
Continuous Information Processing Addressing Cisco’s Pain Points by Enabling
Real-Time Ad-Hoc Reporting Capability:
An Energy Efficient Big Data Approach

Martin Zinner∗, Wolfgang E. Nagel∗
∗ Center for Information Services and High Performance Computing (ZIH)

Technische Universität Dresden
Dresden, Germany

E-mail: {martin.zinner1,wolfgang.nagel}@tu-dresden.de

Abstract—Aggregation is a special type of association, in
which objects are assembled/composed together to create a
more complex object. Unfortunately, a considerable part of data
aggregation during information processing in industry is still
carried out in nightly batch mode, taking into account all its
negative side effects. In particular, before starting aggregation,
all data required for computation must be available and acces-
sible. In contrast, our method termed Continuous Information
Processing Methodology (CIPM), does not assume that the data
to be aggregated is fully retrieved, the aggregation can be
started as soon as the data collection is initiated. During the
data collection process, partial aggregated values are calculated,
such that, after the data collection phase has been completed,
the final aggregated values are available for real-time ad-hoc
evaluation. The existing aggregation methods apply only the
usual aggregation functions such as sum(), avg(), max(), min(),
count() as build in functions, on the contrary, the most common
aggregation functions used in various field of industry and
business can be easily adapted and used within CIPM. The
major benefit of our method is the elimination of the extra
time necessary for batch computation, as well as reduced and
spread aggregation effort over the whole collection period and
tightened and straightforward computational design strategies.
To conclude, the CIPM supports a paradigm shift from more or
less subjectively designed individualistic conceptions in software
design and development towards objectively established optimal
solutions.

Index Terms—Continuous information processing; Continuous
aggregation; Energy efficient computation; Real-time capability;
Real-time capabilities; Data Analytics; Data processing; Stream
processing; Batch processing; Business Intelligence; Ad-hoc re-
porting; Big Data.

I. I NTRODUCTION

Initially, within this section, the core of our aggregation
theory is succinctly addressed, some definitions such as that
of Big Data are tightened up and subsequently, the principal
motivation of our paper, i.e., increased real-time requirements
in the industry, is presented. Aggregation is a special type of
association, in which objects are in general assembled/com-
posed together to create a new and a more complex object.
The aim of aggregating data is to create new knowledge and
to hide useless information. For example, by aggregating data
delivered in millisecond to cycles of minutes and by calculat-
ing the sum(), avg(), max(), min(), count(), and other statistical
functions like the standard deviation, new information regard-
ing the smoothness of the data delivery or their homogeneity,
can be generated. In the mean time, useless information such

as the initial information tracked in milliseconds cannot be any
more referenced. Usually, data from multiple data sources and
different domains are aggregated, for example equipment and
production-line data can be combined in order to deliver useful
information to engineers regarding production bottlenecks, but
also reports for the upper management. Commonly, in the
industry, the aggregation is performed on daily bases, using
batch jobs. Usually, the batch jobs are started at night, after
all data has been collected.

Cisco Systems, Inc. identified the deficiencies of the classi-
cal nightly batch jobs aggregation strategy, disclosed and sum-
marised them within five Pain Points in the White Paper “BI
and ETL Processes Management Pain Points; Understanding
the most pressing pain points and strategies for addressing
them”. All Pain Points, except for Pain Point 3 regarding ad-
hoc reporting, have been addressed in a conference paper [1].
Within this paper, the theoretical background presented in [1]
is extended, such that it equally covers the ad-hoc reporting
functionality. Ad-hoc reporting is aBusiness Intelligence (BI)
process used to quickly create reports on an as-needed basis.
Ad-hoc reports are generally created for one-time use to find
the answer to a specific business question and offers a wealth
of values to business across industries. Ad-hoc reports assures
the required flexibility to be able to follow and adapt to the
continually changing business environment. Furthermore, ad-
hoc evaluation strategies enable the users to autonomously
create new reports without involving highly qualified IT per-
sonnel.

In order to illustrate our methodology, we will present a
typical adjustment regarding the statistical functionStandard
Deviation (SD), such that it can be used within the continuous
aggregation strategy. The standard deviation is simple enough
to gain a good overview concerning the difficulties that arise
in practice, but it is not trivial and exemplifies the immanent
problem of the continuous information processing method-
ology. The usual representation of the standard deviation is
adapted to fit our needs.

Aggregation is an operation to obtain summarised infor-
mation by using aggregate functions. A new approach for
information aggregation based on a very simple and straight-
forward starting point is formulated in this paper – namely,
that within the information flow,the process of information
aggregation should be started as early as possible, best as

94

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

soon as the collection phase is initiated. This strategy assumes
a strict and clearly defined architectural design strategy of
the computational framework and enables real-time capability
of the system, therefore, the new methodology is termed
Continuous Information Processing Methodology(CIPM). In
order to be able to in-depth analyse the CIPM, a formal,
mathematical model is set up, the conversion of the underlying
structure is defined and the pros and cons of CIPM, as opposed
to the classical batch jobs strategy, are discussed.

As defined in [2] “Big Data is the information asset
characterised by such ahigh volume, velocity and variety
to requirespecific technologyand analytical methodsfor its
transformation into value”. According to the definition above,
Big Data is much more that high volume of data and needs
unconventional methods to be processed.

At the same time, a cultural change should accompany the
process of investing in interdisciplinary Business Intelligence
and Data Analyticseducation [2], involving the company’s
entire population, its members to “efficiently manage data
properly and incorporate them into decision making pro-
cesses” [3].

A. Motivation

1) Rapidly increasing data amount:The total amount of
data created, captured, and consumed globally is forecast to
increase rapidly, reaching more than 180 Zettabytes in 2025,
as opposed to 64.2 Zettabytes in 2020 and 15.5 Zettabytes
in 2015 [4]. Real-time information processing has become
a significant requirement for the optimal functioning of the
manufacturing plants [5]. Worldwide by 2022, over 50 bil-
lion Internet of Things(IoT) devices including sensors and
actuators are predicted to be installed in machines, vehicles,
buildings, and environments and/or used by humans.

2) Real-time requirements:Demand is also huge for the
real-time utilisation of data streams, instead of the current
batch analysis of stored Big Data [6]. The operations of a real-
time system are subject totime constraints(deadlines), i.e., if
specified timing requirements are not met, the corresponding
operation is degraded and/or the quality of service may suffer
and it can lead even to system failure [7]. In a real-time
system deadlines must always be met, regardless of the system
load. Usually, a system not specified as real-time cannot
guarantee a response within any time frame. There are no
general restrictions regarding the magnitude of the values of
the time constraints. The time constraints do not need to be
within seconds or milliseconds, as often they are understood.
There is a general tendency that real-time requirements are
becoming crucial requisites.

Travellers require current flight schedules on their portable
devices to be able to select and book flights; in order to
avoid overbooking, the flight plans and the filled seats must
be kept reasonably current. Similarly, people expect instant
access to their business-critical data in order to make informed
decisions. Moreover, they may require up-to-date aggregated
data or even ad-hoc requests. This instant access to critical

information may be crucial for the competitiveness of the
company [8].

B. Aim

Cisco [9] identified a couple ofPain Pointsin the Business
Intelligence (BI) area, but these Pain Points carry a more
general validity:

1) the race against time; managing batch window time
constraints,

2) cascading errors and painful recovery; eliminating errors
caused by improper job sequencing,

3) ad hoc reporting; managing unplanned reports in a plan-
based environment,

4) service-level consistency; managing service-level agree-
ments,

5) resources; ETL resource conflict management.

Our approach is addressing all five Pain Points.
In conclusion, continuous information processing enables

a new perspective on aggregation strategies, such that aggre-
gation is performed in parallel to the data collection phase.
Preliminary aggregated values corresponding to the current
state of the retrieved data are available for ad-hoc evaluation,
nightly batch aggregation becomes obsolete.

C. Outline

The remainder of the paper is structured as follows: sec-
tion II gives an overview regarding existing work related
to the described problem. An informal presentation of the
continuous aggregation strategy is presented in sectionIII ,
whereby sectionIV introduces the mathematical model and
describes the methodology to transform the batch aggregation
into continuous aggregation. The presentation of the main
results and discussions based upon these results constitute
the content of sectionV, whereas sectionVI summarises our
contributions and draws some perspectives for future work.

II. RELATED WORK

Primarily, the focus of this section is on algorithmic ap-
proaches regarding the state of the art. The analysis of different
one-pass algorithms [10] and their efficient implementation
is beyond the scope of this paper as well as pure technical
solutions based on database technologies.

A. SB-trees

A B-tree is a balanced tree data structure, that keeps data
sorted and allows searches, sequential access, and deletions
in logarithmic time; the tree depth is equal at every position,
whereas the SB-tree is a variant of a B-tree such that it offers
high-performance sequential disk access [11], [12]. Zhang [12]
outlines the key challenges of spatio-temporal aggregate com-
putation on geo-spatial image data, focusing primarily on data
having the form of raster images. Zhang gives a very detailed
overview of the state of the art regarding efficient aggregate
computation. Zhang’s approach is based onaggregate queries
common in the database community, including data cubes,
whereas our approach (CIPM) does not focus on database

95

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

technology when calculating the aggregation functions. For
example, the improved multi-version SB-tree [12] consumes
more space than the size of raw data. Other approaches use
only a small index, reducing the space needed, but supporting
only count and sum aggregate functions. The main idea behind
the SB-trees is to provide through a depth-first search, –
by accumulating partial aggregate values – a fast look-up of
computed values [12], [13].

B. Scotty

Scotty [14] is an efficient and general open-source operator
for sliding-window aggregation for stream processing systems,
such as Apache Flink, Apache Beam, Apache Samza, Apache
Kafka, Apache Spark, and Apache Storm. It enables stream
slicing, pre-aggregation, and aggregate sharing including out-
of-order data streams and session windows [15]. The aggregate
window functions are: avg(), count(), max(), min(), sum().
Being a toolkit, the out-of-the-box aggregate functions are
restricted to the above. Implementation details are disclosed
in a preprint paper [16]. Scotty can be extended with user-
defined aggregation functions, however, these functions must
be associative and invertible. Since Scotty is open source,
additional user extensions are always possible.

Sliding window aggregation is also a main topic regarding
this paper, even if sliding windows are not used for report-
ing/evaluation. There is always the possibility that erroneous
data is captured and cannot be corrected automatically. This
cannot be avoided, since a data set may look formally correct,
but may be wrong with regard to its content. Such anomalies
can be detected hours after the data has been processed and
should be corrected.

According to [17] research on sliding-window aggrega-
tion has focused mainly on aggregation functions that are
associative and on FIFO windows. Much less is known for
other nontrivial scenarios. The question arises, whether is it
possible to efficiently support associative aggregation func-
tions on windows that are non-FIFO? Besides associativity
and invertibility, what other properties can be exploited to
develop general purpose algorithms for fast sliding-window
aggregation? Tangwongsan et al. [18] present the Finger B-
tree Aggregator (FiBA), a novel real-time sliding window
aggregation algorithm that optimally handles streams of vary-
ing degrees of out-of-orderness. The basic algorithms can be
implemented on any balanced tree, for example on B-trees.

C. Holistic functions

The median, which is the middle number in an ordered list
of items, is a holistic function, i.e., its results have to rely
on the entire input set, so that there is no constant bound
on the size of the storage needed for the computation. An
algorithm suitable for continuous aggregation based on heap
technology can be found in [8]. For the sake of completeness,
the main idea is presented hereafter. In order to store the data,
two heaps are used, one for the higher part and one for the
lower part of the data. The newly collected dataset is inserted
into the corresponding heap; if the case arises, the heaps are

balanced against each other, such that the two heaps contain
the same number of items, etc. Hence, in some cases, holistic
aggregation functions can be used with continuous aggregation
techniques, they should however satisfy the foreseen time
constraints.

Unfortunately, even such common functions as min() or
max() have a holistic behaviour in some circumstances. If used
for example in a sliding-window aggregation environment or
if retrospectively data corrections are allowed, then all of the
values have to be stored in order to determine the minimal or
the maximal value of the stream. Similarly, a heap of sorted
values can be used in order to implement real-time capability.

D. Quantile

A survey of approximate quantile computation on large-
scale data is given by Chen [19]. In streaming models, where
data elements arrive one by one, algorithms are required to
answer quantile queries with only one-pass scan. Formulas
for the computation of higher-order central moments or for
robust, parallel computation of arbitrary order of statistical
moments can be found here [20], [21], some of them are one-
pass incremental approaches.

In conclusion, the main focus of the existing research has
been to develop aggregate queries for efficient retrieval and
visualisation of persisted data. However, with Scotty a general
open-source operator for sliding-window aggregation in stream
processing systems, – such as, for example, the Apache family
– has been developed. Scotty incorporates the usual aggregate
functions like avg(), sum(), etc., and it has the possibility
to include special user defined functions. Tangwongsan [17]
points out that much less is known for nontrivial scenarios, i.e.,
functions that are not associative and do not support FIFO
windows. Our approach, however develops the strategy and
technology for continuous information processing, abbreviated
CIPM and shows that functions, which allow efficient one-pass
implementations are suitable for CIPM. Moreover, holistic
functions allowing appropriate implementation, for example
median [8], can be used with CIPM.

III. PROBLEM DESCRIPTION

The technical terms “information function” and “aggrega-
tion function” [22] are used synonymously within this paper.
They highlight the same topic from different perspectives.
Corporate reporting aims to provide all of the counterparties
with the information they need in order to transact with a
company. This can be termed theinformation functionof
corporate reporting [23]. Within this paper, we assume that
the data collection and the subsequent data transformation
are continuous processes, aggregation being the process that
succeeds transformation. The terms “continuous information
processing” and “continuous aggregation” are used alterna-
tively, emphasising that within the continuous information
processing, the continuous aggregation is the challenging part.

According to Cisco [9] “One of the biggest challenges
facing an IT group is how to complete extract, transform,
and load (ETL) and subsequently aggregate the traditional

96

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Starting daily collection & aggregation;
Current day

00:00:00 Starting data
collection; Current day.

23:59:59 Ending data
collection; Current day

00:x:00 Starting
transformation of the data
collected the day before.

00:x+y:00 Starting
aggregation of the
transformed data.

The next day

Figure 1: Simplified flow diagram exemplifying the batch job strat-
egy(x is the time gap due to the collection delay; y is the time gap
due to transformation).

batch-based Business Intelligence (BI) processes within the
constraints of an ever shrinking batch window.” Although there
is a trend toward real-time BI, the vast majority of BI today
relies heavily on batch processing [9]. Cisco identified several
factors which contribute to the difficulty in managing these
processes in the foreseen time frame.

Firstly, there is a severe lack of visibility into the various
processes themselves, which are very complex. This means
there will always be bottlenecks, and it is very difficult to
predict where they will occur.

Secondly, data streams are expected to arrive in a defined
time window, if they are late or corrupted, then errors may
occur. Thus, in these cases, the nightly aggregation routines
have to be (re)started later, including also during the usual
working hours. But Cisco does not identify two major factors
that impact the time frame of the batch jobs, namely the
impossibility to anticipate all the patterns of data to be
processed and the imperfection of the executions plans, which
can lead to performance degradation. Thus, the most accurate
testing covers only the patterns of data retrieved in the past or
anticipated. Accordingly, even the most accurate design and
testing strategy cannot guarantee the time constraints of the
batch jobs.

A. Overview of the CIPM

Following, the fundamental aspects of the continuous ag-
gregation strategy are outlined by using two simple flow dia-
grams, Figure1 depicts the principles of the classical nightly
jobs aggregation strategy, whereas Figure2 describes very
succinctly the continuous aggregation strategy. It is assumed
within these examples, that reporting is based on daily aggre-
gated data. Data collection starts at 00:00:00 for the current
day (i.e., the considered day) and it ends, retrieving data
generated till 23:59:59 of the same day. Whenever applying
the classical batch jobs strategy as depicted in Figure1, the
transformation/aggregation is started only after the data is fully
retrieved/collected for the considered day. Considering this use
case, the transformation/aggregation for the current day can be
started only on the subsequent day.

On the other hand, the CIPM (exemplified in Figure2)
is carried out on small chunks of data, for example

Starting daily collection & aggregation;
Current day

00:00:00 Starting data
collection; Current day.

Collecting data of
chunkC1; Current day.

00:00:00 Starting transf.
& aggreg.; Current day.
Waiting for chunk data

Collecting data of
chunkC2; Current day

Collecting ...

Collecting data of
chunkCn; Current day

Start transf. &
aggreg. chunkC1.

23:59:59 Ending data
collection; Current day.

Start transf. &
aggreg. chunkC2.

Start transf.
& aggreg. ...

Start transf. &
aggreg. chunkCn.

23:59:59 Ending
almost all transf. &
aggreg.; Current day

The next day:

00:00:00 Starting data
collection; Current day.

00:00:00 Starting transf.
& aggreg.; Current day.
Waiting for chunk data

Remaining transf.
& aggreg. of data

collected the day before;

Post-aggregation of data
collected the day before;

Figure 2: Simplified flow diagram exemplifying the continuous
aggregation strategy. The arrow with three heads signifies that the
aggregation phase waits till the respective chunk data has been
collected. The post-aggregation phase of the previous day is not
depicted.

C1, C2, ..., Cn, usually such that the transformation/aggrega-
tion is performed on data loaded into memory during the
collection phase. This way, reloading data into memory for
aggregation purposes is obsolete.

The continuous aggregation strategy is quite straightfor-
ward: after midnight, the collection phase for the current day is
started, i.e., the chunksC1, C2, ..., Cn are retrieved one after
another in chronological order. While the second chunkC2

is retrieved, transformation and aggregation are performed on
the first chunkC1, and so on and so forth. At the end of
the current day, most of the collected data is aggregated. At
the beginning of the subsequent day, the remaining chunk(s)
are transformed/aggregated and a post-aggregation phase is
started, during which the final calculations are performed. In
the end, soon after midnight, the aggregated values are ready

97

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for reporting. Similarly, after midnight, the collection/transfor-
mation is resumed for the current day.

In order to keep the presentation simple and accessible
and to avoid technical complications, it is assumed that the
time to perform the transformation/aggregation of a chunk is
slightly lower than the corresponding time of the collection
phase. In real-world systems, under some circumstances, this
is obviously not necessary. Let us suppose that the time to
retrieve a chunk ist, but the time to transform/aggregate the
values of a chunk is slightly lower than3t and letAi be the
aggregation phase of chunkCi. Then, the start ofAi is phase-
shifted byt with regard toCi, i.e.,A1 is started simultaneously
with C2, etc. As a consequence,Ai completes beforeC(i+4)

is started. Hence, in this example there are three instances
of the aggregation algorithm running in parallel. Possibly,
information between the aggregation instances running in
parallel need to be exchanged.

Additionally, it is assumed within this paper, that the chunks
are of the same size and the time to retrieve them is indepen-
dent of the particular chunk. Of course, this assumption is not
necessary in real-world systems.

B. Exemplification using Standard Deviation (SD)

Next, the complexity of our approach is illustrated by
exemplifying the technology on thestandard deviation of the
sample. It shows how much variation (dispersion, spread) from
the mean exists. The SD has been chosen for exemplification,
since the adaptations in order to be used within CIPM are
straightforward to be presented without being trivial.

Let {x1, x2, . . . , xN} be the observed values of the sample

items, let x̄ := 1/N

N∑

i=1

xi be the mean value of these

observations. The common representation of the (uncorrected
sample) standard deviation is:

SDN :=

√√
√
√ 1

N

N∑

i=1

(xi − x̄)2. (1)

At first glimpse, the above representation of the standard
deviation cannot be applied using continuous computing tech-
niques. The impediment is the term̄x. In order to be able
to apply the formula (1), all the data involved has to be first
collected. Chan et al. [24], [25] called the above representation
two-pass algorithm, since it requires passing through the data
twice; once to computēx and again to computeSDN . This
may be unwanted if the sample is too large to be stored in
memory, or when the standard deviation should be computed
dynamically as the data is collected.

Regrouping the terms in the formula above, the well known
representation is obtained:

SDN =
1
N

√√
√
√
∣
∣
∣
∣
∣
N

N∑

i=1

x2
i −

(N∑

i=1

xi

)2
∣
∣
∣
∣
∣
. (2)

The alternative representation (2) of the standard deviation
is suitable to be used within the continuous computation
approach.

Let 1 ≤ n ≤ N , let An :=
n∑

i=1

x2
i , let Bn :=

n∑

i=1

xi, and

let Sn := n ∙ An − B2
n.

During the data collection phase, the values ofAn andBn

are updated, either after each itemxn is collected and known
to the system, or considering small batches. Thus, at each
point in time, during the data collection phase, the values of
A(n+1) andB(n+1) can be easily calculated by adding up the
corresponding value of the new item. Hence,

A(n+1) = An + x2
(n+1).

Similar results hold forB(n+1).
Accordingly, at each point in time, the standard deviation

can be easily calculated, if needed, as a function ofAn, Bn

andSn. It follows:

S(n+1) = Sn + An + n ∙ x2
(n+1) − 2x(n+1) ∙ Bn.

Hence, intermediary results and trend analysis are possible
during the data collection phase .

For example, almost allKey Performance Indicators(KPIs)
used in the semiconductor industry can be adapted to be
applied within CIPM [26]–[29]. The same is true in other areas
of the industry or business.

C. Reasons for choosing SD

The considerations above were drafted merely to illustrate
the continuous computation technology, in real-world systems
the representation (2) without using absolute values in the
square root function can lead to negative values. WhenAN and
BN are calculated in the straightforward way, especially when
N is large and all of x-values are roughly of the same order
of magnitude, rounding or truncation errors may occur [30].
Please note that the representation (2) using absolute values,
has been adopted in order to avoid negative values under the
square root. Using double precision arithmetic can possibly
avoid the occurrence of anomalies as above.

D. Counterexample

Unfortunately, there are also some simple and well known
functions, such as theAverage Absolute Deviation (AAD),
which, generally speaking, cannot be used with continuous
computing techniques; AAD is calculated as the mean of the
sum of the absolute differences between a value and the central
point of the group:

AADN =
1
N

N∑

i=1

|xi − M |.

The central pointM can be a mean, median, mode, etc. For
some distributions, including the normal distribution, AAD can
be related to or approximated with the corresponding standard
deviation [31]–[33].

Under some circumstances holistic functions, such as the
AAD presented above, can be used within real-time applica-
tions. As already mentioned, there is no constant bound on the
size for the storage needed to compute holistic functions. If the

98

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

task is to convert the nightly batch aggregation to continuous
aggregation and real-time constrains are only required for the
data of the last 24 hours or the current day, then obviously the
size of the required storage is bounded, since the number of
items expected during 24 hours can be very well estimated.
Hence, if the time required to calculate the value of AAD is
within the time constraints imposed, then real-time capability
of the application is given. On the contrary, if real-time
capability is required for example for streaming data, then this
depends heavily on the size of the streamed data comprising
the time interval required and the possibility to predict the
size of the data. In such cases, approximations can help, see
[31]–[33] for approximations based on standard deviation.

E. Flow Factor

Next, in order to illustrate the power and significance of the
continuous aggregation strategy, a real-world example from the
semiconductor industry [27], [29], [34] is presented. For the
sake of completeness, a slightly modified part of the model is
taken over from [29]; the model has been originally described
for data centres. In order to be able to understand and follow
the presentation, some basic data structures are introduced.

1) Description of the data structure for WIP-data:In sim-
plified terms, the lot/wafer enters the production line and it is
processed consecutively on (different) operations/equipments
according to the production plans (i.e., routes) and leaves
the frontend area to be systematically examined/tested in the
backend area. Afterwards, the wafers are cut into segments,
also called dies, which are packaged as chips and are ready
to be shipped. There are two major data structures, Work
in Progress (WIP)-data and Equipment-data. The WIP-data
models the successive processing of the lot/wafer at different
operation in the frontend area and the Equipment-data models
the data associated to an equipment.

A simplified data structure for WIP-data is: ("unit-ID",
"step", "next-step", "track-out-TS", "trans-code", "equipment",
"product", "unit-type", "unit-desc", "unit-value", "route"). The
unit is the manufactured item, which is tracked by the
Manufacturing Execution System (MES). It can be a lot,
a wafer or a die/chip. This information is tracked by the
attribute "unit-desc". The attribute "unit-type" is an additional
distinction between the material units, such that the units are
Productive, Development, Test, Engineering, etc. The transac-
tion code ("trans-code") denotes the event that is performed
at a specific "step" and "equipment" during the production
process. Common transaction codes in the semiconductor
industry areTrInT, TrOutT, Create a Lot, Ship a Lot, etc. The
attribute "product" characterizes the manufactured item, (like
technical specifications, etc.), which can be tracked within
the production process. The "step" is the finest abstraction
of the processing level, which is tracked by the reporting
system. It is usually the operation [8]. The attribute "next-
step" denotes the succeeding "step" (i.e., operation) to which
the item is transferred. Additionally, the attribute "track-out-
TS" stores the time stamp of the item when it left the "step" to
be processed at the "next-step". This is triggered through the

transaction code TrOutT. The attribute "unit-value" contains
the number of items processed at the considered "step",
whereas the "route" contains the processing specification for
the "product" involved.

2) Description of the aggregation functions:The following
definitions are taken from [29]. Let u be a unit. We denote by
TrInT s(u) the track in timeof u, i.e., the point in time when
the processing of unitu is started at "step"s. Analogously,
TrOutT s(u) is the track out timeof u, i.e., the point in time
when the processing of unitu has been finished at "step"s.

The Raw Process Time (RPT)of a unit u related to "step"
s is the minimum processing time to complete the "step"s
without considering waiting times or down times. We denote
the raw process time of unit u related to "step" s byRPTs(u).
We assume that for a "step" s, the functionsuccs(u), which
identifies the succeeding "step" of s for the unit u is well
defined. Analogously, we assume that the history of the
production process is tracked, so the predecessor function
preds(u) of each "step" s is well defined.

By Cycle Time (CT)we denote the time interval a unit or
a group of material units spent in the system or subsystem.
The cycle time of a unitu ∈ U spent at a "step"s ∈ S in the
system can be represented as:

CT s(u) := TrOutT s(u) − TrOutT preds(u)(u). (3)

In order to simplify the notation to be used within the
Transact-SQL syntax for SQL Server we set

PrevTrOutT = TrOutT preds(u)(u).

Hence, using the above notation, we have the expression for
the cycle-time corresponding to a unit:

CT = Datediff (ss, TrOutT, PrevTrOutT). (4)

whereDatediff (ss, TrOutT, PrevTrOutT) returns in sec-
onds the specified time difference.

Algorithm 1 Sample search query for the calculation of the
flow factor - standard method

Input : WIP-data-table_name;
Output : Flow factor;
Result: Compound aggregated value of the flow factor ready for

reporting on week 6 of 2022;
/ * Retrieving the Flow Factor(FF) * /
select sum(CT)/sum(RPT) as FF
from from WIP-data-table_name
where TrOutT > ’06.02.2022 00:00:00’
and TrOutT <= ’13.02.2022 00:00:00’
group by "step", "equipment", "product", "unit-type", "unit-desc"

Figure 3: SQL-code based algorithm retrieving the flow factor and
exemplifying the standard method for ad-hoc reporting strategy by
enabling real-time capability. For this purpose, the representation (4)
of the cycle time has to be used, whereas the representation (3) is
inefficient.

99

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3) Description of the problem:The SQL-query based on
the representation in Figure3 and representation (3) is ineffi-
cient due to the fact that the chronological order of the steps is
not fully specified by the "route". The human operator has the
possibility to determine the subsequent "step", for example
to perform some additional measurements or not. Hence, to
determine the previous "step", i.e., the attribute notated as
"prev-step", appropriate joints have to be set up, such that in
the end the value of the attribute "PrevTrOutT" is determined.
Due to the fact that processing can be done in a loop for
rework processes, the item with the greatest time-stamp has
to be selected. In conclusion, using suboptimal data structures
for reporting can do the task of retrieving the specified data
to be very difficult or impossible.

4) Solving the problem:In order to circumvent the problem
as above, the data structures have to be adapted according to
our guiding principle such that within the information flow,
the process of information setup should be started as early as
possible. Two new attributes, "prev-step" and "prev-track-out-
TS" are added to the structure of WIP-data and these attributes
are filled during the collection phase. The attribute "prev-step"
identifies the previous step with regard to the actual "step" and
"prev-track-out-TS" holds the corresponding time stamp when
the item left the previous step. Since data is collected chunk-
wise, the cartesian product due to the corresponding joints is
relatively small and the initialisation of those attributes can be
done during the collection phase.

The aggregated structure may look like this: ("step", "equip-
ment", "product", "unit-type", "unit-desc", "cycle-time", "raw-
process-time"). During the small scale aggregation phase, the
values of the attributes "cycle-time" and "raw-process-time"
are summed up according to the corresponding grouping. For
example, if an aggregated daily table is set up, then the
flow factor for the lowest granularity can be calculated by
just dividing two numbers. As a consequence, the query to
calculate the flow factor is reduced to a simple select on a
single aggregated table, see algorithm Figure3.

5) Example for the data structure for RTC-data :For the
Equipment-data an oversimplified structure is: ("equipment-
ID", "chamber-ID", "work-station", "time-stamp", "current-
state"). Real Time Clock (RTC) systems record the current
state of the equipment [35], hence the equipment data as above
is also termed RTC-data. The current-status of the equipment
can be among others [36]: Scheduled-downtime, Unscheduled-
downtime, Non-scheduled-time, Productive-time, Engineering-
time, etc. For reporting purposes, the structures of WIP-data
with RTC-data are combined, for example to determine the
standard deviation of the cycle time concerning an equipment
or group of equipments, since a certain operation can be
performed on different equipments.

In conclusion, the principles of the CIPM as opposed to
the classical batch jobs strategy are presented in this section.
For this purpose, two representations of the standard deviation
are discussed The first representation is not suitable to be
applied within CIPM, whereas on the second representation
the principles of the CIPM are exemplified. For the sake of

completeness, a holistic function is presented which cannot
be generally applied within CIPM. Nevertheless, under some
circumstances, holistic functions can be used in real-time
environment, the strategy to be used depends on the use case.
Lastly, a real-world problem from a semiconductor company is
presented. Using some principles of CIPM such as redesigning
the calculation methodology, a more energy efficient, less
time consuming solution is presented, which can also be used
within CIPM.

IV. T HE FORMAL MODEL

We further formalise the description of our methodology [1]
by developing a mathematical model, in order to be able to
use the advantages of the rigour of a formal approach over
the inaccuracies and the incompleteness of natural languages.
In order to keep our model simple, transparent, and easily
comprehensible, some assumption are made, for example
equal length of the chunks, etc. These assumptions are not
strictly necessary in a real-world environment. Hence, within
the continuous information processing strategy, ensuring the
continuity of data collection phase and the continuity of
the transformation phase within the CIPM are more or less
straightforward. Hence, the terms continuous information pro-
cessing and continuous aggregation are used synonymously
within this paper.

A. General considerations

Assumption 1 (Finite streams) We suppose that the streams
are finite, i.e., there are two points in time,ts, the starting
and te, the ending point, such that within this time interval,
the data is collected/transformed and aggregated. �

Assumption 2 (Synchronous data delivery)We suppose
that each stream delivers data at the same points in time
{1, 2, . . . , T }. �

Definition 1 (Large scale aggregation)If the aggregation

a) occurs after the entire raw data has been previously
collected,

b) involves technologies that process all of the collected data
at once,

then the process is termed batch aggregation mode or large
scale aggregation. �

Definition 2 (Small scale aggregation)If:

a) the collected data within the interval[ts, te] can be split
into k ≥ 2 smaller units, also termed chunks,

b) partial aggregationis performed on these units, such that
the final aggregation values are calculated out of the
corresponding partial values of the chunks,

then the process is termed small scale aggregation. �

Assumption 3 (length of the chunks)We suppose that data
within the interval [ts, te] can be split intok ≥ 2 dis-
junct equal units of lengthl > 1, i.e., [ts, te] = [ts, ts+l],
[ts+l+1, ts+2l], ...,[ts+(k−1)l+1, te]. �

100

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Remark 1 Some authors specify the terms large scale ag-
gregation or small scale aggregation regarding their ability to
perform the computation in memory. Within this paper, a more
algorithmic than a technical approach is followed. �

The term “transformation” has been introduced for the seek
of completeness. In simplified terms, it is the process of
harmonisations of the data structures of the raw data from
different sources, such that it is best finalised for aggregation.
Moreover, during transformation, the initial streams can be
combined to new ones, in order to facilitate the aggregation
process. During the transformation phase, the data is also
verified for accuracy. In principle, the granularity of the data is
not altered during the transformation phase. In order to avoid
technical complications, the concept of data transformation is
not considered within the formal model, but formally, it can
be considered a part of the data retrieval. Assuring continuous
computation during the transformation phase is more or less
straightforward.

Assumption 4 (Aggregation time) In order to be able to
continuously compute – i.e., retrieve/collect and aggregate –
the time to aggregate a particular small batch does not exceed
the collection time of the same batch. �

Remark 2 Obviously, if Assumption (4) is not met, the ag-
gregation cannot be performed in all circumstances during
the data collection phase. �

Notation 1 (Streams) Let lX ∈ N be the number of streams
and let

X := {X(1), X(2), . . . , X(lX)}

be the set of streams.
Let {1, 2, . . . , T } be the points in time when the data is

collected and known by the system, let1 ≤ t ≤ T and let
1 ≤ l ≤ lX . The value of the streamX(l) collected at timet
is denoted byx(l)

t . �

Representation 1 The streamed values can be represented as
a matrix

(xtl)1≤t≤T ;1≤l≤lX such thatxtl = x
(l)
t .

�

Notation 2 (Grouping, bundle of streams) Let lF ∈ N be
the number of the aggregation functions.

In order to perform the computation of the streams –
the aggregation functions are in general functions of several
variables – a grouping

B := {B(1), B(2), . . . , B(lB)}

is defined on the space of the streams, such that

B(l) := {X(l1), X(l2), . . . , X(li)}.

and lF = lB .
Accordingly:

b
(l)
t := x

(l1)
t × x

(l2)
t × ∙ ∙ ∙ × x

(li)
t

is the value of the groupingB(l) at time t. �

This way, new compound streams are created.

Assumption 5 (No. of grouping = No. of functions) In or-
der to keep our model as simple as possible, it is supposed –
without limiting the generality – that the number of groupings
is equal to the number of aggregation functions.

Notation 3 Let

F := {F (1), F (2), . . . , F (lF)}

be the set of the aggregation functions, such that
for 1 ≤ l ≤ lF

F (l) : B(l) → R.

�

Remark 3 (Aggregation strategy) In order to keep the
model as general as possible, small scale aggregation is
considered as the overall approach. �

This means especially, that data is collected and aggregated
in small batches.

Notation 4 (Disassembling the standard deviation)Let
1 ≤ l ≤ lF and letF (l) : B(l) → R be the standard deviation,
see representation (2) and let x ∈ B(l) a particular stream.
Let 1 ≤ t ≤ T and let:

f
(l,1)
t (x) :=

t∑

i=1

x2
i ,

f
(l,2)
t (x) :=

t∑

i=1

xi,

f
(l,3)
t (x) := t

t∑

i=1

x2
i −

(t∑

i=1

xi

)2

= t ∙ f (l,1)
t (x) − (f (l,2)

t (x))2. (5)

Let F
(l)
t (x) be the value of the functionF (l) applied on the

values subscripted by1 ≤ t ≤ N . �

Proposition 1 (Calculation of the standard deviation)
The valueF

(l)
t (x) of the functionF (l) can be calculated

out of the values off (l,1)
t (x), f (l,2)

t (x), i.e., by considering
f

(l,3)
t (x), namely:

F
(l)
t (x) =

1
t

√∣
∣
∣f

(l,3)
t (x)

∣
∣
∣. (6)

�

B. Information processing

In the following, it is considered that the data is retrieved
and aggregated in chunks, and that before performing aggre-
gation, the chunks are not altered.

101

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Notation 5 (Chunk-wise processing)Let j, q ≥ 1, such that
j is the index andq is the length of the chunks and let us
suppose that the streams are retrieved in small chunks:

Cj := {C(1)
j , C

(2)
j , . . . , C

(lX)
j }

of q items, i.e., the chunkC(l)
j of the streamx ∈ B(l) consists

of the values:

C
(l)
j := {x(l)

((j−1)q+1), x
(l)
((j−1)q+2), . . . , x

(l)
(jq)}.

�

The information is processed chunk-wise, firstC1 is retrieved.
As long as the next chunkC2 is retrieved, aggregations is
performed onC1 simultaneously, then chunkC3 is retrieved
by simultaneously aggregating chunkC2, and so on and so
forth.

During the chunk-wise processing, the values off
(l,1)
(j+1)q and

f
(l,2)
(j+1)q corresponding to the subsequent chunk, can be easily

calculated out off (l,1)
jq andf

(l,2)
jq , for example:

f
(l,1)
(j+1)q(x) = f

(l,1)
jq (x) +

q∑

i=1

x2
jq+i.

The valueF (l)
jq corresponding to the standard deviation at time

t = jq can be calculated at each “step” corresponding to
the points in time{1, 2, ..., T }, or alternatively, after having
reached the end of the collection phase. This phase is termed
post aggregation phase.

Definition 3 (Post aggregation phase)The additional cal-
culation, which is performed after all chunks have been
retrieved and aggregated, is termed post aggregation phase.

Since the small scale aggregation should be as fast and
effective as possible, the functionsf

(l,3)
jq , F

(l)
jq must not neces-

sary be calculated for each chunk, as it is retrieved – if there is
no requirement in this direction – they can also be calculated
on a case by case basis by the tool that visualises intermediary
results.

C. Truncation errors

A discussion regarding the truncation errors is beyond the
scope of this paper. As already mentioned, whenN is large and
all of x-values are roughly of the same order of magnitude,
rounding or truncation errors may occur whenf

(l,1)
t and/or

f
(l,2)
t for 1 ≤ t ≤ T are evaluated in the straightforward

way [30]. A greater accuracy can be achieved by simply
shifting some of the calculation to double precision, see [24],
[25] for a discussion on rounding errors and the stability of
presented algorithms. Barlow presents anone-pass-through
algorithm [37], which is numerically stable and which is also
suitable for parallel computing.

The scope of the presentation in this paper is merely to
illustrate the technology. Of course, if a function does not
allow an one-pass algorithm, it cannot be used directly for
continuous computation. A classical example in this direction

is the average absolute deviation, as mentioned before, in some
cases there are approximate one-pass implementation of the
algorithms.

D. General case

So far, the standard deviation was considered as exemplifica-
tion. Now, let us formalise the continuous aggregation strategy
and consider the general case:

Proposition 2 (Reassembling the partial functions)

Let 1 ≤ l ≤ lF , let j, q ≥ 1, such thatj is the index and

q is the length of the chunks. Let

F (l) : B(l) → R

be an aggregation function such that:

a) there existslf real valued functions

f (l,1), f (l,2), . . . , f (l,lf) defined onB(l)

such that for each chunkC(l)
j , the values of

f
(l,i)
(j+1)q (1 ≤ i ≤ lf)

can be calculated out of the values off
(l,i)
jq and C

(l)
j ,

b) F (l) is a function off (l,i) for all 1 ≤ i ≤ lf .

Then intermediary results, such as the value ofF
(l)
(j+1)q can

be calculated out off (l,i)
(j+1)q (1 ≤ i ≤ lf). �

Assumption 6 Let jf be the index of the final chunk to
be processed. Obviously, the composition algorithms should
ensure that the valueF (l)

jf ∙q does not depend on the size of the
chunks. �

E. Reprocessing

In practical systems, in general, there should be a tech-
nology in place that allows recalculation of the aggregated
values. This is necessary if for any reason whatsoever, some
stream values are erroneous. Sometimes, it takes time to
correct them, since not all wrong values can be detected and
corrected automatically. Regarding the standard deviation, two
new functionsdf (l,1)

t anddf
(l,2)
t can be introduced, such that

df
(l,1)
jq (x) :=

q∑

i=1

x2
jq+i

and

df
(l,2)
jq (x) :=

q∑

i=1

xjq+i.

Thus, correct and updated computed values can be achieved,
for example by adding tof (l,3)

T the new value ofdf (l,1)
jq

and subtracting the corresponding old valuedf
(l,1)
jq , similar

considerations are valid fordf (l,2)
jq . This means especially,

that the corresponding values for the initial chunk and the
corrected chunk have to be (re)calculated. In the end, the
value F

(l)
jf ∙q has to be recalculated. As already mentioned,

the above considerations are included in order to illustrate

102

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the methodology. In practice, better suited algorithms can or
should be used instead.

F. Pseudo-code algorithm exemplification

In the following, a simplified algorithm to exemplify our
continuous aggregation strategy is sketched. It is based on
disassembling the standard deviationF

(l)
t using the functions

f
(l,1)
t , f

(l,2)
t , f

(l,3)
t , see equation (5) and (6). In order to keep

the representation of the algorithm simple, it is supposed
that the chunks have the same length equal tolchunk, see
Assumption3. The corresponding algorithm is presented in
Figure 4. In real-world systems, the data collection may
involve also time limitstMax, such that these time limits
restrict the length of the chunks.

1) Ad-hoc reporting including request for up-to-date data:
Granularity defines the level of detail of information. The
finer (higher) the level of granularity, i.e., smaller grains, the
deeper the level of detail. In time-series data, for example,
the granularity of the data might be at a millisecond, second,
minute or hour level, the higher the level of granularity, the
more information is available for analysis. The lowest level
of granularity is the granularity of the raw data, i.e., of
the data collected by the streams. For analysing purposes,
in real-word systems, the lowest level of granularity may
be to fine grained, for example, the streams deliver data
within milliseconds and with the highest precision, but this
low level of detail is pointless for reporting. In this case, a
pre-aggregationis performed by calculating the average or
similar of the numeric values. We suppose that the streams
do not contain calculated or aggregated data. Coarser level of
granularity can be achieved by aggregation.

2) Term ad-hoc:According to Merriam-Webster entry 1,
the term ad-hoc means “for the particular end or case at
hand without consideration of wider application”. Ad-hoc
reporting is a model of Business Intelligence (BI), in which
reports are build and distributed by non-technical BI-users to
meet individual and department information requirements. The
perception in the industry is that ad-hoc reporting refers to the
capability to develop reports by dragging and dropping query
items from the meta-model onto a design surface [38]. This
means especially that ad-hoc reporting is not an “improvised”
or unplanned reporting, as the definition entry 2 of Merriam-
Webster for the term ad-hoc would suggest, but a very well
thought out reporting environment set up by BI experts,
such that the corresponding tools can be also used by non-
specialists.

3) Example from the industry:Generally speaking, in the
semiconductor industry, the lowest level of granularity, which
characterises the production item (wafer or integrated circuits),
is the product. The next level of hierarchy is theproduct-
group, succeeded by theproduct-class, by thetechnology, and
in the end by theproduction-line. The usual/standard reporting
summarises the aggregated values on product, product-group,
product-class, technology, or production-line level.

Let us suppose that an equipment owner, who processes
a new product on his equipment, would like to report the

Algorithm 2 Sample code exemplifying the continuous ag-
gregation strategy

Input : Streamx
Output : F

(l)
t (x) at each retrieval point in timet

Result: Aggregated value of the standard deviation ready for report-
ing at any retrieval point in timet

double precisionf (l,1)(x) = 0 ; // component function

double precisionf (l,2)(x) = 0 ; // component function

double precisionF (l)(x) = 0 ; // value of the standard
deviation corresponding to the state of collection
int lchunk = 10, 000 ; // number of items of a chunk
float [lchunk] c ; // retrieved values of a chunk
float [lchunk] cprev ; // data of the previous chunk
int Lcol = 0 ; // length of the collection

// ---
/ * data of the length of a chunk is collected * /
procedure collection() {
int lcur = 0 ; // length of the collected data
repeat

collect data intoc ; // collect data into the chunk
lcur + +; // until the chunk is full

until lcur = lchunk ;
for i = 1 to lchunk by 1 do cprev[i] := c[i] ; // copy c to cprev

} // ---

/ * data of the length of a chunk is collected * /
procedure aggregation() {
float[lchunk] x ; // contains data of the previous chunk
for i = 1 to lchunk by 1 do x[i] := cprev[i]; // copy cprev to x

/ * calculation of the functions composing the
standard deviation * /

f (l,1)(x) := f (l,1)(x) +

lchunk∑

i=1

(x[i])2;

f (l,2)(x) := f (l,2)(x) +

lchunk∑

i=1

x[i];

Lcol := Lcol + lchunk; // number of items collected

F (l)(x) :=
1

Lcol

√
|Lcol ∙ f (l,1)(x)− (f (l,2))2(x)|;// only if

required
} // ---

/ * final calculation of the standard deviation * /
procedure post-aggregation() {

F (l)(x) :=
1

Lcol

√
|Lcol ∙ f (l,1)(x)− (f (l,2))2(x)|;

} // ---

/ * start aggregation in parallel to data collection
phase * /
procedure void main() {
collection();
repeat

start in parallel the threads: collection() & aggregation()
wait until both threads have finished

until collection phase is over;
aggregation(); // due to the phase shift
post-aggregation(); // final aggregated values
}

Figure 4: Pseudo-code based algorithm using standard deviation
exemplifying the continuous aggregation strategy.

103

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

standard deviation for the cycle time or waiting time for the
last week. The standard reporting system does not cover this
case, since for example, the first three days of the week the
old product is processed, then the equipment is adjusted for
the new product, which is processed afterwards. The standard
reporting covers the first three days of the week for the old
product and the remaining days for the new product. Hence,
mixed reporting, covering more products should be set up. The
task is not trivial, since the standard deviation corresponding
to the mixed week cannot be calculated out of corresponding
values of the standard deviation of each product. The example
as above illustrates also the inherent difficulties of ad-hoc
reporting, it may imply substantial effort on the BI side.

G. Model extension

Next, we extend our formal model in order to cover the
difficulties as above by exemplifying the methodology on the
standard deviation, see algorithm Figure5. Similar to the
continuous aggregation strategy:

Proposition 3 (Calculation of compound streams)
• let t be a point in time when streams are collected,
• let x and y be streams such thatx contains data for the
productp and y contains data for the productq,
• let nx

t be the number of items of the streamx corresponding
to time t,
• similarly, let ny

t be the number of items of the streamy
corresponding to the same point in timet,
• let f

(p,1)
t (x) and let f (q,1)

t (y) be the corresponding values
for the streamx and y respectively.

Set

f
((p+q),1)
t (x + y) := f

(p,1)
t (x) + f

(q,1)
t (y)

and

f
((p+q),2)
t (x + y) := f

(p,2)
t (x) + f

(q,2)
t (y).

Let

f
((p+q),3)
t (x + y) := (nx

t + ny
t) ∙ f ((p+q),1)

t (x + y)−
(
f

((p+q),2)
t (x + y)

)2

and

F
(p+q)
t (x + y) :=

1
(nx

t + ny
t)

∙

√∣
∣
∣f

((p+q),3)
t (x + y)

∣
∣
∣. (7)

Then F
(p+q)
t (x + y) determines the values of the standard

deviation corresponding to the compound streamx+y at time
t ∈ {1, 2, ..., N}. �

The calculation of the standard deviation relying on the
formula (7) should be applied by a reporting tool within the
ad-hoc reporting strategy. A closer look at the relation (7)
reveals that all components likef (p,1)

t (x), f
(q,1)
t (y), etc., are

precalculated during the continuous aggregation period.

Remark 4 (Calculation time is stream size independent)
Hence, the calculation time for the standard deviation does

not depend on the size of the stream or the point in time
when the calculation is performed.

Conclusion 1 (Real-time capability of ad-hoc reporting)
Thus, ad-hoc reporting set up as in the example above in a
real-time environment has real-time capability. �

Algorithm 3 Sample code exemplifying the ad-hoc reporting
strategy

Input : Streamx; Streamy;
Output : F

(l)
t (x + y) at each retrieval point in timet;

Result: Compound aggregated value of the standard deviation ready
for reporting at thelast point in time t ∈ {1, 2, . . . , T} for
which data has been collected;

double precisionf (l,1)
t (x) = 0 ; // component function

double precisionf (l,1)
t (y) = 0 ; // component function

double precisionf (l,2)
t (x) = 0 ; // component function

double precisionf (l,2)
t (y) = 0 ; // component function

double precisionf (l,1)
t (x + y) = 0 ; // calculated

double precisionf (l,2)
t (x + y) = 0 ; // calculated

double precisionF (l)
t (x + y) = 0 ; // value of the standard

deviation
int nt(x) = 0 ; // number of items belonging
to Stream x collected till the point in time of the
ad-hoc reporting; corresponds to the last time-stamp
of the collected data
int nt(y) = 0 ;
int nt(x + y) = 0 ;

ad-hoc-retrieval() {
/ * calculation of the functions composing the
standard deviation * /
nt(x)⇐ retrieve the value from database
nt(y)⇐ retrieve the value from database

f
(l,1)
t (x)⇐ retrieve the value from database;

f
(l,1)
t (y)⇐ retrieve the value from database;

f
(l,2)
t (x)⇐ retrieve the value from database;

f
(l,2)
t (y)⇐ retrieve the value from database;

f
(l,1)
t (x + y)← f

(l,1)
t (x) + f

(l,1)
t (y);

f
(l,2)
t (x + y)← f

(l,2)
t (x) + f

(l,2)
t (y);

nt(x + y)← nt(x) + nt(y);
F

(l)
t (x + y) :=

1

nt(x + y)

√∣
∣
∣nt(x + y) ∙ f (l,1)

t (x + y)− (f
(l,2)
t)2(x + y)

∣
∣
∣;

}

Figure 5: Pseudo-code based algorithm using standard deviation
exemplifying the principle of the ad-hoc reporting strategy and
enabling real-time capability.

H. Parallel execution of the continuous aggregation routines

So far, in order to keep the algorithms simple and trans-
parent, simplified algorithms were presented. The aim was to
exemplify the principle, such that they could be easily adapted
to solve real-world situations. Next, load balancing techniques
are presented. The advantage of these techniques is that it can
bypass Assumption (4), which limits the aggregation time and
it supposes that it does not exceed the retrieval time of the
chunks.

104

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Let j be the number of parallel instances of the aggregation
routine that calculates components of the standard deviation,
see procedure “aggregation” in Figure4. This procedure has to
be adapted such that it calculates partial values corresponding
to the functionf (l,1) and f (l,2). The implementation is quite
straightforward, hence only some hints are given. Define the
header as: “procedure aggregation (float[lchunk] x)” Define
the corresponding local variableδf (l,1)(x) and set

δf (l,1)(x) :=
lchunk∑

i=1

(x[i])2; (8)

Add the statement

f (l,1) := f (l,1) + δf (l,1)(x) (9)

for the global variablef (l,1). Thus, by callingj parallel in-
stances of the procedure “aggregation”,j chunks are processed
in parallel. We assumed in this example that statement (8) is
the time consuming one.

I. Benefits in the software development process

1) Transparent software development:One of the outstand-
ing advantages of the continuous aggregation strategy is the
possibility to simplify and align/harmonise the set-up process
of aggregation, thus leading to faster, modularised and more
effective and transparent software development. This involves
improved maintenance possibilities due to its conceptual unity.
Moreover, people can be trained much easier on maintenance,
since the software developed is not the outcome of individual
abilities and unique skills, but of very well specified me-
thodologies.

2) Paradigm shift: Lewis [39], [40] stated thatsoftware
construction is an intrinsically creative and subjective activity
and as such has inherent risks. Lewis added:the software
industry should value human experience, intuition, and wisdom
rather than claiming false objectivity and promoting entirely
impersonal “processes”.

Our contribution is a “step” in setting up objective cri-
teria regarding software developing processes, such that it
can be a science, not just an art, paraphrasing Roetzheim’s
statement [41] regarding software estimate. This way, our
approach facilitates theparadigm shift from a subjective
software construction activity, towards objectively verifiable
straightforward strategies. Our approach does not claim that
the overall effort of the transition from large scale aggregation
to small scale aggregation is diminishing, the complexity
of converting multi-pass algorithms to one-pass algorithms
should not be underestimated. It does requireintrinsically
creative and subjective activityas formulated by J.P. Lewis,
but merely on the algorithmic side.

J. Real-time capability

1) Real-time systems:The term continuous information
processinginvolves incessant data collection and steady aggre-
gation, such that preliminary aggregated results corresponding
to the current status of the collected data are available for

evaluation purposes. Continuous processing of large amounts
of data is primarily an algorithmic problem [42].

Real-time systems are subject to time constrains, i.e., their
actions must be fulfilled within fixed bounds. The perception
of the industry of real-time is first of all fast computation [43].
Moreover, TimeSys [44] requires the following features for a
real-time system:

a) predictably fast response to urgent events,
b) high degree of schedulability: the timing requirements of

the system must be satisfied at high degrees of resource
usage,

c) stability under transient overload: when the system is
over-loaded by events and it is impossible to meet all the
deadlines, the deadlines of selected critical tasks must still
be guaranteed.

The characterisation above exemplifies the different require-
ments in some fields of the industry. A real-time system
requires real-time capability of the underlying components,
including the operating system, etc. These considerations show
the immanent difficulties of the industry to cope with the
complexity of real-time requirements of opaque and incom-
prehensible systems.

2) Real-time capability of CIPM:In order to point out the
real-time capability of a continuous information processing
system, its behaviour is analysed and it is shown that it satisfies
the given time limits. In real-world systems, it is supposed that
the maximum size of the streaming dataand thestreaming
speedare known and these thresholds are not exceeded.

With the aim to keep the argumentation simple and straight-
forward, it is assumed that the streaming speed is constant,
i.e., the same amount and type of data is collected within
equal time intervals. Hence, it is appropriate to setup chunks
of data of the same size collected within equal time spans,
such that the aggregation time of different chunks is equal.
The aggregation timetagg of a particular chunk should not
exceed its retrieval timetret, i.e., tagg ≤ tret, else data to be
aggregated will accumulate, see Assumption4.

The strategy to achieve real-time behaviour based on con-
tinuous stream computing is straightforward.

Remark 5 (Condition for achieving real-time capability)
Let tC be the time constraint such that within the time
interval specified accordingly, aggregated data should be
available. In order to have real-time capability, the condition

tret + tagg ≤ tC

should be satisfied.

Obviously, to achieve this goal, some fine tuning should be
performed by choosing the appropriate size of the chunks.
Hence, continuous computation including small scale aggre-
gation, pave the way for real-time capability.

In conclusion, within this section a formal model has been
introduced in order to best describe the concepts of the
continuous information processing strategy. The focus is on the
terms of one-pass algorithm, small scale aggregation, continu-
ous computing, and real-time capability. One-pass algorithms

105

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

enable small scale aggregation, which can pave the way for
real-time capability, on the condition that the timely constrains
can be satisfied by the underlying computing environment.
Actually, the one-pass requirement of the algorithms is not
necessary, it suffices that the partial results of the computation
of the chunks can be merged such that the expected aggregated
values can be calculated.

V. OUTLINE OF THE RESULTS; DISCUSSIONS

Our objective has been to work towards developing practical
solution to overcome the difficulties related to batch jobs,
identified by Cisco in a white paper [9] as Pain Points. The
pros and cons of the newly developed continuous information
processing strategy versus the traditional batch jobs approach
are outlined in this section and additional weak points of each
technique are identified.

A. Cisco’s Pain Points

1) Toughest challenge:The main challenge – which led to
the outcome of this paper – was to investigate, whether it is
possible to give satisfactory answers to the Pain Points raised
by Cisco [9] concerning batch aggregation on data streams.
Except Pain Point No. 3 regarding ad hoc reporting, to all other
Pain Points, such as batch window time constraints, painful
recovery, service-level agreements, etc., methods of resolution
have been previously established [1]. In order to be able to
properly present our methodology, a formal model has been
set up and it has been shown that under some circumstances
(for example, if the aggregation functions can be processed
efficiently in one-step) the data collection and data aggregation
can be performed continuously, and thus comprise real-time
capability.

2) Sticking point – additional implementation effort:The
one-pass implementation (or alternatively using small scale
aggregation technology) of aggregation functions, can be
meticulous, and may require additional effort. Most of the
aggregation functions, also termedmeasures,used in the
industry, permit such implementations; one of the well-known
counterexample is the average absolute deviation. Since the
computation is continuous and final results are available soon
after the data collection has been completed, the Pain Point
No. 1 regarding the question of batch window time constraints
is obsolete.

3) Energy efficiency due to simplified recovery and to load
distribution: Painful recovery (Paint Point No. 2) is less
painful if there is a well thought-through recovery algorithm in
place, such that only the erroneous parts are recalculated. Since
there is a much better control of the computation/aggregation
flow, a better service-level and resource conflict management
can be achieved by using the continuous aggregation strategy.

It is true, that usually, batch jobs are performed during
nighttime hours, when the workload on the computer is lower
than during working hours. Unfortunately, due to computation
errors or erroneous raw data, the batch aggregation has to
be restarted also during normal working hours. Hence, the
computer capacity should support the extended load due to

recomputing the batch jobs during working hours. On the con-
trary, by using continuous computation, the load is distributed
uniformly over the whole duration of the data collection and
as a result, peak loads remain manageable. Moreover, due to
our aggregation strategy – such that calculation is performed
during the collection phase as early as possible, best when
the data is still in memory – reloading the persisted data into
memory is reduced to a minimum. Besides, the small scale
aggregation can be optimised by identifying the optimal size
of the chunks, such that the time constraints are met with
minimal computational effort. This way, smaller computers
can be used, especially since the energy efficiency of the
batch aggregation is in general significantly worse than the
correspondent computation regarding small scale aggregation.

B. Continuous aggregation versus batch jobs

1) Our fundamental computational strategy in a nutshell:
According to the long time experience of the first au-
thor, the best performance in the field of Business Intelli-
gence/Data Warehousing is obtained if the data is pro-
cessed/transformed/precalculated as soon as possible; best,
as soon as the data is known to the system. This includes
also multiple storage strategies of the same raw/transformed
data. Sometimes, it is advantageous to pursuit adual strategy.
On the one hand, try to follow the continuous computation
strategy as long as possible i.e., as long as the implementation
of the corresponding aggregation functions is possible with
reasonable effort and run-time performance, and on the other
hand, precalculate as much as possible by maintaining the
batch jobs strategy.

2) Executions plans as the weak point of the batch jobs
strategy: The main challenge of the batch jobs strategy, when
using general purpose database management systems, is a tech-
nical one and it relates to the optimisation throughexecution
plans. In highly simplified terms, the execution plans attempt
to establish the most efficient execution of statements (queries)
out of a summary of pre-calculated statistics. Unfortunately,
the execution plans do not always generate the optimal (fastest,
most efficient) query; performance can also degrade if the
execution plans are updated. Hence, if the streams are not
steady, performance degradation of the batch jobs may occur.
There are methods to overcome the automatic generation of
the execution plans, but the problem in principle remains.

On the contrary, by using small scale aggregation, the size
of data sets on which computation is performed is more
or less constant, and data is in memory, hence less prone
to fluctuations due to the executions plans. It is therefore
reasonable to assume some upper bounds, enabling real-time
capability of the system.

C. Enhanced system modelling

One of the most important side benefits of the continuous
information processing strategy is the straightforward system
modelling. In this way, the design of the architecture, data
flow, aggregation strategy, database schema design, etc., is
given by the structure of the streaming data, the aggregation

106

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

functions and the algorithms of their implementation. Thus, the
more individualistic design, heavily based on the experience
of the application developer is converted into a predefined set
of well founded modelling strategies, sustaining a paradigm
switch from more or less subjectively individualistic concep-
tions in software design and development towards objectively
established optimal solutions. Quantitative estimations show
that many Data Warehouse projects fail at a concerning rate,
wasting all the time, money, and effort spent on them [45].

D. Broadening the tasks of the classical reporting strategy

1) Supporting production control:The essence of the con-
tinuous information processing strategy is that it enables the
calculation of the aggregation functions during the collection
phase. For example, for reporting purposes, the data for a full
day is collected. The classical batch jobs strategy envisaged
the generation of the data pool for reporting only after the data
has been fully collected. Hence, calculated/aggregated values
for reporting were available on the next day, depending on the
execution time of the batch jobs. Thus, the scope of classical
reporting strategy was to capture, survey and review the pro-
duction status of the previous day. On the contrary, based on
the data already collected, the continuous aggregation strategy
enables the calculation/generation of preliminary reports at
various points in time. This way, for example, soon after 12:00,
the daily reports show the production figures corresponding to
the time frame [0:00, 12:00]. Therefore, if these figures are not
optimal, corresponding measures to boost production could
be taken. Thus, modern reporting based on our technology
enablesproduction control.

2) Reducing ramp-up time:In some cases, optimisation can
be substantial, saving time and costs. For example, in the
semiconductor manufacturing, there are optional production
steps, where the material is measured. The number of measure-
ments can be in the range of hundreds, and the measurement
time can last for several hours. The common aggregation
technology assumes that all measurement data is collected
before starting the aggregation. By adopting our continuous
computation technology, preliminary measurement results can
be calculated. This way, faulty processed material can be
identified earlier, since there is no need for full calculation
in order to identify faulty processing, and hence, the ramp-
up time of a new product can be substantially reduced, thus
giving the company decisive advantage over his competitors.

E. Additional issues

1) Hardware upgrade vs. performance improvement:Next,
two issues are addressed, which are decisive from technical
point of view:

1) absence of optimal Data Warehouse design methodology,
2) performance problems due to the high complexity, re-

quirements on expandability, and the low scalability of
the existing complex solutions.

According to the experience of the first author at Qimonda in
the Business Intelligence and Data Warehouse environment,
increasing the processing capability of the computers does not

always lead to improved performance of the Data Warehouse
applications. By doubling the computing capacity, roughly
20% in performance improvement has been achieved. Using
high performance racks produced the best results. In the
end, when the effort for performance improvement is greater
than the effort to redesign the Data Warehouse, appropriate
measures should be taken.

2) Improving data quality:Furthermore, due to our mod-
ular straightforward design strategy, the flow of data can be
much closely monitored, hence superiordata qualitycan be
achieved. Moreover, enhancedmaintenanceand straightfor-
ward implementationcan be reached due to the harmonised
approach.

In conclusion, the price for achieving continuous aggrega-
tion may be high, the build in functions like standard deviation
cannot be used any more, and as the case may be, new one-
pass or similar algorithms for the aggregation functions have
to be set up, hence algorithmic and programming effort may
increase. The benefits are obvious, a straightforward design
strategy, up-to-date aggregated values during data collection,
a uniform computational effort over the data collection period
and an efficient recalculation strategy, which lead in the end
to a much efficient utilisation of computational resources.
Improving the performance of batch jobs is tedious, if the
redesign strategy is not an option, sophisticated data base
technologies or costly high performance racks can overcome
the problem.

VI. CONCLUSION AND FUTURE WORK

In the following, the advantages of the CIPM are sum-
marised and the future work, we are concerned with, is
sketched.

A. Conclusion

Satisfactory solutions to the problems caused by the nightly
batch aggregation – as pointed out by Cisco [9] – are given.
To ensure an accurate presentation of our methodology, a
formal model has been set up and it has been shown that
for a specific type of aggregation functions – including those
that support efficient one-pass implementation – the data
aggregation can be performed continuously and thus allows
real-time capability.

1) Advantages CIPM - Résumé:Continuous aggregation
strategy:

1) supportsreal-time capability; if time constraints can be
met,

2) supportsaggregated values corresponding to the captured
data; i.e., reporting capability at any point in time during
data collection,

3) supportsenhanced production controldue to up-to-date
aggregated data at any point in time during data collec-
tion,

4) supportsstraightforward design strategiesdue to clear,
easy understandable architectural and implementation
principles,

107

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

5) supports easy maintenancedue to transparent and
straightforward software development process,

6) supportshigher quality of aggregated datadue to the
simplified architectural and implementation principles,

7) supportsuniform load of the underlying database system
due to the continuous aggregation principles,

8) supportsad-hoc real-time reporting capabilitydue to the
principles of the continuous aggregation as elaborated by
us,

9) supportshigher degree of reporting flexibility than the
MOLAP technologydue to the fact that the action of
slicing and dicing is not bound to a hierarchical tree
model,

10) avoidscomplicated SQL-queries for data retrieval or data
aggregation using large cartesian productsdue to the new
architectural principles,

11) supports more accurate“Knowledge Discovery in
Databases” capabilitydue to the much detailed data
analysis capacity,

12) supportsearly detection of erroneous data setsdue to
the continuous aggregation principles, avoiding panic
situations as in the case of nightly batch jobs,

13) supports straightforward performance improvement
strategiesdue to the simplified architectural principles,

14) avoids or reduces “hot working phases” at night for the
IT personneldue to the absence of nightly jobs,

15) reducesthe risk of incomplete or missing standard re-
porting – “race against time”, as termed by Cisco – due
to the enlarged aggregation window,

16) reducesthe complexity of the database administrationdue
to the new streamlined environment versus a database
pushed to its limits, as in case of batch jobs,

17) supports improvedload balancingdue the modularised
aggregation strategy,

18) supportslower memory requirements, since the data to be
aggregated is already uploaded into memory during the
data collection phase,

19) supportsstreamlined SQL-statements,since the data to be
aggregated is preserved in small chunks,

20) avoidsregular performance improvement tasksdue to the
streamlined architecture of the aggregation strategy,

21) avoidsperformance bottlenecksdue to the recalculation
of the nightly aggregation during business hours,

22) ensuresvery good scalability, both for the small scale
aggregation and for the ad-hoc reportingdue to much
better performance control,

23) avoidsperformance fluctuationdue to imperfect execu-
tion plans,

24) supportsefficient recalculation of aggregated values, in
case erroneous data is collected,

25) supportsparallelisation beyond the built-in facilities of
the underlying database system,

26) supportsindependency of the underlying database system,
such as Relational, No-SQL, etc., and last but not least:

27) ensuresenergy efficiency, since smaller hardware can be
used due to the fact that aggregation is performed during

the whole data collection period.

2) Difficulties CIPM - Résumé:

1) somepredefined formulas, e.g., STDEV, cannot be used
directly, since the function above is not cumulative,

2) difficult architectural set-up, i.e., new algorithms have to
be designed and implemented,

3) longer development timesdue to the new architectural
design strategy,

4) IT staff has to be additionally traineddue to unconven-
tional architectural and maintenance strategies,

5) heterogeneous team including mathematicians and data
scientistneed to be used, i.e., the algorithmic part of the
development may be sophisticated,

6) increased development costsdue to the unconventional
development strategies, and last but not least:

7) strong management commitment to overcome the difficul-
ties due to the anticipating challenges.

We have not experienced major difficulties in implementing
the CIPM approach in database applications, implementation
from the scratch is pretty straightforward, porting to CIPM
an existing legacy database application using batch jobs, can
be quite cumbersome. For sophisticated legacy applications,
the most efficient method is to try to improve performance as
long as possible by applying database technologies, and/or by
using high performance racks, etc.

3) Final considerations:The price of the advantages as
above depends on the structure of the aggregation function.
Most of the key performance indicators used in the industry
permit an incremental representation, i.e., as functions of
different representation of sum(), avg(), count(), similar to the
standard deviation, as presented in this article. The effort in
this cases is manageable. Generally speaking, the aggregation
functions should permit efficient one-pass calculation, or in
the case of holistic functions, an algorithm, such that the time
constraints can be satisfied.

In conclusion, for small applications, where real-time con-
straints are not an issue, batch jobs (large scale aggregation)
will deliver satisfactory results, whereas for large applications,
even if real-time capabilities are not required, the advantages
of CIPM may prevail.

B. Future Work

The Pain Point No. 3 of Cisco’s white paper [9]: “ad
hoc reporting; managing unplanned reports in a plan-based
environment”, has been handled in this paper. The question
still remains, as to what extent “unforeseen” reports can be
meaningfully set up. Furthermore, one asks oneself, what is
the optimal strategy regarding volatile versus persistent aggre-
gation, i.e., aggregation within a query set up by a visualisation
tool versus aggregation persisted in a data storage. From
an algorithmic perspective, persistent aggregation offers more
advantages if the query is often invoked. Moreover, the results
can be much better validated if the data is persisted. On the
other hand, sporadic queries should remain volatile, i.e., the
result of the queries should not be persisted for further reuse.

108

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Tangwongsan [17] points out that “much less is known for
nontrivial scenarios”, i.e., “functions that are not associative
and do not support FIFO windows”. Within this paper satis-
factory answers are given for those aggregation functions that
can be reduced to additive functions, and/or allow one-pass
algorithm. For example, it has been shown that the median [8]
can successfully be used within CIPM.

Generally speaking, the integration of the holistic functions
within CIPM remains an outstanding challenge. Commonly,
for data warehouse applications, the raw data is always stored
for a certain period of time in order to be able to retrace the
computation. Hence, improving the speed of the computation
by using distributed algorithms, etc., can ensure real-time
capabilities. On the contrary, when dealing with long time
and high amount of streaming data, storing the data even
temporarily is not possible. In such cases, developing suitable
algorithms for approximate calculations could help. Each
holistic function should be handled on a case-by-case basis.
A general strategy seems improbable for the time being. In
conclusion, in general, for non-holistic functions (including the
usual KPIs used in business and industry) satisfactory results
can be given. The problem regarding the holistic functions is
still open, some of them can be used under some circumstances
in real-time environment.

ACKNOWLEDGMENT

We appreciate the information and insightful comments
provided by the anonymous reviewers, which significantly
improved the quality of this paper. Last, but not least, we
acknowledge the assistance and helpful comments provided
by Prof. Dini.

REFERENCES

[1] M. Zinner, K. Feldhoff, and W. E. Nagel, “Continuous Information
Processing Enabling Real-Time Capabilities: An Energy Efficient
Big Data Approach,” ICSEA 2021 : The Sixteenth International
Conference on Software Engineering Advances, pp. 155–165, 2021,
Retrieved: June 2022. [Online]. Available:https://www.thinkmind.org/
articles/icsea_2021_2_180_10095.pdf

[2] A. De Mauro, M. Greco, and M. Grimaldi, “A formal
definition of big data based on its essential features,”
Library Review, 2016, Retrieved: June 2022. [Online]. Avail-
able: https://www.researchgate.net/publication/299379163_A_formal_
definition_of_Big_Data_based_on_its_essential_features

[3] H. U. Buhl, M. Röglinger, F. Moser, and J. Heidemann, “Big
Data,” Business & Information Systems Engineering, vol. 5, no. 2,
pp. 65–69, 2013, Retrieved: June 2022. [Online]. Available:https:
//doi.org/10.1007/s12599-013-0249-5

[4] Statista, “Volume of data/information created, captured, copied, and
consumed worldwide from 2010 to 2025,” 2021, Retrieved: June
2022. [Online]. Available: https://www.statista.com/statistics/871513/
worldwide-data-created/

[5] R. Sousa, R. Miranda, A. Moreira, C. Alves, N. Lori, and J. Machado,
“Software tools for conducting real-time information processing and
visualization in industry: An up-to-date review,”Applied Sciences,
vol. 11, no. 11, p. 4800, 2021, Retrieved: June 2022. [Online].
Available: https://www.mdpi.com/2076-3417/11/11/4800

[6] K. Yasumoto, H. Yamaguchi, and H. Shigeno, “Survey of real-time
processing technologies of iot data streams,”Journal of Information
Processing, vol. 24, no. 2, pp. 195–202, 2016, Retrieved: June 2022.
[Online]. Available:https://doi.org/10.2197/ipsjjip.24.195

[7] I. Sommerville, “Software engineering 9th edition,”ISBN-10, vol.
137035152, p. 18, 2011.

[8] Zinneret al., “Real-time information systems and methodology based on
continuous homomorphic processing in linear information spaces,” 2015,
Retrieved: June 2022. [Online]. Available:https://patentimages.storage.
googleapis.com/ed/fa/37/6069417bdcc3eb/US20170032016A1.pdf

[9] Cisco, “BI and ETL Process Management Pain Points,”
White Paper, pp. 1–9, 2010, Retrieved: June 2022. [On-
line]. Available: http://download.101com.com/tdwi/ww29/cisco_bi_etl_
process_management_pain_points.pdf

[10] N. Schweikardt, “One-pass algorithm.” 2009, Retrieved: June
2022. [Online]. Available:http://www.tks.informatik.uni-frankfurt.de/
schweika/downloads/EncycDBS_OnePassAlgos.pdf

[11] P. E. O’Neil, “The sb-tree an index-sequential structure for
high-performance sequential access,”Acta Informatica, vol. 29,
no. 3, pp. 241–265, 1992, Retrieved: June 2022. [Online].
Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
55.9482&rep=rep1&type=pdf

[12] J. Zhang, “Spatio-temporal aggregation over streaming geospatial data,”
in Proceedings of the 10th International Conference on Extending
Database Technology Ph. D. Workshop. Citeseer, 2006, Retrieved:
June 2022. [Online]. Available:https://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.84.8746&rep=rep1&type=pdf

[13] J. Yang and J. Widom, “Incremental computation and maintenance
of temporal aggregates,”The VLDB Journal, vol. 12, no. 3,
pp. 262–283, 2003, Retrieved: June 2022. [Online]. Available:
http://ilpubs.stanford.edu:8090/482/1/2000-6.pdf

[14] TU-Berlin-DIMA, “Scotty: Efficient window aggregation for
out-of-order stream processing,”Generated by GitHub Pages, 2021,
Retrieved: June 2022. [Online]. Available:https:21:3103.09.202121:
3103.09.202121:3103.09.202121:3103.09.202121:3103.09.2021//tu-
berlin-dima.github.io/scotty-window-processor/

[15] J. Traub, P. M. Grulich, A. R. Cuellar, S. Breß, A. Katsifodimos,
T. Rabl, and V. Markl, “Scotty: Efficient window aggregation for out-of-
order stream processing,” in2018 IEEE 34th International Conference
on Data Engineering (ICDE). IEEE, 2018, pp. 1300–1303, Retrieved:
June 2022. [Online]. Available:https://hpi.de/fileadmin/user_upload/
fachgebiete/rabl/publications/2018/ScottyICDE2018.pdf

[16] J. Traub, P. M. Grulich, A. R. Cuéllar, S. Breß,
A. Katsifodimos, T. Rabl, and V. Markl, “Scotty: General and
efficient open-source window aggregation for stream processing
systems,” ACM Transactions on Database Systems (TODS),
vol. 46, no. 1, pp. 1–46, 2021, Retrieved: June 2022.
[Online]. Available:https://www.redaktion.tu-berlin.de/fileadmin/fg131/
Publikation/Papers/Traub_TODS-21-Scotty_preprint.pdf

[17] K. Tangwongsan, M. Hirzel, and S. Schneider, “Sliding-window
aggregation algorithms.” 2019, Retrieved: June 2022. [Online].
Available: http://hirzels.com/martin/papers/encyc18-sliding-window.pdf

[18] ——, “Optimal and general out-of-order sliding-window aggregation,”
Proceedings of the VLDB Endowment, vol. 12, no. 10, pp. 1167–1180,
2019, Retrieved: June 2022. [Online]. Available:https://www.scott-a-
s.com/files/vldb2019_fiba.pdf

[19] Z. Chen and A. Zhang, “A survey of approximate quantile
computation on large-scale data,”IEEE Access, vol. 8, pp. 34 585–
34 597, 2020, Retrieved: June 2022. [Online]. Available:https:
//ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9001104

[20] P. P. Pebay, T. Terriberry, H. Kolla, and J. C. Bennett, “Formulas
for robust, parallel computation of arbitrary-order, arbitrary-variate,
statistical moments with arbitrary weights and compounding.” Sandia
National Lab.(SNL-CA), Livermore, CA (United States); The Xiph.
Org , Tech. Rep., 2015, Retrieved: June 2022. [Online]. Available:
https://www.osti.gov/servlets/purl/1504207

[21] P. Pébay, T. B. Terriberry, H. Kolla, and J. Bennett, “Numerically stable,
scalable formulas for parallel and online computation of higher-order
multivariate central moments with arbitrary weights,”Computational
Statistics, vol. 31, no. 4, pp. 1305–1325, 2016, Retrieved: June 2022.
[Online]. Available:https://www.osti.gov/servlets/purl/1426900

[22] C. Labreuche, “A formal justification of a simple aggregation function
based on criteria and rank weights,” inProc. DA2PL2018, From
Multiple Criteria Decis. Aid Preference Learn., 2018, pp. 1–1,
Retrieved: June 2022. [Online]. Available:http://da2pl.cs.put.poznan.pl/
programme/detailed-programme/da2pl2018-abstract-14.pdf

[23] R. Eccles and G. Serafeim, “Corporate and integrated reporting: A
functional perspective,[w:] corporate stewardship: Achieving sustainable
effectiveness, red,”E. Lawler, S. Mohrman, J. OToole, Greenleaf, Posted:

109

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2 Feb 2014 Last revised: 24 May 2018, Retrieved: June 2022. [Online].
Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2388716

[24] T. F. Chan, G. H. Golub, and R. J. LeVeque, “Algorithms for
computing the sample variance: Analysis and recommendations,”The
American Statistician, vol. 37, no. 3, pp. 242–247, 1983, Retrieved:
June 2022. [Online]. Available:http://www.cs.yale.edu/publications/
techreports/tr222.pdf

[25] ——, “Updating formulae and a pairwise algorithm for computing
sample variances,” inCOMPSTAT 1982 5th Symposium held at
Toulouse 1982, 1982, pp. 30–41, Retrieved: June 2022. [Online].
Available: https://apps.dtic.mil/sti/pdfs/ADA083170.pdfP

[26] W. Hopp and M. Spearman,Factory Physics: Third Edition. Waveland
Press, 2011.

[27] W. Hansch and T. Kubot, “Factory Dynamics Chapter 7 Lectures
at the Universitaet der Bundeswehr Muenich,” p. 68, Retrieved:
June 2022. [Online]. Available:https://fac.ksu.edu.sa/sites/default/files/
Factory%20Dynamics.pdf

[28] C.-F. Lindberg, S. Tan, J. Yan, and F. Starfelt, “Key performance
indicators improve industrial performance,”Energy procedia, vol. 75,
pp. 1785–1790, 2015, Retrieved: June 2022. [Online]. Available:
https://doi.org/10.1016/j.egypro.2015.07.474

[29] M. Zinner et al., “Techniques and Methodologies for Measuring
and Increasing the Quality of Services: a Case Study Based on
Data Centers,” International Journal On Advances in Intelligent
Systems, volume 13, numbers 1 and 2, 2020, vol. 13, no. 1
& 2, pp. 19–35, 2020, Retrieved: June 2022. [Online]. Available:
http://www.thinkmind.org/articles/intsys_v13_n12_2020_2.pdf

[30] W. Kahan, “Pracniques: further remarks on reducing truncation errors,”
Communications of the ACM, vol. 8, no. 1, p. 40, 1965.

[31] T. Pham-Gia and T. Hung, “The mean and median absolute
deviations,” Mathematical and Computer Modelling, vol. 34, no.
7-8, pp. 921–936, 2001, Retrieved: June 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0895717701001091

[32] R. C. Geary, “The ratio of the mean deviation to the standard deviation
as a test of normality,”Biometrika, vol. 27, no. 3/4, pp. 310–332, 1935.

[33] J. K. Patel and C. B. Read,Handbook of the normal distribution. CRC
Press, 1996, vol. 150.

[34] G. Laipple, S. Dauzère-Pérès, T. Ponsignon, and P. Vialletelle, “Generic
data model for semiconductor manufacturing supply chains,” in2018
Winter Simulation Conference (WSC). IEEE, 2018, pp. 3615–3626,
retrieved: June 2022. [Online]. Available:http://simulation.su/uploads/
files/default/2018-laipple-dauzere-peres-ponsignon-vialletelle.pdf

[35] F. Biebl, R. Glawar, A. Jalali, F. Ansari, B. Haslhofer, P. de Boer, and
W. Sihn, “A conceptual model to enable prescriptive maintenance for
etching equipment in semiconductor manufacturing,”Procedia CIRP,
vol. 88, pp. 64–69, 2020, retrieved: June 2022. [Online]. Available:
https://doi.org/10.1016/j.procir.2020.05.012

[36] K. Hilsenbeck, “Optimierungsmodelle in der Halbleiterproduktions-
technik,” Ph.D. dissertation, Technische Universität München, 2005,
retrieved: June 2022. [Online]. Available:http://nbn-resolving.de/urn/
resolver.pl?urn:nbn:de:bvb:91-diss20050808-1721087898

[37] J. L. Barlow, “Error analysis of a pairwise summation algorithm
to compute the sample variance,”Numerische Mathematik, vol. 58,
no. 1, pp. 583–590, 1990, Retrieved: June 2022. [Online]. Available:
https://de.booksc.eu/book/6543977/98912d

[38] GSA, “Cognos Ad-Hoc Reporting (Basics),”ePM Quick Reference
Guide 75, 2016, Retrieved: June 2022. [Online]. Available:https:
//www.gsa.gov/cdnstatic/QRG.075_Ad_Hoc_Reporting_6.0.pdf

[39] J. Lewis and T. Disney, “Large limits to software estimation,”ACM
Software Engineering Notes, vol. 26, no. 4, pp. 54–59, 2001, Retrieved:
June 2022. [Online]. Available:http://scribblethink.org/Work/Softestim/
kcsest.pdf

[40] J. Lewis, “Mathematical limits to software estimation: Supplementary
material,” Stanford University, 2001, Retrieved: June 2022. [Online].
Available: http://scribblethink.org/Work/Softestim/softestim.html

[41] W. H. Roetzheim and R. A. Beasley,Software project cost schedule
estimating: best practices. Prentice-Hall, Inc., 1998.

[42] B. Evgeniy, “Supercomputer beg with artificial intelligence of optimal
resource use and management by continuous processing of large
programs,” Glob Acad J Econ Buss, vol. 1, pp. 21–26, 2019,
Retrieved: June 2022. [Online]. Available:https://gajrc.com/media/
articles/GAJEB_11_21-26_zOIbTWD.pdf

[43] E. A. Lee, “What is real time computing? a personal view.”
IEEE Des. Test, vol. 35, no. 2, pp. 64–72, 2018, Retrieved: June
2022. [Online]. Available:https://ptolemy.berkeley.edu/projects/chess/
pubs/1192/Lee_WhatIsRealTime_Accepted.pdf

[44] TimeSys Corporation, “The concise handbook of real-time systems,”
TimeSys Corporation Pittsburgh, PA, Version 1.3, pp. 1–65, 2002,
Retrieved: June 2022. [Online]. Available:https://course.ece.cmu.edu/
~ece749/docs/RTSHandbook.pdf

[45] D. Asrani, R. Jain, and U. Saxena, “Data Warehouse Development
Standardization Framework (DWDSF): A Way to Handle Data
Warehouse Failure,” IOSR Journal of Computer Engineering
(IOSR-JCE), vol. 19, pp. 29–38, 2017, Retrieved: June 2022.
[Online]. Available: http://www.iosrjournals.org/iosr-jce/papers/Vol19-
issue1/Version-2/E1901022938.pdf

110

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

