al. [7] proposed a method for automatically
generating railway route maps for Tokyo subway routes. The
directions between stations were limited to eight directions
(in 45°-increments), and a mixed-integer programming
problem (MIP) was used to automatically place route maps
while preserving the geographical network topology. There
are also many studies on the automatic generation of
deformed route maps for subway route maps. Stott et al.
[8][10] proposed the automatic generation of railway route
maps using a multi-criteria optimization algorithm for
appropriate route placement. A clustering method was
applied, in which multiple evaluation criteria were set for
rendering, and the sum of those results was used as the
evaluation value. They proposed a route diagram generation
mechanism that thus avoided the local minimum problem and
found routes efficiently. Fink et al. [9] proposed a method of
drawing routes using Bézier curves for railway route
diagrams, which are often drawn linearly. Routes were
expressed with the fewest number of Bézier curves using a
graph-drawing algorithm based on a dynamic model.
Furthermore, Wang and Peng [11] proposed a system that
could interactively edit the layout of subway route maps.
Route maps are usually drawn with a finite number of colored
lines. Lloyd et al. [12] proposed a color-coding method for
subway route maps.

An example of research on geographically accurate route
maps includes Bast et al. [13] proposed a method of
automatically generating geographically accurate route maps
by using the connection relationships between stations and
route position coordinates included in GTFS as inputs. In this
research, they focused on the number of intersections
between routes, they improved integer linear programming
(ILP) and applied it to the optimization problem of the
placement order of routes running in parallel in order to
obtain a placement order with few intersections between
routes at high speed. Furthermore, as the number of subway
routes is small, there was no mention of a stroke reduction
method like that of the proposed method, and because
subways run underground, there was no need to associate
routes with roads, like in bus routes.

In the present study, the concept of a stroke [14][15] is
used. A stroke is a grouping of a road network based on
cognitive psychology, representing a road that follows a path.

Research using road strokes includes those on road
generalization. Zhang et al. [16] achieved road generalization
by selecting characteristic roads based on the road connection
relationships. Road generalization is a method that draws
only major roads in a road network based on the length of the
road stroke, and methods that achieve road generalization
from facility search results [17][18] and methods that achieve
road generalization in a Fisheye view format [19] have been

proposed. A path search method using strokes [20] has also
been proposed. However, there has been no research that
attempts to apply strokes to the drawing of route maps.

IV. PROPOSED SYSTEM
In this section, we describe the configuration of the

proposed system, data format and terminology definitions.

A. Configuration of proposed system
Figure 4 shows the configuration of the proposed system.

The proposed system consists of four functions: a stroke-
based route path generation function, BS/BSF generation
function, route placement function, and route drawing
function. The route path generation function generates bus
stop nodes from the bus information and road data published
in GTFS and generates route paths by searching for routes
between adjacent bus stop nodes. The BS/BSF generation
function generates a BS by grouping the route data in units of
strokes and also generates a BSF by dividing the BS into
overlapping sections of multiple BSs. Section 4 describes the
details of the definition of BS/BSF. The route placement
function sorts based on the rule that sets the placement order
of BSF. Finally, the route drawing function draws the route
on the online map and presents it to the user.

Figure 4. System configuration.

B. Data format and terminology definitions
The data formats and terminology used in this study are

described as follows:
1) Definition of road data

We used OpenStreetMap as a road database. Because
“road” is an ambiguous term, this paper defines road data by
road links, nodes, and arcs, as shown in Figure 5. Nodes
represent intersections and turns on the road network. A link
indicates a path that connects nodes. A link has a start node
and end node, and it becomes a directed graph given the
direction of the road. The shape of the road is represented by
a geometry-type arc format that is represented by a point
sequence. Table 1 shows the data structure of the road link
table. Additionally, OpenStreetMap stores the types of roads,
such as highways, national roads, and pedestrian roads, such
as road classes. Looped road links where the start node is the
same as the end node are not addressed in this study.
However, road links with a loop construct can be divided into

road links with a non-loop construct by adding a node at the
midpoint of the link.

Figure 5. Configuration of road data.

TABLE I. ROAD LINK DATA FORMAT.

Column name Data type Explanation

Id Integer Link ID

Clazz Integer Road class

Source Integer Start node ID

Target Integer End node ID

x1 Double Start node longitude

y1 Double Start node latitude

x2 Double End node longitude

y2 Double End node latitude

Km Double Link length

geom_way Geometry (LineString) Link shape

2) Definition of stroke

A stroke [14][15] represents a series of road links that
follow a path. A road network composed of strokes is called
a stroke network. An example of a stroke network is shown
in Figure 6 (right). In this example, based on stroke
generation rules, the road links on the road network in Figure
6 (left) are grouped to generate a stroke network composed
of colored strokes in Figure 6 (right).

Table 2 shows the stroke data format. A stroke consists of
an ID indicating the stroke, a series of road link IDs included
in the stroke, and its length and shape.

TABLE II. STROKE DATA FORMAT.

Column name Data type Explanation

id Integer Stroke ID

link_ids Text Included link ID series

stroke_length Double Stroke length

arc_series Geometry (LineString) Stroke shape

3) Bus data

In this study, we used the GTFS-JP format bus data that
was released as open data in 2017 by the Nagoya City

Transportation Bureau. We used three items: bus stop data,
system data, and bus stop series.

Bus stop data is information that indicates the position
and ID of a bus stop. Table 3 shows the data format. Bus stop
data includes the bus stop ID, bus stop name, latitude and
longitude of the bus stop, etc.

TABLE III. BUS STOP DATA FORMAT.

Column name Data type Explanation

Id Integer Bus stop ID

busstop_name Varchar Bus stop name

Lat Double Bus stop latitude

Lng Double Bus stop longitude

noriba_info Varchar Additional
information

geom_way Geometry (Point) Latitude/longitude
coordinates

Figure 6. Stroke network.

System data is the data in which operation data is stored

for each system of a bus route. The system data is stored in
the system table, and information on the start and end points
for the operation sections in the system, system code, route
code, and direction code are stored. System data is uniquely
identified by three items: system code, route code, and
direction code.

The bus stop series stores the series of bus stop data that
passes from the start point to the endpoint in the operation
section of each system data.

V. PROPOSED METHOD
In this section, we describe the details of each proposed

method.

A. Stroke-based route path generation function
The route path generation function generates a path on the

road network that the bus will actually pass through as a road
link series from the bus stop series. The main flow is to
generate bus stop nodes from the road network and bus stop
series. Stroke-based path search is then conducted on the
generated network.

1) Bus stop node generation

As mentioned in Issue 1, a bus stop node needs to be
generated from the bus stop coordinates. Specifically, the bus
stop coordinates, road link, and road class are set as inputs,
and the bus stop node is generated on the road link that is
closest to the bus stop in the specified road class.

The bus stop node generation method is shown below.
Note that functions starting with ST_ are functions provided
by PostGIS [21].

 𝐿𝐿 = (𝑙𝑙1, 𝑙𝑙2,⋯ , 𝑙𝑙𝑖𝑖)：Set of links
 𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶 ：Road class
 𝐵𝐵𝐵𝐵𝐶𝐶𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 ：Bus stop coordinates
 𝐵𝐵𝐵𝐵𝐶𝐶𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛 ：Bus stop node

Step 1) Among 𝐵𝐵𝐵𝐵𝐶𝐶𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝 and 𝐿𝐿 , 𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶 obtains a set of

neighboring links other than highways or connecting
roads to expressways. Simultaneously, the 𝑆𝑆𝑆𝑆_𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑖𝑖𝑖𝑖
is used to obtain a set of neighboring links within 20 m.

Step 2) The link with the shortest distance in the set of
nearby links is found using the ST_Distance function
and is obtained as the nearest neighbor link.

Step 3) 𝐵𝐵𝐵𝐵𝐶𝐶𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝is used to find the nearest point among the
neighboring links, and the ratio 𝑟𝑟 of the nearest point to
the start and end points of the link is obtained using the
ST_LineLocatePoint function. It is stored in the table as
𝐵𝐵𝐵𝐵𝐶𝐶𝑝𝑝𝑝𝑝𝑛𝑛𝑛𝑛 using the ST_LineLocatePoint function from
the obtained ratio 𝑟𝑟. The data format of the bus stop
node is shown in Table 4.

The reason for limiting the road class to those other than

expressways in Step 1 is as follows. In urban areas, general
roads are often laid under elevated expressways, and it is
impossible to determine which bus stop is based on latitude
and longitude coordinates alone. Therefore, we used the
property that there are almost no route bus stops on
expressways and did not generate bus stop nodes on
expressways. If the neighboring links are obtained only from
the latitude and longitude, then there is a possibility that the
wrong links, such as expressways, are obtained.

TABLE IV. BUS STOP NODE TABLE.

Column name Data type Explanation

id Integer Bus stop ID

link_id Integer Nearest neighbor road
link ID

node_lat Double Bus stop node latitude

node_lng Double Bus stop node
longitude

ratio Double Ratio on link

2) Creation of split link

Nodes on a link require splitting the road links and
regenerating the road network to search for a path between

bus stop nodes using the created bus stop nodes. In this study,
a link that is obtained by splitting a road link at a bus stop
node is termed a split link. The procedure for generating a
split link is demonstrated as follows:
Step 1) Obtain the nearest neighbor link from the bus stop

node table, check how many bus stop nodes there are on
the link in the road database, and find the number of
splits.

Step 2) If there are multiple bus stop nodes, then they are
sorted based on Ratio, which is the bus stop node table
ratio, and the links are split, in order, from the starting
point.

Step 3) A new ID is allocated to the split link and stored in
the split link table.

In the example of Figure 7, Link2, which is the road link
of Figure 7 (top), is split at the point of the bus stop node.
This increases the number of links from 3 to 4.

Figure 7. Split link.

3) Stroke-based route path search function

The stroke-based route path search function is a method
of finding the distance between adjacent bus stop nodes by
the stroke-based path search function. The specific steps are
as follows:

 ID = (𝑖𝑖𝑖𝑖1, 𝑖𝑖𝑖𝑖2,⋯ , 𝑖𝑖𝑖𝑖𝑝𝑝) ：Bus stop ID list of the

obtained route
 𝑁𝑁𝑁𝑁𝑖𝑖𝑁𝑁 = (𝑁𝑁1,𝑁𝑁2,⋯ ,𝑁𝑁𝑝𝑝) ：Node ID list
 𝑉𝑉 ∋ (𝐶𝐶,𝑔𝑔) ：Combination of start and end points
 𝑅𝑅 = (𝑟𝑟1, 𝑟𝑟2,⋯ , 𝑟𝑟𝑝𝑝) ：Path data list

Step 1) Obtain the ID for the specified system, route, and

direction code from the bus stop order table.
Step 2) Obtain the bus stop node corresponding to the ID

from the bus stop node table and add it to the 𝑁𝑁𝑁𝑁𝑖𝑖𝑁𝑁.
Step 3) In v = (𝑁𝑁𝑖𝑖 ,𝑁𝑁𝑖𝑖+1) ∈ 𝑉𝑉 , check if there is a record

(𝐶𝐶,𝑔𝑔) = (𝑖𝑖𝑖𝑖𝑖𝑖 , 𝑖𝑖𝑖𝑖𝑖𝑖+1) 𝑁𝑁𝑟𝑟 (𝑖𝑖𝑖𝑖𝑖𝑖+1, 𝑖𝑖𝑖𝑖𝑖𝑖) in the path table.
Step 4) If it exists in Step 3, the acquired path data is

assumed to be 𝑟𝑟𝑖𝑖.

Step 5) If it does not exist in Step 3, a path search in v is
performed to find 𝑟𝑟𝑖𝑖.

Step 6) If all paths are found, R is stored in the path table.

In Step 3, the search time can be reduced by checking
whether a path is already in the table and finding sections
where a path search is not needed.

In Step 5, a road priority search is performed. A road
priority search is a method that adopts the path with the
shortest distance among paths with the smallest number of
passing strokes.

The route bus has a long body, so the costs of turning left
or right are high. Therefore, there is a tendency to select paths
with as few right and left turns as possible as the bus route.
Therefore, it was thought that selecting wide roads as the
route path would be better. Thus, we chose road priority
search instead of shortest path search, the latter of which is
generally used in path search. Table 5 shows the generated
path table format.

TABLE V. ROUTE PATH TABLE.

Column name Data type Explanation

route_code Integer System code

line_code Integer Route code

dir_code Integer Direction code

route_name Varchar System symbol

s_order Integer Start point order
number

g_order Integer End point order
number

s_gid Integer Start point bus
stop ID

s_name Varchar Start point bus
stop name

g_gid Integer End point bus
stop ID

g_name Varchar End point bus
stop name

geom_way geometry(LineString) Path shape

link_ids Varchar Link ID series

B. BS/BSF generation function
This subsection describes the definitions and algorithms

of BS and BSF.
1) Bus stroke (BS)

BS is a representation of a bus route not as a series of road
links but as a series of strokes. Bus routes often pass along
roads, so it was thought that expressing a route as a set of
strokes instead of as a set of road links could express it with
a smaller number of links. Because the number of
combinations can be reduced, this is expected to contribute to
the speeding up of the combinatorial optimization problem.
Figure 8 shows an example of converting a route path

(number of links is 6) represented by a series of road links
into a BS series (number of links is 3).

Figure 8. Example of bus stroke generation.

The BS generation procedure is shown as follows:

Step 1) The road link series is obtained from the path data
of the desired route.

Step 2) The stroke that contains the acquired link series is
obtained from the stroke table.

Step 3) A stroke series is generated in the order of the route
paths and stored in the BS table.

The BS table that is generated by the above procedure is
shown in Table 6 below.

TABLE VI. BS TABLE.

Column name Data type Explanation

route_code Integer System code

line_code Integer Route code

dir_code Integer Direction code

num Integer Order number

stroke_id Integer Stroke ID

link_ids Varchar Link series

geom_way geometry(LineString) Path shape

2) Bus stroke fragment (BSF)

A decomposition of the BS into shorter strokes in
consideration of the overlapping of multiple routes is defined
as the BSF. Specifically, this is a network in which a path
where multiple paths overlap is split at the breakpoints, as
shown in Figure 9. In this example, a red route BS1 is split
into BSF1 and BSF2 after considering the overlap with the
blue route. The BSF generation procedure is shown as
follows:

 𝑅𝑅(𝑙𝑙𝑖𝑖) = {𝑟𝑟𝑎𝑎 , 𝑟𝑟𝑏𝑏 , 𝑟𝑟𝑐𝑐} ：Set of routes passing link 𝑙𝑙𝑖𝑖
 𝑟𝑟.𝐵𝐵𝑆𝑆 = (𝑏𝑏𝐶𝐶1, 𝑏𝑏𝐶𝐶2,⋯ , 𝑏𝑏𝐶𝐶𝑝𝑝) ： BS data list that

configures route r
 𝑟𝑟.𝐵𝐵𝑆𝑆𝐵𝐵 = (𝑏𝑏𝐶𝐶𝑏𝑏1, 𝑏𝑏𝐶𝐶𝑏𝑏2,⋯ , 𝑏𝑏𝐶𝐶𝑏𝑏𝑝𝑝) ： BSF list that

configures route r

Step 1) The 𝑟𝑟.𝐵𝐵𝑆𝑆 of the desired multiple routes is obtained.

Step 2) A route list 𝑅𝑅(𝑙𝑙𝑖𝑖) that passes through the road links
is generated from the bus route data.

Step 3) The BS with multiple routes is divided into
overlapping and non-overlapping sections from 𝑅𝑅, and
the overlapping sections are split to generate the BSF.

Step 4) The BSF series 𝑟𝑟.𝐵𝐵𝑆𝑆𝐵𝐵 that passes through each
route is obtained and stored in the route BSF table. The
BSF table and route BSF table are shown in Tables 7
and 8, respectively, below.

In Step 3, the BS is split based on the obtained 𝑅𝑅. The

BS splitting procedure is shown as follows:

Step 1) 𝑅𝑅(𝑙𝑙𝑖𝑖) and 𝑅𝑅(𝑙𝑙𝑖𝑖−1) are compared based on the

route order. If the included routes are the same, then
they are left as they are, and if they are not the same,
then 𝑙𝑙𝑖𝑖−1 is specified as a splitting position.

Step 2) The BS link series is cut from the first link to the
splitting position, thereby splitting the BS.

Step 3) The BSF is generated by splitting the BS and is
stored in the BSF table.

Figure 9. Example of BSF generation.

TABLE VII. BSF TABLE.

Column name Data type Explanation

bsf_id Integer BSF ID

stroke_id Integer Stroke ID

geom_way geometry(LineString) Path shape

link_ids Varchar Link series

route_codes Varchar Route series

TABLE VIII. ROUTE BSF TABLE.

Column name Data type Explanation

route_code Integer System code

line_code Integer Route code

dir_code Integer Direction code

num Integer Order number

Column name Data type Explanation

bsf_id Integer BSF ID

bsf_front Integer Front BSF ID

bsf_behind Varchar Behind BSF ID

geom_way geometry(LineString) Path shape

C. Route placement/route drawing function
Details of the route placement function and route drawing

function are described below.
1) Route placement function

We describe a method of determining the placement order
of parallel sections of multiple routes using BSF as the input
for each route. The procedure is shown as follows:

Step 1) The BSF series data for two routes among the input

routes is obtained.
Step 2) A target BSF list for which the placement order

needs to be determined is created.
Step 3) The placement order of the target BSF is obtained in

order from the starting point of the route, and if
necessary, the previous placement order is used.

Step 4) One route is added to the current result, and the
target BSF list for which the placement order needs to
be calculated is obtained, as in the case of the two routes.

Step 5) Steps 3 and 4 are repeated for each input route.

In the above procedure, the following two rules are set to
determine the placement order.

Rule 1) The placement order of the target BSF is based on

the angle formed by the target BSF and the previous
BSF.

Rule 2) For routes where the placement order is not uniquely
determined, the BSFs are determined backward until the
placement order is determined．

Figure 10. Route placement rules.

Figure 10 shows an example of route placement.
In Rule 1, the order of placement of routes is determined

by the angle between the previous BSF and the target BSF at
the start point. The PostGIS functions ST_Azimuth and
degree were used to calculate the angles: the ST_Azimuth
function returns the rightward radians with respect to the
north, and the degree function converts radians to degrees.

These are used to calculate the angle between the previous
BSF and the target BSF (Base). In the example in Figure 10,
(a, b, c, Base) = (0°, 270°, 225°, 90°). The order where these
are rotated from the beginning to end until the Base value
comes to the beginning, (90°, 0°, 270°, 225°) = (Base, a, b,
c), is the placement order arranged in order from the north.

In Rule 2, the angle formed by the BSF connected to the
blue and yellow starting points and the target BSF is the same,
so the placement order of the front BSF is inherited as is to
the placement order of the target BSF.

2) Route drawing function

We describe a method that draws a route map whose route
placement order is dynamically changed by generating a
GeoJSON file as drawing data based on the route placement
order results and reading this file.

The generated GeoJSON file is read and drawn onto an
online map using Leaflet. At this time, the BSF is drawn
using the Leaflet Polyline Offset [22] plug-in, which can give
an offset to a polyline to draw routes by shifting them so that
the routes in the same section do not overlap. It also has the
function of displaying the bus stop position from bus stop
data as a marker and displaying the route name in a popup, as
well as the function of drawing in one color without giving
the route an offset when the scale is small.

Figure 11 shows an example of a Nagoya city route bus
drawn using the route drawing function. It can be seen in this
example that the three routes and four bus stops (markers) on
the map are displayed correctly.

Figure 11. Route drawing example.

VI. EVALUATION EXPERIMENT
We conducted the following two experiments to verify the

effectiveness of the proposed method.

A. Evaluation of stroke-based route estimation function
We evaluate the stroke-based route estimation function,

which is one of the proposed methods. The route estimation
function takes the coordinates of adjacent bus stops as input
and estimates the bus route between those bus stops.

As evaluation methods, we compared three methods: road
priority search method using strokes (proposed method),
shortest path search (conventional method 1), and shortest
path search that considers road classes (conventional method
2). Conventional method 2 weights the cost (distance)
according to road class when applying the shortest path
algorithm.

The evaluation targets were the 50 bus routes of the
Nagoya City Transportation Bureau. The evaluation scale
was the matching ratio 𝑀𝑀 of the road links between the
estimated route and actual route, and equation (1) is used.

𝑀𝑀 =
𝑁𝑁𝐵𝐵𝑁𝑁𝑏𝑏𝑁𝑁𝑟𝑟 𝑁𝑁𝑏𝑏 𝑁𝑁𝐶𝐶𝐷𝐷𝑚𝑚ℎ𝑁𝑁𝑖𝑖 𝑟𝑟𝑁𝑁𝐶𝐶𝑖𝑖 𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝐶𝐶
𝑁𝑁𝐵𝐵𝑁𝑁𝑏𝑏𝑁𝑁𝑟𝑟 𝑁𝑁𝑏𝑏 𝐶𝐶𝑚𝑚𝐷𝐷𝐵𝐵𝐶𝐶𝑙𝑙 𝑟𝑟𝑁𝑁𝐶𝐶𝑖𝑖 𝑙𝑙𝑖𝑖𝑖𝑖𝑙𝑙𝐶𝐶

 × 100 (1)

Table 9 shows the results of the evaluation experiment.

The matching ratio M was 92.0% for conventional method 1,
whereas the ratios were high at 94.0% and 96.1% for
conventional method 2 and the proposed method,
respectively. The proposed method was superior to
conventional methods 1 and 2 at a significance level of 5%.
It was shown that considering the road path, that is, stroke,
was effective for bus routes. This was thought to be because
the bus tends to run on straight paths as much as possible as
turning left or right comes at a high cost.

Figure 12 shows an example of an actual generation. It
can be seen that the path generated by the proposed method
(Following path) is closer to the actual bus route (Actual line)
when compared to conventional method 1 (Shortest Path).

Meanwhile, there were cases where the bus route could
not be estimated correctly at some points. In particular, there
were many estimation errors near bus terminals. As an
example, the green estimated route on the left side was
estimated differently on the right side due to an error in
estimating the entrance/exit of the bus terminal, as shown in
Figure 13. Bus terminals have many bus stops, and the
entrances and exits are different, so the road network is also
more complicated. Therefore, it is thought that the cause was
the generation of a bus stop node on the wrong road link.

TABLE IX. EVALUATION OF ROUTE ESTIMATION FUNCTION.

 Matching ratio M (%)
Conventional method 1 92.0
Conventional method 2 94.0

Proposed method 96.1

Figure 12. Comparison of route generation methods.

Figure 13. Example of route generation failure.

B. Verification of link reduction effect by BS/BSF model
Next, we verified the reduction of the number of links by

the BS/BSF model. The BS/BSF model is a method for
reducing the number of links by treating bus routes as a set of
BSFs rather than as a set of road links. If the number of links
can be reduced, then the number of combinations in the route
placement problem can be reduced, and the computation time
is expected to be reduced.

The evaluation targets were the 661 routes of the Nagoya
City route buses. The total number of road links that make up
the routes was compared with the number of BSF links that
make up the route.

Table 10 shows the experimental results. Each number
and reduction rate are shown. The number of road links is
16,433, whereas the number of BSFs is 2,776. As a result, we
were able to reduce the number of links by 83.1%.

These results showed that the proposed system can reduce
the number of links to minimize the overlap between routes,
and that route placement order could be obtained efficiently.

TABLE X. COMPARISON BETWEEN NUMBER OF ROAD LINKS AND
NUMBER OF BSFS.

Number of road
links

Number
of BSFs Reduction rate (%)

16433 2776 83.1

C. Qualitative evaluation in automatic generation of 30
routes
Finally, we conducted a qualitative evaluation on

automatically generated routes in this evaluation. The
evaluation item here is the visibility of the route map. Figure
14 shows the rendering result of 30 routes. At this scale, 20
routes are displayed on the screen. It was confirmed that the
rendering was mostly correct and that there were no problems
in actual use.

However, there were several issues. For example, in the
route drawing function, routes are distinguished by arbitrary
color coding, but visibility is reduced as a result of displaying
different routes with similar colors. Additionally, there was
the issue of visibility decreasing in drawings of BSFs with
three or more routes overlapping or BSFs near bus terminals
at positions away from the actual road. Therefore, the
realization of a drawing function that maintains visibility near
bus terminals and when routes overlap is a topic for future
study.

VII. CONCLUSION
In this study, we proposed an automatic estimation

method for geographically accurate bus route maps using bus
stop coordinate series and strokes. Specifically, the path
between adjacent bus stops is estimated using the road

Figure 14. Drawing result of 30 routes

priority search method. The estimated path has the fewest
number of right and left turns, so it is thought to be a suitable
path for the bus route. As a result, we were able to estimate
bus routes with significantly higher accuracy (96.1%) than
the conventional method (92.0% and 94.0%).

Additionally, there was the issue where bus routes would
intersect each other and become difficult to see when multiple
bus routes are drawn on a map. Solving this issue is a type of
combinatorial optimization problem, and there is the issue
that the computational costs increase exponentially as the
number of combinations increases. Therefore, we proposed
the BS/BSF model for the purpose of reducing the number of
combinations. We minimized the number of links by
grouping paths based on the road network to the extent
possible. As a result, we were able to reduce the number of
links by 83.1% when compared to the conventional road
network model.

Furthermore, we confirmed by drawing 30 routes on
OpenStreetMap that they could be drawn within a practically
acceptable range.

Future issues are as follows. Currently, only 30 routes can
be drawn, but we would like to improve this so that it could
be applied to more routes. Additionally, we would like to
solve the issue of poor visibility at locations where the bus
routes intersect in a complicated manner, such as bus
terminals. Finally, we would like to investigate the issue of
color coding of routes with high visibility.

VIII. ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant
Numbers JP19H04115 and JP21K19766.

IX. REFERENCES

[1] S. Mizutani, Y. Kim, D. Yamamoto, and N. Takahashi,
“Automatic generation method for geographically accurate bus
route maps from bus stops,” In Proceedings of the
GEOProcessing 2022, The Fourteenth International
Conference on Advanced Geographic Information Systems,
Applications, and Services, Porto, Portugal, ISBN:978-1-
61208-983-6,
https://www.thinkmind.org/index.php?view=article&articleid=geopro
cessing_2022_1_50_30037, pp. 19-24, 2022.

[2] Google Maps, (Comment: Example of popular web maps),
https://www.google.com/maps/. Accessed 5 Dec. 2022.

[3] OpenStreetMap, (Comment: Data and model used with this
research), https://www.openstreetmap.org/. Accessed 5 Dec. 2022.

[4] Leaflet, (Comment: Map library used with this research),
http://www.leafletjs.com/. Accessed 5 Dec. 2022.

[5] General Transit Feed Specification, https://gtfs.org/. Accessed
5 Dec. 2022.

[6] S. H. Hong, D. Merrick, and H. A. Do Nascimento, “The metro
map layout problem,” In Proceedings of the International
Symposium on Graph Drawing 2004, pp. 482-491, Springer,
2004. DOI: /10.1007/978-3-540-31843-9_50.

[7] M. Onda, M. Moriguchi, and K. Imai, “Automatic Drawing for
Metro Maps in Tokyo,” IEICE-COMP / IPSJ-AL, 2017-AL163,
Vol.13, pp. 1-8, 2017.

[8] J. Stott, P. Rodgers, J. C. Martinez-Ovando, and S. G. Walker,
“Automatic metro map layout using multicriteria optimization,”
IEEE Transactions on Visualization and Computer Graphics,
Vol. 17, No. 1, pp. 101-114, 2010. DOI:
10.1109/TVCG.2010.24.

[9] M. Fink，H. Haverkort，M. Nollenburg，M. Roberts，J.
Schuhmann，and A. Wolff，“Drawing Metro Maps Using
Bezier Curves,” 20th International Symposium on Graph
Drawing，pp. 463-474，2012.

[10] J. M. Stott and P. Rodgers, “Metro map layout using
multicriteria optimization,” In Proceedings of the Eighth
International Conference on Information Visualization, pp.
355-362, 2004. DOI: 10.1109/IV.2004.1320168

[11] Y. S. Wang and W. Y Peng, “Interactive metro map editing,”
IEEE Transactions on Visualization and Computer Graphics,
Vol. 22, No. 2, pp. 1115-1126, 2016.
DOI: 10.1109/TVCG.2015.2430290

[12] P. B. Lloyd, P. Rodgers, and M. J. Roberts, “Metro map colour-
coding: Effect on usability in route tracing,” In Proceedings of
the International conference on theory and application of
diagrams, pp. 411-428, Springer, 2018. DOI: 10.1007/978-3-
319-91376-6_38

[13] H. Bast, P. Brosi, and S. Storandt, “Efficient Generation of
Geographically Accurate Transit Maps,” In Proceedings of the
26th ACM SIGSPATIAL International Conference on
Advances in Geographic Information，pp. 13-22，2018. DOI:
10.1145/3337790

[14] R. Thomson and R. Brooks, “Efficient generalization and
abstraction of network data using perceptual grouping,” In
Proceedings of the 5th International Conference on
GeoComputation, pp. 23–25, 2000.

[15] R. Thomson and D. Richardson, “’Good continuation’
principle of perceptual organization applied to the
generalization of road networks,” In Proceedings of the 19th
International Cartographic Conference, pp. 1215–1223, 1999.

[16] Q. Zhang, “Road network generalization based on connection
analysis,” In Proceedings of the 11th International Symposium
on Spatial Data Handling, pp. 343–353, 2005. DOI: 10.1007/3-
540-26772-7_26

[17] D. Yamamoto, M. Murase, and N. Takahashi, “On-Demand
Generalization of Road Networks based on Facility Search
Results,” IEICE Transactions on Information and System, Vol.
E102-D, No. 1, pp. 99-103, 2019. DOI:
10.1587/transinf.2017EDP7405

[18] M. Murase, D. Yamamoto, and N. Takahashi, “On-demand
Generalization of Guide Maps with Road Networks and
Category-based Web Search, Results,” In Proceedings of the
14th International Symposium on Web and Wireless
Geographical Information Systems, Vol. 19, pp. 53-70, 2015.
DOI: 10.1007/978-3-319-18251-3_4

[19] D. Yamamoto, S. Ozeki, and N. Takahashi,
“Focus+Glue+Context: An Improved Fisheye Approach for
Web Map Services,” In Proceedings of the ACM
SIGSPATIAL GIS 2009, pp. 101-110, 2009. DOI:
10.1145/1653771.1653788

[20] Y. Hiura, (supervisor: D. Yamamoto), “Proposal of an efficient
nth min stroke shortest path search method,” Master’s thesis,
Nagoya Institute of Technology, 2020. (In Japanese)

[21] PostGIS, (Comment: Database used with this research),
https://postgis.net. Accessed 5 Dec. 2022.

[22] Leaflet Polyline Offset, (Comment: Map library used with this
research), https://github.com/bbecquet/Leaflet.PolylineOffset.
Accessed 5 Dec. 2022.

https://www.google.com/maps/
https://gtfs.org/
https://github.com/bbecquet/Leaflet.PolylineOffset

