
Improving Image Tracing with Convolutional
Autoencoders by High-Pass Filter Preprocessing

Zineddine Bettouche and Andreas Fischer
Deggendorf Institute of Technology

Dieter-Görlitz-Platz 1
94469 Deggendorf

E-Mail: zineddine.bettouche@th-deg.de, andreas.fischer@th-deg.de

Abstract—The process of transforming a raster image into a
vector representation is known as image tracing. This study
looks into several processing methods that include high-pass
filtering, autoencoding, and vectorization to extract an abstract
representation of an image. According to the findings, rebuilding
an image with autoencoders, high-pass filtering it, and then
vectorizing it can represent the image more abstractly while
increasing the effectiveness of the vectorization process.

Index Terms—image quality; vector graphics; principal com-
ponent analysis; neural networks; autoencoders; high-pass filters;
vectorization; complexity theory; and information technology.

I. INTRODUCTION

Object recognition is considered a complex task in the pro-
cessing field. Its complexity far exceeds simple arithmetic op-
erations. With the massive amount of data generated each year,
manual calculations done by hand are completely ignored.
Therefore, data processing and evaluation are automated for
all operations.

In recent years, many studies have emerged to contribute to
the advancement of knowledge in the field of object recogni-
tion. Two of the pillars of this field are image processing and
artificial intelligence (AI). AI is a fascinating subject that has
attracted a lot of attention in the last decade, especially with
its use in computer vision. Now not only filter-based models,
e.g., Haar Cascade, can be trained to classify images, but also
neural networks can be wired to learn how to detect various
shapes and objects. The models generally learn from the pixel
values and model their structures in mathematical equations,
which begs the question of whether it would be more efficient
for the models to learn from vector images as they are closer to
the nature of the trained models than spatial data in the form
of pixel arrays. Thus, this article is an attempt to improve
the tracing of images by using autoencoders and high-pass
filters to obtain an abstract representation of images in vector
form. The highpass filters are chosen since they emphasize the
important features of an image. This work is considered a step
forward to achieving a better training rate in object recognition
with ANN.

This paper is an extended version of the previously pub-
lished paper [1]that discussed the summarized content of the
findings that this work produced. A more in-depth discussion
about the techniques used in the work, such as Image Tracing,
Potrace, and autoencoders, has been added in the background
section. The previous papers that touched on the topic of
image tracing have been further discussed in detail to illustrate
the place our work takes in relation to what has already
been accomplished in the field. Concerning the methodology
followed, a detailed description of the autoencoding network
built is provided, and the choice of the layers is justified.
When it comes to the experimentation part, other experiments
are added, such as the attempt at reducing the noise without
blurring the images. The experiments already introduced in the
previous paper are extended to further discuss their findings,
and detailed images that visualize those findings are added.

In other words, concerning the added value of this paper
over its previous conference version, it can be stated that
every section has gone through many further details, to present
a richer methodology section (as for the ease of future
building over our findings), to underline the networks built,
and technologies used (such as the trained autoencoders that
were described layer by layer and Potrace as a vectorization
tool), and to provide an extended experimentation section, as
the experiments’ discussions are lengthened, detailed more
with visualization of their results, and assisted with other
experiments (such as a blur-free noise reduction attempt).

At first, there was the question: if the autoencoding of an
image can improve its vectorized format by reconstructing its
important features, how can high-pass filters come into play
in the process? In other words, ”Can a high-pass filter be
used in combination with an autoencoding model to achieve
an abstract representation of the image through the process
of vectorization?” Thus, various ideas branched from this
node, leading to the different pipelines that can be built to
experiment with high-pass filter integration. For instance, the
filters can be put before the autoencoding stage of a model that
is already trained with filtered images to better reconstruct
the significant data, leading to better vectorization. More

mailto:zineddine.bettouche@th-deg.de
mailto:andreas.fischer@th-deg.de


Figure 1. Bezier curve

systematically, the autoencoding stage can act as a smoothing
process, removing the noise from the images while reducing
their complexity, while the filters come afterward to further
enhance the quality of the important features, leading to a
more abstract representation.

The remainder of this paper is structured as follows: In
Section II, an introduction is given to image tracing, au-
toencoders, and high-pass filters. Section III discusses related
work. Section IV introduces the methodology of this paper,
including the evaluation methods used and the reasons why
they were chosen. Section V presents the experiments and their
results. This is the part that attempts to eliminate inefficient
processing algorithms so that only a few pipelines that score
closely are put forward for further evaluation. Section VI
includes the evaluation of the different processing pipelines
built and closes with a summarizing interpretation. Finally,
Section VII concludes the paper and discusses future work.

II. BACKGROUND

A. Image Tracing

Image tracing is the process of converting a bitmap into a
vector graphic. As Selinger writes in his tracing algorithm [2],
vector graphics are described as algebraic formulas of the con-
tours, typically in the form of Bezier curves. The advantage of
displaying an image as a vector outline is that it can be scaled
to any size without loss of quality. They are independent of
the resolution and are used, for example, for fonts, since these
must be available in many different sizes. However, most input
and output devices, such as scanners, displays, and printers,
generate bitmaps or raster data. For this reason, a conversion
between the two formats is necessary. Converting a vector
graphic into a bitmap is called ”rendering” or ”rasterizing.”
Tracing algorithms are inherently imperfect because many
possible vector outlines can represent the same bitmap. Of
the many possible vector representations that can result in
a particular bitmap, some are more plausible or aesthetically
pleasing than others. For example, to render bitmaps with a
high resolution, each black pixel is represented as a precise
square that creates staircase patterns. However, spikes are
neither pleasant to look at nor are they particularly plausible
interpretations of the original image. Bezier curves are used
to represent the outlines.

As seen in Figure 1, a cubic Bezier curve consists of four
control points, which determine the curvature of the curve. As

Figure 2. Header of an SVG file by potrace

a rule, the vector graphics are saved as SVG files (Scalable
Vector Graphics). This file format is a special form of an XML
file. XML stands for Extensible Markup Language. It is used
to present hierarchically structured data in a human-readable
format. As can be seen from Figure 2, the structure of this file
is based on the Extensible Markup Language scheme. The file
header defines which versions of XML and SVG are used. The
height and width of the graphic in points are also specified. In
this case, the g element represents the drawing area on which
to draw. The elements to be drawn consist of tags stored as
XML elements. They are particularly important in connection
with the path elements. Quadratic and cubic Bezier curves, as
well as elliptical arcs and lines, can be put together as best
fits. The entries here determine which form the path takes.

B. Potrace as a Vectorization Tool

Potrace is a tracing algorithm that was developed by Peter
Selinger [2]. It is considered simple and efficient as it produces
excellent results. Potrace stands for ”polygon tracer,” where
the output of the algorithm is not a polygon but a contour made
of Bezier curves. This algorithm works particularly well for
high-resolution images. Potrace generates grayscale images as
a threshold vector rather than as the output. The conversion
from a bitmap to a vector graphic is done in several steps.
First, the bitmap is broken down into several paths that form
the boundaries between black and white areas. The points
adjoining four pixels are given integer coordinates. These
points are saved as vertices when the four adjacent pixels
are not the same color. The connection between two vertices
is called the edge. A path is thus a sequence of vertices,
whereby the edges must all be different. The path composition
in Potrace works by moving along the edges between the
pixels. Every time a corner is found, a decision is made as
to which direction the path will continue based on the colors
of the surrounding pixels. If a closed path is defined, it is
removed from the image by inverting all pixel colors inside
the path. This will define a new bitmap on which the algorithm
will be applied recursively until there are no more black pixels.
Then its optimal polygon is approximately determined for each
path. The criterion for optimality with Potrace is the number
of segments. A polygon with a few segments is therefore more
optimal than one with several segments. In the last phase, the
polygons obtained are converted into a smooth vector outline.
Here, the vertices are first corrected so that they correspond as
closely as possible to the original bitmap. Furthermore, in the



Figure 3. Potrace vectorization

main step, the corners and curves are calculated based on the
length of the adjacent segments and the angles between them.
Optionally, the curves can be optimized after this process so
that they match the original bitmap as closely as possible.
Then, in the main step, the corners and curves are calculated
based on the length of the adjacent segments and the angles
between them. Optionally, the curves can be optimized after
this process so that they match the original bitmap even more
closely. Then, in the main step, the corners and curves are
calculated based on the length of the adjacent segments and
the angles between them. Finally, the curves can be optimized
after this process. Figure 3 shows the output vector image
when applying Potrace to an input raster image.

C. Autoencoder

A typical use of a neural network is for supervised learning.
It involves training data, which contains an output label. The
neural network tries to learn the mapping from the given input
to the given output label. Nevertheless, if the input vector itself
replaces the output label, then the network will try to find the
mapping from the input to itself. This would be the identity
function, which is a trivial mapping. However, if the network
is not allowed to simply copy the input, then it will be forced
to capture only the salient features. This constraint opens up
a different field of applications for neural networks, which
was unknown. The primary applications are dimensionality
reduction and specific data compression. The network is first
trained on the given input. The network attempts to reconstruct
the given input from the features it has picked up and outputs
an approximation of the input. The training step involves the
computation of the error and backpropagating the error. The
typical architecture of an autoencoder resembles a bottleneck.
Figure 4 depicts the schematic structure of an autoencoder.

The encoder part of the network is used for encoding and
sometimes even for data compression purposes, although it is
not very effective as compared to other general compression
techniques like JPEG. Encoding is achieved by the encoder
part of the network, which has a decreasing number of hidden
units in each layer. Thus, this part is forced to pick up only the
most significant and representative features of the data. The
second half of the network performs the decoding function.
This part has an increasing number of hidden units in each
layer and thus tries to reconstruct the original input from the
encoded data. Therefore, autoencoders are an unsupervised
learning technique. Training an autoencoder for data compres-
sion: For a data compression procedure, the most important

Figure 4. Example structure of an autoencoding network

aspect of compression is the reliability of the reconstruction
of the compressed data. This requirement dictates the structure
of the autoencoder as a bottleneck.

1) Encoding the input data: The autoencoder first tries to
encode the data using the initialized weights and biases.

2) Decoding the input data: The autoencoder tries to
reconstruct the original input from the encoded data to
test the reliability of the encoding.

3) Backpropagating the error: After the reconstruction,
the loss function is computed to determine the reliability
of the encoding. The error generated is backpropagated.
The above-described training process is reiterated sev-
eral times until an acceptable level of reconstruction is
reached.

After the training process, only the encoder part of the
autoencoder is retained to encode a similar type of data used
in the training process. The different ways to constrain the
network are:

• Keep small Hidden Layers: If the size of each hidden
layer is kept as small as possible, then the network will
be forced to pick up only the representative features of
the data thus encoding the data.

• Regularization: In this method, a loss term is added to
the cost function which encourages the network to train
in ways other than copying the input.

• Denoising: Another way of constraining the network is
to add noise to the input and teach the network how to
remove the noise from the data.

• Tuning the Activation Functions: This method involves
changing the activation functions of various nodes so
that a majority of the nodes are dormant thus effectively
reducing the size of the hidden layers.

D. High-pass Filters

A high-pass filter can be used to make an image appear
sharper. These filters (e.g., Sobel [3] and Canny [4]) emphasize
fine details in the image. The change in intensity is used by
high-pass filtering. If one pixel is brighter than its immediate
neighbors, it gets boosted. Figure 5 shows the result of
applying a high-pass filter (Sobel) on a random image.



Figure 5. Applying Sobel derivatives on a random image

III. RELATED WORK

Image segmentation can be considered an extension of im-
age classification where localization succeeds the classification
process. It is a superset of image classification with the model
pinpointing where a corresponding object is present by out-
lining the object’s boundary. Image segmentation techniques
can be divided into two classes:

• Classical computer vision approaches: such as thresh-
olding, edge, region- or cluster-based segmentation tech-
niques.

• AI-based approaches using mainly autoencoders. For
instance, DeepLab made use of convolutions to replace
simple pooling operations and prevent significant infor-
mation loss while downsampling.

In our paper, we focus on the use of high-pass filters with
autoencoders, which succeeded with a vectorization process.
Hence, the relevant work on these topics is introduced in this
section.

To create better vectorize vectors, Lu et al. [5] leverage addi-
tional depth information stored in RGB-D images. Although
they anticipate consumer gear will soon be able to produce
photos with depth information, this still has to happen. The
method described here, however, operates with standard RGB
photos without the need for additional gear.

Bera [6] offers a different method for image vectorization. It
emphasizes the advancement made possible by edge detection
techniques. This study, in contrast, looks into the benefits of
dimensionality reduction.

A method for vector pictures based on splines rather than
Bézier curves is presented by Chen et al. [7] To create a
combination of raster and vector graphics, they concentrate
on data structures that facilitate real-time editing.

Solomon and Bessmeltsev [8] investigated the usage of
frame fields in an MIT study. Finding a smooth frame field
on the image plane with at least one direction aligned with
neighboring drawing outlines is the basic goal of their method.
The two directions of the field will line up with the two
intersecting contours at X- or T-shaped junctions. The frame
field is then traced, and the traced curves are then grouped
into strokes to extract the drawing’s topology. Finally, they
produced a vectorization that was in line with the frame field
using the extracted topology.

Lacroix [9] examined several R2V conversion issues, and
a method utilizing a preprocessing stage that creates a mask
from which edges are eliminated and lines are retained has
been suggested. Then clustering is carried out using only the
pixels from the mask. In this situation, a novel algorithm called
the median shift has been suggested. The labeling procedure
that follows should also take into account the type of pixel.
The final stage entails a regularization process. In various
examples, the significance of the pre-processing ignoring edge
pixels while keeping lines has been demonstrated. Addition-
ally, tests demonstrated the superiority of the median shift over
both the mean shift and the Vector-Magic clustering method.
This paper also showed that better line vectorization can be
obtained by enabling the extraction of dark lines, which can
support the use of high-pass filters as a preprocessing stage to
put further emphasis on those dark lines.

On the straightforward job of denoising additive white
Gaussian noise, Xie et al. [10] developed a unique strategy
that performs on par with conventional linear sparse coding
algorithms. In the process of fixing damaged photos, autoen-
coders are used to lower image noise.

An approach that completes the automatic extraction and
vectorization of the road network was presented by Gong et
al. [11], first, varied sizes and strong connection; second, com-
plicated backgrounds and occlusions; and third, high resolution
and a limited share of roads in the image are the key barriers
to extracting roads from remote sensing photos. Road network
extraction and vectorization preservation make up the two
primary parts of the road vectorization technique in this paper.
This study also demonstrates the benefits of dense dilation
convolution, indicating the potential for adopting autoencoding
models to maintain vectorization.

Fischer and Amesberger [12] showed that preprocessing the
raster image with an autoencoder neural network can reduce
complexity by over 70% while keeping a reasonable image
quality. They proved that autoencoders perform significantly
better compared to PCA in this task. We base our work on this
previous work, having a closer look at the effect of high-pass
filters on autoencoding in an image vectorization pipeline.

IV. METHODOLOGY

In this section, the general approach is described. First, the
selected dataset is introduced. The structure of the employed
autoencoder is explained next. Details about the software
implementation are given, and the processing pipeline is
highlighted. Finally, evaluation methods are discussed.

A. CAT Dataset - as Data

A dataset with over 10,000 cat images is used as the basis
for training the autoencoder for evaluating the results. The
CAT dataset was published in 2008 by Zhang et al. [13]. The
content of the images is secondary for this work: The main
reason this dataset is used is the fact that features such as ears,
eyes, and noses are relatively easy to see in these images. The
autoencoding model can thus be trained on these features and
reliably reproduce them.



B. Autoencoder - Functional Structure

The starting point is input with the size 256 x 256 x 1 (a
256 x 256 grayscale image). The first layer of the autoencoder
is a convolution layer that contains 16 different trainable filter
kernels. Each kernel can result in a different representation
of the input image. A Max-Pooling layer is connected to
the convolutional layer to increase the density of the data
and reduce the necessary computing power by reducing the
number of trainable neurons. This 2x2 layer halved the size
of the original image. This convolutional-max-pooling layer
cascade is repeated twice for the next two layers, with the
convolutional layer having 8 different filters and the same 2x2
max-pooling layer resulting in 64x64 and 32x32 sizes. In the
last convolution layer of the encoder, which receives a 32x32
matrix as input, only four convolution kernels are used. The
point of highest data density is here reached; therefore, the
Max-Pooling layer is omitted. This layer of the autoencoder
contains the most compact coding or representation of the data
set. Figure 6 shows the encoder part of the autoencoder.

The decoder follows the layer with the highest data density.
This part of the autoencoder is responsible for reconstructing
the learned encoding. It uses transposed convolution layers and
batch normalization layers. The transposed convolution layer
works in a similar way to a convolution layer. The difference
between the two is that by transposing the input, the layer is
no longer compressed but decompressed. Here, the principles
of the convolution layer are reversed. The filter kernel is used
to determine how the input value is broken down into the
larger grid. By using this layer, the image matrix is again
enlarged. The transposed convolution layer is followed by a
batch normalization layer. These layers, also known as batch
norms, serve to accelerate and stabilize the learning process of
neural networks. They reduce the amount by which the values
of the neurons can shift. On the one hand, the network can
train faster because the batch norm ensures that the activation
value is neither too high nor too low. On the other hand, using
this layer also reduces overfitting since less information is lost
through dropouts.

The decoder connects directly to the encoder to take over
the most compact representation of the data set passed by the
encoding layers. First, the decoder receives a tensor with a
size of 32x32x4 as input. The first function that is applied
to this tensor is a transposed convolution layer. This results
in an enlargement of the image matrix to 64x64. Four 3x3
filter kernels are used here. This is followed by a batch-
norm layer to normalize the results and accelerate the learning
process. The same process is repeated with a different number
of filter kernels to maintain the symmetrical structure of
the autoencoder after reaching the original matrix size of
256x256; another transposed convolution layer is added. This
ensures that the output of the first layer and the input of
the last layer have the same size. The final layer reduces
the tensor dimension to one to produce a grayscale image as
output. Figure 7 shows the decoder part of the autoencoder.

C. Software Implementation

The test/evaluation framework was implemented in Python.
The autoencoder was implemented with TensorFlow [14] and
Keras [15]. The convolutional neural network was built with
convolution and pooling layers in three steps to a 32×32
bottleneck. The decoder mirrors this structure with three steps
of transposed convolutional layers and batch normalization
layers. The autoencoder input is set to a 255x255 image (gray-
scaled). The high-pass filters used in this paper are the standard
implementations in OpenCV [16].

D. General Approach of Processing

Regardless of the path an image takes in any pipeline that
will be built, the first processing stage is always going to be
converting the image into grayscale. The focus of this work is
on single-channel images; however, it can be extended in the
future for multi-channel (RGB) processing. Therefore, when
a pipeline is demonstrated visually, the initial version of the
image displayed is going to be grayscale, but this is implying
that the raw RGB images were all grayscaled, which will be
a common branch for all the pipelines built in this work.

After an image is grayscaled, it will go through a certain
cascade of processing stages. In this paper, the stages con-
cerned are high-pass filtering, autoencoding, and vectorization.
The experiments in this work are going to tune the different
parameters that these stages can take. More importantly, the
outputs of all pipelines possible are going to be in a vector
format because we are attempting to enhance the vectorization
process while aiming for an abstract representation of the
image. Therefore, a rasterization stage is going to always be
placed at the end of every pipeline. Converting images back
into their raster format is mandatory to perform a comparison
between the grayscale image that was initially fed to a pipeline
and its resulting vector format. Hence, we rasterize the vector
output to be able to evaluate the efficiency of the pipeline.
A general processing approach for the different pipelines is
shown in Figure 8.

E. Evaluation Methods

The case at hand deals with both vector and raster images.
Therefore, for a comparison to take place, a comparison
method for each format needs to be selected.

• Vector: Various methods can be used to measure the
level of complexity in a vector image. One is the file
size, which can be used to calculate the length of all
path entries in the file. Furthermore, investigating the
reduction of complexity can be done by analyzing the
longest path tags. The number of path tags can be taken
as a characteristic value of the complexity. In this paper,
it is assumed that the number of SVG path entries is
directly related to its complexity.

• Raster: There are mainly two common ways of com-
paring raster images. The first one is comparing images
based on the mean squared error (MSE) [17]. The MSE
value denotes the average difference of the pixels all
over the image. A higher MSE value designates a greater



Figure 6. Encoder part of autoencoder

Figure 7. Decoder part of autoencoder

Figure 8. General processing approach

difference between the original image and the processed
image. Nonetheless, it is indispensable to be extremely
careful with the edges. A major problem with the MSE
is that large differences between the pixel values do
not necessarily mean large differences in the content of
the images. The Structural Similarity Index (SSIM) [18]
is used to account for changes in the structure of the
image rather than just the perceived change in pixel
values across the entire image. The implementation of
the SSIM used is contained in the Python library Scikit-
image (also known as ”Scikit”) [19]. The SSIM method is
significantly more complex and computationally intensive
than the MSE method, but essentially, the SSIM tries to
model the perceived change in the structural information
of the image, while the MSE estimates the perceived
errors.

In the experiments conducted for this paper, the results of
MSE and SSIM drive the same conclusion. Therefore, to avoid
redundancy, only the SSIM graphs are displayed in this paper.

V. EXPERIMENTATION

Firstly, a sample of five images was filtered with the initial
high-pass filters. The results are shown in Figure 9.

The first impression is that the Gaussian filter results in
some significant noise. Both the Sobel and the Canny filters
were acceptable, with the Sobel seemingly having better
results for the human eye. Because it made more sense to

Figure 9. Applying different filters to five random images

have the detected lines drawn black on a white image than the
opposite case, the three filters were inverted.

A. Blur-Free Noise-Reduction Filtering

In an attempt to reduce the noise the Gaussian filter was
causing, two trials were done. They both worked by cascading
a filter on top of each high-pass filter. This smoothing filter
should result in noise reduction while avoiding blurring the
image. Hence, two filters were chosen: difference and grain-
extract filters. Figure 10 shows the result of applying the two
chosen filters on the high-pass filters.

Although the image is still too noisy to be fed into a neural
network, the noise-reduction filters may provide a roughly
improved version of the Gaussian filter. The difference and



Figure 10. Applying the difference and grain-extract to a random image after
being filtered

grain-extract filters, however, resulted in a decline in image
quality and a sizable data loss as compared to the Sobel and
Canny filters. The experiment therefore suggests that these two
recommended filters are unsuitable for use in a subsequent
preprocessing stage and that the Gaussian filter should be
categorically excluded from any further use in the project due
to its inherent noise.

B. Filter-Inversion Effect on Autoencoding

The second experiment done in this section is obtaining the
difference between training an autoencoder with images whose
lines are drawn in black on a white background and training
it with the same images but inverted.

Therefore, four models of autoencoders were trained with
5000 epochs each in addition to the default model, which
makes them five models each trained with the following types
of images respectively: grayscale images, Sobel-direct images,
Sobel-inverse images, canny-direct images, and canny-inverse
images (direct: dark background and white features. inverse:
inverse of direct). Five images were selected randomly and put
through the five trained models as shown in Figure 11.

The first conclusion drawn was that, when training an au-
toencoder, the semi-supervised neural network responds better
when the training images have darker lines in their important
features. However, a rough estimation with the human eye
would not do, but rather an exact mathematical calculation.
Therefore, a measurement of similarity was done between
every image and its decoded version. This was a better way of
using the SSIM than comparing them with the default images,
as the goal was to determine how close the autoencoding was.
For this part, 50 images were used to dampen the image-

Figure 11. Comparison between the autoencoding of the Sobel and canny
filtered images with both of their versions

specific features and make the measurement more general-
ized.The measured values were plotted in Figure 12.

For the sobel-direct, the mean and standard deviation val-
ues were 0.202 and 0.044, respectively. Their inverse scores
were 0.699 and 0.124, respectively. For the canny-direct, the
mean and standard deviation values were 0.234 and 0.090,
respectively. The inverse scored 0.741 and 0.150, respectively.

These values support our first observation, which is that the
autoencoder learns faster when the image’s most important
features are darker than the rest of the data. The experiments
so far have resolved into using the Sobel and Canny filters,
and more specifically, their inverted results. At the start, it was
thought that the experiments would resolve into choosing only
one filter as a preprocessing stage for the autoencoding, but
as calculated previously, the quality of images between the
Sobel and Canny images is so close that it does not imply the
disregard of one of the two filters.

Nevertheless, there is a significant drop in quality when
applying a high-pass filter to the original image and then
passing it through an autoencoding stage. This raised a flag
that perhaps the pipeline’s order might not be thorough. For



Figure 12. SSIM of different autoencoding approaches

Figure 13. Filtered autoencoder images with Sobel and canny (both versions
each)

instance, the autoencoder is perceived to work as a recon-
struction algorithm. Simultaneously, it can be considered to
smooth the image, or in other words, to represent it with
more coherence between the pixel values. As a result, the
high-pass filters may be more efficient if applied after image
reconstruction rather than before autoencoding, which appears
to cancel out some of the emphasis generated by the filters.
Hence, an experiment on the matter should be performed.

C. Autoencoders as a Preprocessing Stage to High-Pass Fil-
ters

In this experiment, random images were taken, recon-
structed with an autoencoder, filtered, and then vectorized.
This experiment aims to display the effect of high-pass fil-
ters on reconstructed image vectorization. The five random
resulting images are shown in Figure 13.

Figure 14. SSIM comparison of the vectorization of each of the four groups
of images

The first impression the experiment gives off is that the
filters brought more definition to the lines in the images,
which made the shapes appear clearer. This can lead to better
vectorization, as it depends on the definitions of the shapes
represented in the tags.

However, there are two versions of each of the two filters,
which suggest an evaluation of the vectorization of each of the
four result groups. Therefore, an SSIM calculation was done
between every filtered image and its vector format in a pool
of 50 images, randomly selected. The results are displayed in
Figure 14.

The box plots show the better fitness of white images
with black lines when compared to the darker images in
vectorization. Visually speaking, the Sobel filter results were
more recognizable to the naked eye. However, it left more
complexity in the image, which made it harder for the
vectorization to be more exact. Therefore, it is concluded
that the darker shapes are going to be used in both filters,
while there is not yet a clear endpoint to resolve depending
on only one of the two filters. Hence, a parallel stage of
execution is introduced, which takes the autoencoder images
and filters them with one filter before passing them to the
global vectorization stage.

VI. EVALUATION

Evaluation is concerned with how abstract the resulting
images are. As there are two pre-processing blocks (filter-
ing and autoencoding), four different pipelines can be built:
autoencoding, filtering, autoencoding-filtering, and filtering
autoencoding. After one of these selections is fed the images,
a vectorization process is always cascaded at the end.

First, all of the resulting images are going to be evaluated
based on their path count (size) and similarity to the input
images. Then, a summary of the evaluation is going to be
introduced for each of the pipelines individually.

Before engaging in the evaluation, it is good to elaborate
on the column naming of the upcoming plots:



Figure 15. Path count of the resulted groups of vector images

• default: the default image.
• Sobel, canny: the filtered version of the image by the

respective filter.
• dec: the decoded version.
• vect: the vectorized version.
• A combination of two or more indicates the case of

cascaded stages. A default-dec-sobel label represents the
following: the default image is reconstructed with the
autoencoder and then filtered with the sobel filter.

A. Evaluating the size of the produced images

To evaluate the size of the image, we count the number
of path objects generated in the SVG file. From Figure 15
(note that the graph is in logarithmic scale) we see that the
autoencoder (*-dec-*) significantly reduced the size of images,
as it keeps only the most important features. The reconstructed
filtered images (canny-dec, sobel-dec) had a similar path
count. Although it was much smaller than the ones that did
not go through that step, it was still above the default images
that were reconstructed and vectorized without any filtering.
Finally, when filters were applied to the default images that
were put through an autoencoding stage (default-dec-sobel,
default-dec-canny), these images scored in size calculations
very similarly to the filtered images when only reconstructed
(canny-dec, sobel-dec).

B. Evaluating the quality of the produced images

A more accurate way of examining the efficiency of the
vectorization process of each pipeline is to compare the
images and their vector versions (Figure 16). The pipeline
of autoencoding-filtering-vectorization (two last groups on the
most-right) seems to experience the highest SSIM, which
indicates its fitness in vectorization. It made more sense for
the autoencoder to reconstruct the images and then for the
filters to come afterward, emphasizing the important features
of each image.

Figure 16. Vectorization accuracy of different pipelines

Figure 17. Autoencoding-vectorization pipeline

C. Implemented Pipelines: an evaluation summary

This is a summary of the evaluation of the results for each
of the pipelines individually.

• Autoencoding-Vectorization: This pipeline was based
on the work of Fischer and Amesberger [12]. However,
the implementation was different, and the evaluation was
about the abstractness of the results. The quality of
the vectorization is acceptable only in terms of general
similarity. However, an abstract representation of the
image is not achieved (Figure 17).

• Filtering-Vectorization: In this pipeline (Figure 18), the
vectorization algorithm finds difficulty in vectorizing the
filtered images. This is due to the noises caused by the
applied filters. Although the experiments showed that the
quality of the vectorization increased when the images
were taken as a light background with dark features,
the noise involved created an obstacle for Potrace to
convert thoroughly the images into a vector format, which
resulted in losing data.

• Filtering-Autoencoding-Vectorization: This pipeline
was built as an attempt to enhance the Autoencoding-
Vectorization pipeline. Although the autoencoding stage
was efficient in reducing the size of the images, it did not
result in an abstract view of the image features. Therefore,
a filtering stage was placed before the autoencoding
process. Unfortunately, this pipeline does not achieve the
result intended. The autoencoding stage was supposed to



Figure 18. Filtering-vectorization pipeline

Figure 19. Filtering-autoencoding-vectorization pipeline

reconstruct the filtered images in a lower complexity;
but the case at hand is that the autoencoding model is
attempting to smooth the images, canceling the effect of
the high-pass filters. This has resulted in a significant
drop in the quality of the vector images, which is seen
in Figure 19.

• Autoencoding-Filtering-Vectorization: Due to the
results in the Filtering-Autoencoding-Vectorization
pipeline, it was clear that the filtering stage would act
more appropriately if it succeeded the autoencoding
process, rather than preceding it. This was concluded
when the autoencoding model was seen to reduce
the complexity of the images while introducing a
smoothing effect. The filters were placed after the
reconstruction stage to preserve the important features
of the reduced-complexity image. This cascade shows
an acceptable vectorization quality while resulting in the
intended abstract representation of the images as shown
in Figure 20.
As for providing more visualizations of the results that

can be obtained with this pipeline, Figure 21 shows some
random images that were fed to the Autoenconding-

Figure 20. Autoencoding-filtering-vectorization pipeline

Figure 21. Some of the output images along with their input images of the
pipeline Autoenconding-filtering-vectorization

filtering-vectorization pipeline along with their respective
output images. As can be seen, the features of the cats
are extracted very clearly in all examples.

VII. CONCLUSION

This paper discusses the autoencoding step and the use of
high-pass filters in vectorization pipelines. As demonstrated,
high-pass filters can improve the training of an autoencoder,
which in turn improves the efficiency of vectorization by
maintaining key aspects of an image.

The images that underwent the cascade of autoencoding-
filtering scored the greatest in similarity and the lowest in
error after the vectorization algorithm’s effectiveness in each
pipeline was assessed. This indicates that the most crucial
elements of the reconstructed images were maintained and that
the filtering step that came after the reconstruction enhanced
those features even further, resulting in a better vectorization
and a more abstract representation of the image.

Although the results from this cascade of autoencoding-
filtering were respectable and met the initial objectives, more
work needs to be done on the training dataset and model
structures.

Regarding future work, experiments showed that dark fea-
tures on a light background in images can improve both the
training of autoencoder models and the process of vector-
ization. This will be an issue for further investigation. As
this paper deals with single-channel (i.e., gray-scale) images,
another aspect of the investigation will be the vectorization of
multi-channel images.

REFERENCES

[1] A. Fischer and Z. Bettouche, “High-pass filters preprocessing in image
tracing with convolutional autoencoders,” in IARIA, Copyright: Copy-
right (c) The Government of Germany, 2022. Used by permission to
IARIA. ISSN: 2308-4170, ISBN: 978-1-61208-954-6, Barcelona, Spain;
April 28, 2022.

[2] P. Selinger, “Potrace : a polygon-based tracing algorithm,” in Potrace,
2003.

[3] N. Kanopoulos, N. Vasanthavada, and R. L. Baker, “Design of an image
edge detection filter using the sobel operator,” IEEE Journal of solid-
state circuits, vol. 23, no. 2, pp. 358–367, 1988.

[4] J. Canny, “A computational approach to edge detection,” IEEE Transac-
tions on pattern analysis and machine intelligence, no. 6, pp. 679–698,
1986.

[5] S. Lu, W. Jiang, X. Ding, C. S. Kaplan, X. Jin, F. Gao, and
J. Chen, “Depth-aware image vectorization and editing,” Vis. Comput.,
vol. 35, no. 6–8, p. 1027–1039, jun 2019. [Online]. Available:
https://doi.org/10.1007/s00371-019-01671-0

[6] A. Bera, “Fast vectorization and upscaling images with natural objects
using canny edge detection,” in 2011 3rd International Conference on
Electronics Computer Technology, vol. 3, 2011, pp. 164–167.

https://doi.org/10.1007/s00371-019-01671-0


[7] K.-W. Chen, Y.-S. Luo, Y.-C. Lai, Y.-L. Chen, C.-Y. Yao, H.-K. Chu,
and T.-Y. Lee, “Image vectorization with real-time thin-plate spline,”
IEEE Transactions on Multimedia, vol. 22, no. 1, pp. 15–29, 2020.

[8] M. Bessmeltsev and J. Solomon, “Vectorization of line drawings via
polyvector fields,” 2018.

[9] V. Lacroix, “Raster-to-vector conversion: Problems and tools towards a
solution a map segmentation application,” in Raster-to-Vector Conver-
sion, 03 2009, pp. 318 – 321.

[10] J. Xie, L. Xu, and E. Chen, “Image denoising and inpainting with
deep neural networks,” in Advances in Neural Information Processing
Systems, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
Eds., vol. 25. Curran Associates, Inc., 2012.

[11] Z. Gong, L. Xu, Z. Tian, J. Bao, and D. Ming, “Road network extraction
and vectorization of remote sensing images based on deep learning,” in
2020 IEEE 5th Information Technology and Mechatronics Engineering
Conference (ITOEC), 2020, pp. 303–307.

[12] A. Fischer and M. Amesberger, “Improving image tracing with artifi-
cial intelligence,” in 2021 11th International Conference on Advanced
Computer Information Technologies (ACIT), 2021, pp. 714–717.

[13] W. Zhang, J. Sun, and X. Tang, “Cat head detection - how to effectively
exploit shape and texture features,” in ECCV, 2008.

[14] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-
scale machine learning,” in 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), 2016, pp. 265–283.

[15] F. Chollet et al. (2015) Keras. [Online]. Available: https://github.com/
fchollet/keras

[16] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[17] C. Sammut and G. I. Webb, “Mean squared error,” Encyclopedia of
Machine Learning, no. 4, pp. 653–653, 2010.

[18] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assess-
ment: from error visibility to structural similarity,” IEEE Transactions
on Image Processing, vol. 13, no. 4, pp. 600–612, 2004.

[19] S. Van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne,
J. D. Warner, N. Yager, E. Gouillart, and T. Yu, “scikit-image: image
processing in python,” PeerJ, vol. 2, p. e453, 2014.

https://github.com/fchollet/keras
https://github.com/fchollet/keras

