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Abstract—The combination of Online Transactional Processing
and Online Analytical Processing into one system is an emerging
area in database research called Hybrid Transactional and An-
alytical Processing databases (HTAP, OLxP). Both Gartner and
Forrester Research see disruptive potential in this technology as
it provides important advantages. These include the elimination
of redundant data sets for analytical and live data as well
as the reduction of the total cost of ownership of analytics
systems. The development of HTAP databases resulted in various
advances in the database sector like the creation of new index and
data structures or improvements of existing concurrency control
implementations. However, there is a great variety regarding
many architectural aspects in different HTAP systems. Examples
include implementations of concurrency control, query handling,
or scaling paradigms ranging from scaled-up single server
systems using Multi Version Concurrency Control to scaled-
out cluster based systems using last writer wins approaches.
This contribution provides a general overview of contemporary
HTAP implementations. On the one hand, different fundamental
technical aspects are presented and compared in detail. On
the other, it goes beyond a standard literature review by also
presenting an overview of production ready HTAP systems,
including both free and commercial systems.

Keywords—Hybrid Transactional Analytical Processing; HTAP;
Database; Literature Study; OLxP.

I. INTRODUCTION

The need to analyse data in realtime and not to rely on
copies of old databases combined with the growing wish of
companies to gather all data in one database lead to the
rise of Hybrid Transactional Analytical Processing (HTAP)
Databases. In our initial systematic literature review from 2020
on this topic, we provided a comprehensive summary focused
on the research of these systems [1]. While HTAP as a term
was coined by Gartner [2] in 2014 and even before that there
had already been active research in the area these databases
are still heavily evolving and only starting to get a foothold
in production systems. Therefore, in this work, we extend
our previous literature review with the current state of HTAP,
highlighting new research conducted, but also introducing an
overview of currently available HTAP systems for use in
production use cases, including both free and commercial
systems.

Solving the problems of keeping data in two separated
databases and at the same time reducing the total cost of
ownership by introducing one unified system instead, HTAP

efficiently combines Online Transactional Processing and On-
line Analytical Processing capabilities in one system. There-
fore, both Gartner [3] and Forrester Research [4] see disruptive
potential in HTAP. A trend already projected to the industry,
e.g., with commercial solutions provided by two of the world
leaders SAPs HANA database [5] and Tableaus HyPer [6]
integration.

In this work the basics of the different fundamental ar-
chitectures for HTAP database systems like HyPer [7] and
SAP HANA [8] are explained and different approaches re-
garding the concrete implementations as well as optimization
approaches are introduced in form of a refined version of our
earlier systematic literature review. Further we provide insight
into the production implementation of HTAP databases like
SAPs HANA [5] and Tableaus HyPer [6] systems. The aim of
this paper is to reflect the current state of research in an ordered
way, as well as to highlight important decisions leading to
todays implementations and their production use.

This remainder of this paper is organized as follows: Section
2 provides background on database processing paradigms
covered in this paper. Section 3 describes the underlying
literature review process in detail. Section 4 discusses the
findings and provides a overview of the current development
and research state of HTAP.

The section is further separated into subsection ordering
findings by the area of HTAP it deals with:

IV-A Fundamental Architecture (containing scaling paradigms,
data/table structures and ways of saving/partitioning data)

IV-B Concurrency
IV-C Garbage Collection
IV-D Query Handling (containing query languages, general

optimization approaches, query processing in differently
scaling systems)

IV-E Indices
IV-F Big Data on HTAP
IV-G Recovery, Error Handling and Logging
IV-H Benchmarking of HTAP Systems
IV-I Stream Processing with HTAP Systems
IV-J HTAP as a Service

IV-K Future trends of HTAP development
IV-L Open Source and Free Versions

Section 5 then provides insights on the current sate of HTAP
databases regarding their production usage.
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Finally, Section 6 summarizes the provided work, supplying
all required information in a short form.

II. BACKGROUND

This section provides some background information regard-
ing the database processing paradigms covered in this paper.

A. Online Transaction Processing

Online Transaction Processing (OLTP) describes a category
of data processing that is focused on transaction-oriented tasks.
The workload is heavily write oriented, consisting of insert,
update and delete operations. The size of data involved is
usually relatively small, while the amount of transactions can
be massive.

Features like normalization and ACID are required by OLTP
to function efficiently. Besides fast processing and highest
availability, data consistency is also one of the most important
features of OLTP databases.

B. Online Analytical Processing

Online Analytical Processing (OLAP) is focused on com-
plex queries for dataset analysis. The workload is read heavy
and can include enormous datasets. In order to efficiently
analyse such big amounts of data, intelligent indexing and
fast read times are necessary. OLAP workloads are resource
heavy and require high performance systems.

C. Hybrid Transactional Analytical Processing

Hybrid Transactional Analytical Processing (HTAP) com-
bines both OLTP and OLAP in one database. Therefore,
writing and analyzing data is efficiently handled in the same
database, removing the need to run two separate systems
and thereby reducing implementation efforts, maintenance and
cost. However, the resource intensive workload of OLAP
queries and the required high availability of OLTP compete
with each other and require new solutions to work on the
same system.

III. LITERATURE REVIEW METHODOLOGY

While the term HTAP was first used 8 years ago in 2014,
many researchers still did not adopt it and use other phrases
like OLxP, HOAP or OLAP and OLTP hybrid databases. To
ensure a comprehensive and high-quality literature base for the
review, several searches were carried out with different search
therms.

In the study, Kitchenham’s systematic review procedure [9]
was employed. The following steps were pursued:

1) Determining the topic of the research
2) Extraction of the studies from literature considering

exclusion and inclusion criteria
3) Evaluation of the quality of the studies
4) Analysis of the data
5) Report of the results
As a topic the current state of HTAP databases was se-

lected, summarizing the research conducted on the topic. To
determine the best suited source and search query for the data

search of the literature review multiple data sources (including
Google Scholar, Semantic Scholar and IEEE) were tested with
a multitude search queries.

The reviewing process (Figure 1) was conducted via Google
Scholar as this search engine provided the highest quantity and
quality of research for the topic. Further the Google Scholar
searches included most of the results the other data sources
contained. Searches with other search engines and data sources
where either lacking a sufficient quantity or quality to conduct
a meaningful literature review.

To counter the aforementioned issues regarding the in-
sufficient usage of the therm Hybrid Transaction Analytical
Processing databases in the research the literature acquisition
was split into three queries using different search structure
and therms. While very similar the returned research of each
search query was mostly disjunct.

While this approach increased the number of relevant papers
found it does not provide all-encompassing literature findings.
This is mainly due to skipped keywords in the research papers
themselves. E.g., Umbra [10] only describes itself as a further
development of HyPer [7] but never mentions HTAP itself in
the paper, while its extension [11] actively mentions HTAP.
Therefore, the extension was found, while the main paper is
not included in this study.

In order to prevent the absence of relevant systems not found
by the systematic literature search itself, the sections ”Open
Source and Free Versions” as well as ”Production Ready
HTAP Databases” also contain HTAP systems not found by the
systematic literature search if they provided relevant free/open
source solutions or are used in production systems.

The search was carried out using (1) ”htap” ”data ware-
house” OR ”OLTP” ”OLAP” (returning 183 entries), (2)
HTAP OR OLAP OLTP hybrid database (returning 200 en-
tries) and (3) hybrid transactional analytical processing (re-
turning 200 entries).

In this first search only publications from 2010 to August
2020 were considered. Queries 2 and 3 returned more papers,
but were reduced to the 200 most recommended papers,
since quality and relevance were continuously decreasing. To
provide an up-to-date overview of the current research in this
paper slightly refined versions of the search queries were exe-
cuted again for the time span from 2020 to October 2021 (cf.
Figure 1). To provide a comprehensible and reliable literature
review only publicly accessible papers or papers available
with general institutional access were taken into account. The
conducted papers were further reduced to papers using the
German or English language. These exclusion criteria left 147
(1), 178 (2) and 179 (3) papers from the first search as well
as 70 (1), 7 (2) and 37 (3) papers from the second search to
refine further. In this step, all papers already included in the
first search were also removed from the findings of the second
search.

Following a title and abstract based elimination was con-
ducted. This pruned papers lacking a combination of required
key words or only mentioning HTAP as a side note. After this
elimination step, 55 (1), 44 (2) and 56 (3) papers (first search)
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Figure 1. Literature Review Process.

as well as 30 (1), 4 (2) and 20 (3) papers (second search) were
left for further analysis. Removing any duplications of papers
found by two or more queries this left a total of 128 papers
combined for a final review.

Of these 128 papers, 16 were found to be of insufficient
quality (lacking evaluations or proper research procedures),
and 30 did contrary to their title and abstract not focus on
the topic of HTAP databases or on fundamental technologies
for those. The 84 papers, which were found scientifically
significant and fulfilling the quality requirements were finally
reduced to 63, deducting papers providing only outdated non-
fundamental information.

IV. FINDINGS AND DISCUSSION

The methods to create HTAP databases, their functionality
and their optimizations take many different approaches. The

contents of the papers were organized into the following
sections according to the kind of information provided.

A. Fundamental Architecture

HTAP databases build up a new database sector and there
are many databases, which were newly developed for this
workload, e.g., [7][12][13]. However, some existing databases
also have been upgraded to handle HTAP workloads like SAP
HANA [8], initially an OLAP database, and PostgreSQL [14]
(as well as multiple systems building on it, cf. [15]), initially
an OLTP database, proving that existing databases can be
extended to handle HTAP.

Comparing the reviewed database architectures, two main
storage paradigmas can be clearly identified with the reviewed
solutions: (1) heavily main memory focused databases, keep-
ing all of their (hot) data in memory like HANA [5], HyPer
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[7], BatchDB [13] and Hyrise [16], as well as (2) cloud/shared
disk data stores, keeping some data in memory but relying on a
persistent out of memory data store accessible by all instances,
e.g., Wildfire [17], TiDB [18] and Janus [19].

Further, a Non-Uniform Memory Access (NUMA) archi-
tecture is a base requirement for most main memory HTAP
databases like SAP HANA [5], AIM [20], BatchDB [13],
Hyrise [16] and HyPer [7] enabling multiple cores to access
each others memory.

1) Scaling out and up: Another big difference in HTAP
databases is their scaling approach. Systems like HyPer [7]
(commercialized by Tableau), Poseidon [21] or Hyrise [16] are
deployed on single servers utilizing NUMA to scale-up onto
multiple cores, thus creating multiple nodes. This approach can
reduce processing time as no data transfer between different
servers is required and all data can be accessed in memory. As
a downside however, large systems require a strong server with
a large main memory. Both HyPer and Hyrise also provide
scale-out approaches, normally keeping their OLTP processing
on the main server, e.g., ScyPer [22].

The main memory database Polynesia [23] also follows a
single server scale up approach. This happens by separating
responsibility of workloads to different OLTP and OLAP ”is-
lands”. By adding more islands the analytical and transactional
throughput can be increased.

Like Hyrise and HyPer - SAP HANA [24] keeps the OLTP
workload on one machine, utilizing NUMA to use as many
cores as required and available, but implements scaling the
OLTP workload out to other servers as a base feature. Using
HANA Asynchronous Parallel Table Replication (ATR) the
database distributes its data amongst multiple replicas enabling
a more efficient OLAP approach.

BatchDB [13] also handles the OLTP workload on the main
server. The OLAP workload can be either executed on a
different node of the same machine, or an entirely different
server.

Contrarily, Wildfire [25][26] (while initially commercialized
as IBM DB2 Event Store not all Wildfire decisions seem to
apply to Db2 Event Store anymore) utilizes a fully distributed
approach. Heavily relying on Apache Spark and Apache
Zookeeper, all requests pass Sparks API and get distributed
across multiple Spark executors. These executors delegate the
transactional and analytical requests to the Wildfire engine
daemons. All daemons use their main memory as well as SSDs
and are connected to one shared data storage, e.g., a cloud data
store. With this approach more throughput can be achieved,
but ACID on the other hand is no longer possible. One of
the more recent researches on the Wildfire system, Wildfire-
Serializable (WiSer) [27] also offers high availability besides
HTAP. It is furthermore optimized for IoT workloads.

Like Wildfire, SnappyData [28] also uses Spark as a core
component to scale out the system to a database cluster.
Therefore, the system enables more information to be kept
in memory without the need for one expensive server.

Janus [19] also uses a distributed setup but implements the
query distribution on its own with execution servers. These

delegate the query to a corresponding row partitioned server
for OLTP workloads or a column partitioned server for OLAP
workloads.

TiDB uses a refined multi Raft-Group-approach. The
database is separated into multiple regions, each having their
own Raft group. OLTP workloads are send to the group leader,
which replicates them asynchronously to other OLTP followers
and synchronously to an OLAP column store. Multiple Raft
groups can share the same OLAP optimized column store.
OLAP queries can then be executed using both, the OLTP
leader and followers, as well as the OLAP database [18]. The
primary scaling is achieved by splitting into more regions
with their own Raft groups. Each group, however, only has
one leader ingesting OLTP requests. OLAP requests can be
handled by the whole Raft group as well as a read optimized
column store. OLTP scaling is therefore only possible by
splitting groups and creating more leaders.

Another unique approach is taken by AnyDB [29]. Instead
of committing to one scheme they use servers with stateless
nodes called AnyComponents (AC). These components can
then take any required role (worker handling queries, query
optimizer creating these queries). By adding more ACs to a
server or by adding more servers they provide great scalability.
The exchange between the ACs is handled by event streams
buffered in queues.

VEGITO uses a shard-approach, distributing sets of a pri-
mary and backup OLTP stores with an OLAP store over
multiple shared-nothing machines. The primary, backup and
analytical store for the same key range however do not have
to be situated on the same machine.

The PostgreSQL based Greenplum builds a cluster consist-
ing of multiple PostgreSQL databases called segments [15].
One segment takes the role of the coordinator while the other
segments build the actual database. Scaling is possible by
simply adding more segments to the cluster.

2) Data/Table Structure: When dealing with OLTP and
OLAP workloads, finding the right table format can be dif-
ficult. HTAP databases therefore employ different table and
data structures. Wildfire [25] exclusively uses column oriented
tables since they are the most efficient solution for OLAP
workload. Db2 Event Store further heavily utilizes Apache
Parquet and its encryption implementation [26].

SAP HANA [5] implements a row-store query engine and
a column-storage engine to combine the advantages of both
technologies. Thus, it is possible to save data in row or column
tables. The column layout is the default, more optimized,
option.

HyPer [30] and Hyrise [16] both use columnar stores with
self implemented data models. Hyrise further presented a
hybrid column layout in an older version [31], combining
simple one-attribute-columns with rows. This is planned to
be implemented again in the new version, but has low priority
and is work in progress.

Opposed to this, PostgreSQL [14] continues to use its row
data storage for OLTP, but has a column store extension
for OLAP workloads, merging the delta from the row store
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continuously in the column store. This is handled similarly
by VEGITO [32] and TiDB [18]. However, column and row
stores are situated on different servers for maximized query
performance and safety (required by TiDB and possible by
VEGITO).

While Greenplum also uses the default PostgreSQL row
storage for fresh data, older data is moved to a column-oriented
store and even older data can be stored in external storage
systems like Hadoop [15].

Polynesia uses a row and column approach, where trans-
actions are saved in a N-ary storage model while analytical
data is saved in a three stacked memory approach [23]. The
column data is stored in so called vault groups (consisting of
four vaults each). Each column is then spread evenly across the
vaults of a group. Following a decomposition storage model
each vault further redundantly contains a dictionary to reduce
lookup cost.

SnappyData [28] follows a hybrid approach, where the fresh
data is stored in an in-memory row-store and is moved in an
on-disk column-store after aging.

The Cloud data store Janus [19] is fully hybrid, utilizing
row partitions for OLTP and column partition for OLAP.
Via a redo-log inspired batching approach and a graph-based
dependency management, the delta from the row replicas can
be merged into the column replicas.

The Casper prototype [33] uses a tailored column layout
to support mixed read/write workloads more efficiently. With
this approach, runtime column adaptations are possible.

Flexible Storage Model (FSM) [34] presented a tile based
architecture to allow a transition from OLTP optimized tables
to OLAP optimized tables depending on the hotness of data.
The data is saved in a row oriented manner at the beginning
and, depending on the hotness, is tile-wise transitioned to an
OLAP column oriented tile structure.

3) Saving and Partitioning Data: For scale-up focused
databases, removing data from main memory to larger, more
cost efficient stores (e.g., hard drives), or efficiently compress-
ing its size, is crucial. HyPer uses horizontal partitioning and
saves its hot data uncompressed on the main memory. The cold
data can also be kept in memory. Instead of evicting data to a
disk, the data is compressed into self implemented Data Blocks
[30] and kept in main memory. However, it is possible to evict
them to secondary storage solutions if preferred (e.g., non-
volatile random-access memory) and use them as persistent
backups. The compression technique is chosen based on the
data actually saved in the Data Block.

Utilizing Small Materialized Aggregates (SMAs) including
meta data like min and max values, irrelevant compressed data
can easily be skipped in searches. If data cannot be skipped
on SMA basis, Positional SMAs (PSMAs), another lightweight
indexing structure developed by the HyPer team, can be used.
These help to determine the range of positions in the Data
Block were the relevant values are located.

Hyrise [31] solves this problem using horizontal partition-
ing and by saving data in 2 kinds of columns: Memory-
Resident Columns for hot data in memory, allowing fast

access, and uncompressed row-oriented Secondary Storage
Column Groups for cold data on hard drives. As the cold data
is saved uncompressed, the cost of accessing it is reduced in
comparison to classical compressed approaches.

Furthermore, the data is organized in so-called chunks [16]
similar to Data Blocks. Chunks can be mutable as long as
they are not full. As soon as they reach their capacity they
transition to an immutable append-only container. They also
have indexes and filters on a per chunk basis like Data Blocks,
allowing faster search and access operations.

In Poseidon, data is saved in non-volatile memory (NVM)
as well as main memory [21]. New transactions are kept solely
in main memory until the commit is conducted, then the final
data is saved on NVM. With this approach the low latency of
main memory can be used for all steps of an transaction, while
at the same time the final data object is saved in a persistent
way. Another project exploring NVM in the form of directly-
attached-NVMe-arrays (DANA) was conducted by Haas et
al. [35], optimizing LeanStore for DANA usage achieving
promising results. However, updates of traditional disk-based
systems seem to be no feasible option due to high CPU load.

Smart Larger Than Memory [36] stores cold data in files
on the hard drive decoupled from the database. Modifications
to the data are no longer possible. The entries can only be
deleted. This happens via removing the reference entry in
memory without accessing the cold data and thereby saving
time. Updating cold data is possible, but the update is a hidden
delete of the cold data index and an insert of new hot data. To
fully take advantage of SmartLTM the read operations always
check the main memory entries first. If the data cannot be
found, cuckoo filters or SMAs are used to locate the data in
the files on the hard drive.

In VEGITO data is stored in paged blocks called epochs
[32]. The epoch counter is continuously increased (around
every 15ms). Witch each new epoch the data from the old
epoch either gets copied to a new page, if a change occurred
in the block, or is simply referenced if no change occurred.
This saves copy time as well as memory.

TiDB first saves deltas in memory. When the amount of
small deltas increases they are merged to bigger deltas and
moved to on-disk storage [18]. Like in F1-Lightning, data
partitions can further be adjusted on the fly, splitting to large
partitions or merging smaller ones for optimized performance.

Like most systems Db2 Event Store utilizes an approach
were the most recent data is moved to the fastest storage and
is moved down the chain (in total three zones) as it ages [26].
In the first step fresh data is saved on NVMe SSDs, then it
is moved to a ”preShared Zone” in shared memory until it is
finally moved to the ”shared Zone” by tracking its meta data
in Zookeeper allowing the transfer of the data’s leadership
between nodes.

The Relational-Memory Approach allows native access to a
row and column format [37]. Utilizing Field-Programmable
Gate Arrays, Programmable Logic In-the-Middle relational
operations are implemented in reprogrammable hardware.
Queries get then provided with the data by the Relational
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Memory Engine in the optimal layout instead of accessing
the memory itself.

Finally, partitioning workloads in an intelligent manner
without extra statistical data structures is possible, too. As
presented by Boissier and Kurzynski [38], physical horizontal
data partitioning as well as the adapted aggressive data skip-
ping approach can skip up to 90% of data on OLAP queries.

B. Concurrency

Handling multiple versions of data is a crucial part of all
HTAP databases. Current OLTP and OLAP operations require
a solution to parallelize data access.

The most common approach is Multi Version Concurrency
Control (MVCC). It is utilized in combination with a delta by
PostgreSQL [14], SAP HANA [5], F1-Lightning [39], TiDB
[18], Poseidon [21] and in new versions of HyPer [40]. To
improve scan times in such MVCC systems, a first generic
effort is made by vWeaver, implementing a per record frugal
skip list to reduce lookups by smartly adding ”shortcut”-
pointers between different versions [41].

Hyrise [42] is also using MVCC, but is following a look
free commit approach, replacing the delta.

SnappyData and BatchDB [13] also use MVCC oriented
approaches. SnappyData [12] relies on GemFire to handle
concurrent access and snapshots, while BatchDB [13] uses
MVCC on its OLTP replica, while updating the isolated OLAP
replica batch-wise.

Although HyPer is now using MVCC with delta, it initially
used the fork systemcall to create multiple isolated in-memory
snapshots [43]. Utilizing a copy on write approach to reduce
memory consumption OLAP queries could be executed on
snapshots while the OLTP operations updated the main mem-
ory entries.

In addition to the MVCC on its main OLTP replica, SAP
HANA [24] further uses ATR with a replication log system to
synchronize its multiple server architecture. This synchronizes
data with sub-second visibility delay between the replicas.

Instead of using classical MVCC, Polynesia uses a snapshot
chain for each column with versions containing whole columns
rather than deltas. Following a lazy approach, versions are
marked as dirty if changes to the data occur instead of creating
a new snapshot. If a dirty column is then accessed by an
OLAP query the new snapshot with the latest data is created.
These snapshots can further be shared between multiple OLAP
queries if required. The row and column store are further
synchronized by the update shipping/application unit following
two multi component architectures. With this approach simpli-
fied transactions are added to queues, intelligently merged to
a single update buffer, and then applied to the column store.

Wildfire [25] chooses speed over concurrency as already
mentioned. Therefore, a simple last writer wins approach is
used by the Wildfire engine.

While most systems nowadays use some implementation of
MVCC, research on more efficient snapshotting techniques is
still being carried out, e.g., [44]. Inspired by earlier HyPer
implementations, another research project on snapshotting,

AnKer [45], uses a customized Linux kernel with an updated
fork system call. This updated fork, called vm snapshot,
enables high frequency snapshotting. Through vm snapshot
the researchers are able to snapshot only the used columns.
This significantly outperforms the default fork used initially
by HyPers implementation, providing a possible alternative to
MVCC systems.

In addition to PostgreSQL’s locking system, Greenplum
further introduces a Global Deadlock Detector (GDD) to
resolve deadlocks originating from the distributed server setup
[15].

Wait free HTAP (WHTAP) [46] utilizes snapshotting for
concurrency as well. In this dual snapshot engine approach
data for OLAP and OLTP are stored in different replicas, using
a five state process and two deltas. In this process, the deltas
form the OLAP and OLTP replicas are switched and the old
OLTP delta is merged into the OLAP replica, which takes
effect without slowing the analytical queries down.

In VEGITO concurrency can be handled by the epochs
utilized to save data [32]. While new updates are always
applied to the primary row store of a shard the data is
then asynchronously applied to the replica and the analytical
column store by a non-volatile write-ahead log batched in
epochs. The analytical stores save the latest epoch currently
available on all stores and analytical queries are then executed
on the epoch, rather than the current epoch used by the primary
row store.

AnyDB once again takes a unique approach to concurrency
control. By handling the communication between the ACs via
event-streams and queues concurrency control is achieved by
routing the steams intelligently, merging read requests events
on AC nodes with the write requests, only providing the query
response after the write event is received [29].

C. Garbage Collection

MVCC implementations require performant garbage collec-
tion to prevent large amounts of versions to slow down the
transactions on the database. SAP HANA [5] uses timestamps
and visibility bits to track versions of their data. Data gets
created/edited with a timestamp. When all active transactions
can see this version the timestamp is replaced with a bit
indicating the visibility. If the row is no longer visible to any
snapshot, it can be deleted with the next delta merge.

HyPers garbage collector Steam [40] follows a similar
approach. The main difference is that the garbage collector
is called with every new transaction instead of being a back-
ground task like with SAP HANA. This approach called eager
pruning removes all versions not required by any transaction.
This happens by checking every time the chain is extended
whether all versions included in the version chain are used by
a transaction. With eager pruning the version chain can only be
as long as the amount of different queries. A similar approach
is conducted by Poseidon [21] and Polynesia. In Poseidon on
each transaction, data, which is invalid (e.g., due to an aborted
transaction) or no longer visible on any version, is pruned from
the database. Polynesia deletes all unused snapshots after each
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finished analytical query, which are no longer used by any
running query.

On VEGITO systems data is saved in epochs rather than
with timestamp [32]. As soon as an epoch is outdated (no
fresh data is contained in an epoch as all entries are either
updated or deleted) the epoch can be removed as a whole
from the system.

Due to its heavily distributed architecture with many data
sets saved in main memory and SSDs on the different servers,
Wildfire follows a different solution and implements a lazy
garbage collection approach [25]. When performing lazy
garbage collection, data is only deleted if there is no possibility
that a query could require it. In Db2 Event Store data is pruned
after being moved to the next zone, preventing data duplication
[26]. It is also possible to delete the persistent data in the final
zone by defining a time to live in the configuration.

D. Query Handling

The ways to access the concurrent data differ significantly
from database implementation to implementation.

1) General Query Optimization: Besides the general han-
dling of the queries, Sirin et al. [47] show the importance of
isolating the OLTP and OLAP workloads on shared hardware
systems in order to achieve optimal performance.

Tested on the Umbra SSD-based HTAP database a worst-
case optimal join processing option is introduced providing
a general improvement option for HTAP systems [11]. Im-
plementing a hybrid query optimizer a single query plan can
be build out of binary and worst-case optimal joins, greatly
increasing OLTP performance while having no effect on OLAP
workloads.

2) Query Handling in Scale-up Systems: The systems Hy-
Per [48] and Hyrise [16], primarily engineered for scale-
up solutions working on one dataset, implemented the query
operators as C++ code in their database. The missing variables
are inserted via just in time compilation. After the insertion,
the code is compiled to LLVM assembler code, allowing fast
query execution. As mentioned before, the two databases also
have prototype scale-out options, but focus on the scale-up
approach.

The LLVM approach is also utilized by Poseidon. The
primary commands are already ahead of time (AOT) compiled
and the query execution starts instantly. At the same time
the query is compiled to LLVM code. If the LLVM code
is compiled before the query finishes the query execution is
moved from the AOT code to the more optimized LLVM
code. The compiled LLVM queries are further saved in the
non-volatile memory for faster processing of repetitive queries
[21][49].

In Polynesia query operators get arranged in a tree structure
[23]. These are then further separated into sub-tasks and if
possible executed in parallel, speeding up execution time.

Another approach is to dynamically schedule memory and
computing resources actively [50]. Utilizing their algorithm
the Resource and Data Exchange engine uses a state based
approach to assign the CPU cores to the OLAP or OLTP

workload as required, always trying to maximize productivity
and the database throughput.

3) Query Handling in Scaled-out Systems: Scale-out sys-
tems are separated in two major groups: On the one hand,
systems keeping the OLTP workload on one server, scaling
only the OLAP workload to other servers, as e.g., SAP
HANA [24] or BatchDB [13]. On the other hand, systems
distributing OLTP and OLAP workloads over multiple servers,
e.g., Wildfire [17][25] and SnappyData [12][28].

BatchDB [13] and HANA [24] both handle their OLTP
workload on a single server, scaling-up via NUMA as de-
scribed earlier. For OLAP workloads they are able to scale out
onto multiple servers working on replicas of the main data.

Wildfire [17] and SnappyData [28] contrarily scale out via
Apache Spark, allowing OLTP and OLAP transactions to be
executed on a cluster of nodes dealing with big data and
streaming workloads. Wildfire [17] executes OLTP queries on
the fresh data on Wildfire daemons. OLAP workloads can be
executed via Spark Executor as requests to the daemons or
directly accessing the shared data of the Wildfire database
cluster. With this approach, old data can be consumed from
the shared file system without slowing down OLTP throughput
while the latest data can still be received if required. Db2
Event Store utilizes the Db2 BLU MPP cluster query engine
instead of Apache Spark for the sake of better low latency
query handling [26].

Greenplum handles all queries in a cluster via its central co-
ordinator [15]. The queries are then processed and handled by
workers. Via ”Motion”-nodes data can be transferred between
separated machines/segments.

In AnyDB queries can be executed on multiple servers by
simply routing the query events to the according ACs [29]. To
speed up processing even further data can be ”beamed” to ACs
in advance, before the query is available. By determining the
AC responsible for the query execution and knowing, which
data will be required by the query the data is send to the AC
before the query optimization is done, providing a great speed
up by parallelizing the two work steps.

4) Query Language: While the databases offer many new
functionalities to access and modify data, SQL is still com-
monly supported. The database systems SAP HANA [8],
Wildfire [25], Db2 Event Store [26], Hyrise [16], HyPer [7],
SnappyData [12], TiDB [18], AnyDB [29] and AIM [20]
all enable basic SQL queries to interact with the database.
However, many of them further provide new optimized ways
to interact with the data.

Wildfire [25], TiDB [18] and SnappyData [12] provide
data access via an extended version of the SparkSQL API.
SnappyData also further extends the Spark Streaming API.

SAP HANA [8] provides more specific access through
SQL Script and Multidimensional Expressions (MDX). The
database is also is natively optimized for the ABAP language
and runtime. This allows to bypass the SQL connectivity stack
by directly accessing special internal data representations via
Fast Data Access (FDA). The Native For All Entries (NFAE)
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technique further modifies the ABAP runtime to allow even
more performance improvements.

Hyrise [16] provides a command-line interface, which al-
lows SQL queries but also provides additional visualization
and management functions. Furthermore, the wire protocol
of PostgreSQL allows access through common PostgreSQL
drivers and clients.

HyPer [48] uses HyPerScript as its query language. HyPer-
Script is a SQL-based query language and therefore allows
base SQL statements as well. The features consist of passing
whole tables as query parameters and providing the possibility
to use query results in a later part of the query, removing the
need to query the same value multiple times.

E. Indices

To allow efficient data access and querying on multiple
servers and/or different versions of data, the right index
structure is of special importance in HTAP databases.

Wildfire’s multi-version multi-zone index Umzi [51] em-
ploys a LSM-like structure with multiple runs. It divides
index runs in multiple zones and implements efficient evolve
operations to handle zone switches of data. Further Umzi uses
a multi-tier storage using SSDs and memory caching with self-
updating functionality for fast execution while persisting the
indexes on Wildfires shared data. Db2 Event Store’s index is
based on Umzi [26]. It is only applied to the preShared and
shared zone, as the initial zone does not support synchroniza-
tion.

A general approach to utilizes LSM-Trees for HTAP work-
loads is further presented by Saxena et al. [52]. Their prototype
LASER utilizes a Real-time LSM-Tree allowing to store data
in different formats during its lifecycle (similar to Db2 Event
Store) providing significant speed ups to traditional methods.

HyPer developed the Adaptive Radix Tree (ART) [48] based
on the radix tree. ART uses four different node types that can
handle 4, 16, 48 and 256 entries. The maximum height for
the tree is k for k-byte trees. To further reduce the tree height
and required space, the tree is build lazily, saving single leaf
branches higher in the tree. Additionally, path compression is
used to remove common paths and to insert them as a prefix
of the inner node thereby removing cache inefficient one-way
node chains.

SAP HANA [5] and Hyrise [16] both use B-Trees. Hyrise
further supports the ART index from HyPer [48] and a group-
key-index, implemented by the Hyrise project.

TiDB uses its own implementation, the DeltaTree [18]. Its
creators further built a B+-Tree on top of the delta tree, to
speed up updates on key ranges and look ups on single key
values, as well as merging of deltas.

A B+-Tree is further used as the index of Poseidon [21].
The leafs of the B+-Tree are saved in non-volatile memory,
providing persistency and recovery options, while the inner
structure of the tree is saved in memory. With this approach
only one non main memory access has to be conducted, while
still providing enough persistency for efficient recovery.

Once again utilizing its epoch system VEGITO [32] can use
a buffered tree based index. As changes to the OLAP index
tree only must be applied after an epoch finishes all changes
during an epoch are applied in parallel to buffers and the three
weights are updated. In the update step at the end of an epoch
the tree first gets optimized (also a split is possible here) and
the the buffered changes are applied. This approach evades
slowdowns by removing the need for locking with buffers.

BatchDB utilizes a simplified version of the look-free Bw-
Tree [13]. The version relies on atomic multi-word compare-
and-swap updates.

In 2019, a predictive indexing approach [53] was introduced
to cope with the dynamic demands of a HTAP database.
Predictive indexing increases the throughput by up to 5%.
In this approach, a machine learning system calculates the
optimal index structure for the data according to the workload.
A similar approach can be seen in the Multi-armed bandit
solution from 2021 [54]. With this approach even greater
improvements up to 59% speedup are possible.

The Multi-Version Partitioned B-Tree (MV-MBT) [55] is
another recent research in the indexing sector for HTAP
databases from 2019. This extension of partitioned B-Tree
creates a version aware index, able to maintain multiple
partitions within a single tree structure, sorted in alphanumeric
order.

Likewise proposed in 2019, the Parallel Binary Tree (P-
Tree) [56] is an extension of a balanced binary tree relying on
copy-on write mechanisms to create tree copies on updates.
With this approach, the indices become the version history
without requiring other data structures.

F. Big Data on HTAP Databases

Wildfire/Db2 Event Store was created with big data IoT
workloads as its primary use case [25][26]. Through the
distributed design of its big data platform, Wildfire is able
to concurrently handle high-volumes of transactions as well
as execute analytics on latest data. At the same time, the
system is able to scale onto many machines because of its close
integration of Apache Spark. The usage of an open data format
further enables compatibility with the big data ecosystem.
Nowadays, the commercial version IBM Db2 Event Store is
capable of handling more than 250 billion events per day
[57][26]. SnappyData [28] is an analogically capable big data
platform with an architecture similar to Wildfire.

The SAP HANA database can be used as part of the SAP
HANA data platform to handle big data workloads [58]. Using
a combination of different SAP products, namely SAP Synbase
ESP and SAP Synbase IQ, as well as smart data access
frameworks as Hadoop, Teradata or Apache Spark, the SAP
HANA data platform is a fully functional big data system with
SAP HANA in its core.

HyPerInsight [59] provides big data capabilities in the area
of data exploration on the HyPer database. The goal is to
minimize the required user expertise with the dataset while
simultaneously supporting the user with the formulation of
queries. The support for lambda functions in SQL queries
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allows user defined code to be executed within the queries.
In combination with the HTAP HyPer system as the database,
data mining on real-time data is possible.

G. Recovery, Error Handling and Logging

As many HTAP databases rely on volatile main memory as
primary storage and the other systems utilize distributed data
sets, recovery in case of failure is of special importance. Data
loss has to be prevented and downtime must be minimized.

SAP HANA instances log data persistently on the local drive
for recovery on failure or restart purposes [8]. The logging
approach is inspired by SAP MaxDB.

As already explained, HANA works with ATR in its dis-
tributed architecture [24]. Following the store-and-forward ap-
proach, the data is replicated to multiple servers. An algorithm
then compares the record version IDs of the incoming data
and stored data, requesting the resend of lost log entries if
deviations occur.

Recovery for the latest version of Hyrise is still work in
progress [16], but recovery for older versions of Hyrise was
explained [42]. The database dumps the main partition of the
table as a binary dump on the disk and records the delta to a
log via group commits to hide the latency. At checkpoints, the
delta partitions are also saved as a binary dump on the drive.
If recovery is required, the main dump and delta dump from
a checkpoint are restored and an eventually existing delta log
is replayed on the table, restoring the old state.

BatchDB logs successful transactions on its OLTP replica
in batches via command logging on durable storage [13]. In
case of a failure, the database can recover from these logs.
The OLAP replica itself has no durable logging and has to
recover from the main OLTP replica on failure.

SnappyData [12] uses Apache Sparks logging and recovery
mechanisms, logging transformations used to build Sparks Re-
silient Distributed Datasets (RDDs). Saving RDDs to storage
is also possible. In SnappyData the combination with GemFire
however allows Spark to save the RDDs in GemFires storage
instead of the persistent storage of the server. Small recoveries
can be handled directly by GemFires eager replication, leaving
batched and streaming recovery to Spark, in combination with
the GemFire storage. Further, a peer-to-peer (p2p) approach
is used in SnappyData clusters. Any in-memory data can be
synchronously replicated from the cluster. Additional to the
replication via the p2p approach, data is always replicated to
at least one other node in the cluster.

VEGITO [32] offers a quite refined recovery system, han-
dling four failure cases. If the primary row store fails the leader
role is transferred to its backup row store and a new backup
row store is created. In case of a backup store failure it is
simply recreated from the primary row store. If the OLAP
column store fails it can be recreated from the row stores.
Finally, if both row stores fail it is possible to recreate the
primary row store on the same machine as the column store,
afterwards a backup row store is initialized.

TiDB Raft groups recover in case of a leader failure
by electing a new leader from the groups followers. OLTP

workloads are then simply redirected to the new leader and
continue there [18].

AnyDB once again introduces a new approach. As all
communication inside AnyDB is handled by event streams
these can simply be rerouted to a functional AC in case of a
failure of an AC/server [29].

IBM’s Db2 Event Store provides a catalog, which contains
meta data required for initial cache population [26]. In order
to prevent possible data loss the catalog data is saved in a
shared persistent storage and provided to the system via a
logical node. If the catalog node fails, the data can be reloaded
from this storage by another server of the cluster, which then
resumes the work of the catalog node. All data is further saved
on fast local storage of one node, as well as to the local file
system of at least two other nodes, allowing for easy recovery.

H. Benchmarking

The combination of OLTP and OLAP workloads on one
database also created the need for new benchmarks covering
this sector. In 2011, CH-benCHmark [60] was introduced. The
CH-benCHmark is based on the TPC-C and TPC-H bench-
marks. It executes a transactional and analytical workload in
parallel on a shared set of tables on the same database. The
benchmark can also be used for single workload databases.

In 2017, HTAPBench [61] was published. This benchmark
is able to compare OLTP, OLAP and hybrid workloads on
the database. Its main difference to CH-benCHmark lies in its
Client Balancer, controlling the coexisting OLAP and OLTP
workloads.

Hyrise [16] implements a special benchmark runner to
easily execute benchmarks.

Another benchmark specially designed for document ori-
ented NoSQL platforms is introduced by Tian et al. [62].

I. Stream Processing

Streaming as a special case of OLTP is an emerging use
case for HTAP database systems. In 2016 scientists from ETH
Zürich in cooperation with Huawei presented AIM [20], which
is a high performance event-processing and real time analytics
HTAP database. The three-tiered multi node system processes
events at one tier, stores the data at a central tier and finally
analyses the processed data in real time on the third tier. AIM
however, is optimized for a special streaming use case from
the telecommunications industry.

In early 2019, the research team around HyPer compared
modified versions of HyPer with AIM and Apache Flink [63]
in order to determine the current state of streaming capabilities
of main memory database systems (MMDB). While MMDBs
are still inferior to dedicated streaming frameworks like Flink,
the HyPer team was confident, that HTAP databases could
catch up with some adjustments, even implementing some
of those on HyPer. The main areas requiring improvement
are network optimization, parallel transaction processing, skew
handling and a strong distributed architecture.

SnappyData aims to solve OLTP, OLAP and streaming all
in one product [28] with their tight integration of Apache
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Spark and GemFire. In an evaluation, SnappyData was able to
outperform both Spark on TPC-H queries as well as MemSQL
on all kinds of throughput. The focus with SnappyDatas stream
processing lies on complex analytical queries on streams,
which are not possible with default stream processor solutions
[12].

SAPs approach for big data, SAP Big Data [58], supports
streaming as well. Since it uses other SAP products to achieve
it and is not a part of the base SAP HANA database infrastruc-
ture, but rather is built on top of it, it is not further discussed
in this paper.

J. HTAP as a Service

In the last year HTAP became more and more popular
with cloud solutions. Following this trend some of the global
players enabled ”HTAP-as-a-service” (HaaS) for their existing
could solutions. Instead of providing new databases they
introduce HTAP-like functionality with tightly coupled OLTP
and OLAP multi database setups. Still they provide some
interesting new research and provide a valid solution for
production systems.

1) F1-Lightning: F1-Lightning consists of distributed multi
actor system with data aggregation components, in memory
and on disk data storage, as well as a metadata database,
containing all required information to function. Instead of
being a fully functional HTAP database itself, it can be
selected as an addition to the Google Cloud Platform databases
F1-DB and Spanner. Either for some tables or whole databases
the analytical queries are moved to the F1-Lightning cluster,
while the transactional queries stay on the OLTP databases.
With this approach the currently used database does not have
to be exchanged and F1-Lightning can be added and removed
on the fly. While currently only F1-DB and Spanner are
supported as the base OLTP database the architecture is highly
adjustable and further databases could be supported in the
future. For the databases currently being extended F1-Query
is utilized as a query language.

Using a MVCC approach with snapshot isolation the queries
are conducted either in the OLAP improved Lightning tables
or on the OLAP F1-DB/Spanner tables, if the data was not yet
copied. Using a time-to-live (TTL) based garbage collection
approach and compaction techniques older data is deleted and
small deltas are combined to larger, more memory efficient
blocks. However, the used garbage collection approach also
deletes still valid data, if it was not changed in a certain time
span.

Due to information stored in the metadata database and the
modular architecture, partitions of data can be split and merged
on the fly as required, without disturbing the analytical queries.
If certain deltas getting to large for in-memory usage they are
moved and transformed from the row based in memory store
to on-disk storage in a read optimized column structure.

2) Azure Synapse Link: Azure Synapse Link is currently
only available as a service for Azure Cosmos DB [64]. Unlike
F1-Lightning it can only be added to the whole database.
Moreover, there is a high delay between the latest OLTP data

and the data used for OLAP queries of 2-5 minutes. In its core
functionality Azure Synapse Link synchronizes the data from
the row based Azure Cosmos DB to a column based analytical
database and provides a bridge to Azure Synapse Analytics.
Like F1-Lightning a TTL-based garbage collection is utilized.

K. Future

HTAP databases are a new sector, which has evolved
over the past 10 years. On an annual basis, companies and
researchers contribute new ideas to lift their database above
the competition. While we stated in our last work, that there
are currently three trends it seems like a fourth has emerged.

1. CPU GPU collaboration: With new hardware support-
ing heterogeneous parallelism, Heterogeneous HTAP (HH-
TAP/H2TAP) becomes a possibility. In this approach, CPUs
and GPGPUs can access shared memory and divide the
workload between both. Complex OLAP queries are solved
on the GPGPUs, leaving the OLTP workload for the CPUs.
The Caldera [65] prototype proved the feasibility for HHTAP.
Early 2020, the data store GridTables [66] was published and
affirmed the concept again. However, in their summary, the
authors of GridTables pointed out that there are still many
research issues left to be solved. Further, early in 2020, a paper
was published about GPU accelerated data management [67]
explaining how to fully exploit hardware isolation between
CPUs and GPUs and presenting a SemiLazy access method
to reduce the required data transfer. EEVEE (inspired by
and named after the highly adaptable Pokémon Evoli/Eevee)
provides an interesting approach for scheduling such HHTAP
workloads [68]. While the work was never formally published
it can provide some valuable insights for upcoming develop-
ments in this area.

2. Streaming workloads: as described in detail in the pre-
vious section, stream processing is a possible use case for
HTAP databases. Because of the optimization for high OLTP
throughput and the ability to analyse these data streams in
the same system, HTAP databases are an emerging alternative
to current stream processing solutions. While still inferior to
dedicated stream processors, the research on such solutions
saw an increase in interest over the last years, e.g., by the
HyPer team [63] and dedicated streaming HTAP databases
like SnappyData [28] and AIM [20].

3. Optimization: while the bigger part of the last decade
was spent on researching for new systems [7][8][42], the last
quarter focused on their optimization. Few new database sys-
tems were proposed and research started optimizing existing
systems even further [40][45][56]. Also research focusing on
the general improvement of HTAP systems becomes more
common, e.g., [47][41][52].

4. Over the last year the interest in NVMe storage has
greatly increased. Different research is investigating how to
efficiently utilize this kind of non volatile memory [21][35]
while production systems already started utilizing it [26].
While using NVMe instead of ordinary SSD may not seem that
interesting at first this approach offers many new opportunities
(mainly connected to way better speed than ordinary SSDs
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while much cheaper than main memory) and challenges arise
(e.g., problems with upgrading traditional disk-based systems
to NVMe).

Further, solutions utilizing machine learning in combination
with HTAP are slowly emerging. These allow databases to
adapt on their own according to current workload and require-
ments. However, there is still not enough research to speak of
an own trend and it can rather be viewed as another kind of
optimization research. An example for such research is the
presented predictive indexing [53] or the Multi-armed bandit
approach [54].

Another new development is the integration of HTAP capa-
bilities into polystore databases. While polystore and HTAP
databases evolved mostly disjunct over the last years first
approaches to combine both paradigms were conducted with
Polypheny-DB [69] and [70].

Not being a trend in the HTAP database development,
because simply not being HTAP databases, more and more
solutions emerge providing HTAP capabilities to pre-existing
database systems, efficiently bridging the gap between OLTP
and OLAP systems instead of creating new combined database
systems. Examples can be found by the HTAP-as-a-Service
solutions [39][64], as well as systems like IBM Db2 Analytics
Accelerator [71].

L. Open Source and Free Versions

Some of the database systems summarized in this paper
provide open source and/or free solutions.

SnappyData [76] is available with a getting started guide
covering the basic usage. The source code can be found on
GitLab. The project is licensed with the Apache License,
Version 2.0. A comment in the GitHub Readme however
declares the project as legacy. An official statement to the
state of SnappyData could not be found.

MemSQL [77] (now SingleStore), is available, well docu-
mented and can be used for smaller projects up to 4 nodes
for free. Many extensions are available at the official GitHub
account.

Hyrise [75] is available under the MIT license. However, as
it is a research database, breaking changes may occur more
frequently.

A initial version of VEGITO is available under the Apache
License Version 2.0 on GitHub [78]. With the same license a
production ready version of TiDB is also available on GitHub
[72]. It is provided with a complete documentation, however,
32 GB+ RAM are advised for a minimal production setup
and enabling the HTAP capabilities requires further setup and
understanding of some of the underlying software solutions.

Poseidon is available via GitHub under the GPL 3.0 license
[79]. However, while the publications to this database are from
2021 the last commit is from February 2020. The git repository
therefore seems outdated.

While PostgreSQL itself is available open source and can be
modified to handle HTAP workloads [80] there are some other
open source database systems building on top of PostgreSQL.
These are most of the time more refined and easier to use

with HTAP workloads. Greenplum (Apache 2.0 License) [73]
requires linux servers with 16 GB RAM and all utilized servers
of a Greenplum cluster require the same hard- and software
configuration.

The free MemSQL version and a basic SnappyData setup
can already be used on low end systems, naming 8GB main
memory as their minimal requirement to operate efficiently.

To try a HTAP database without a setup process, HyPer and
Umbra can be used. Both research version are provided via
a simple web tool for exploration and testing [81] [82]. This
version, however, is running on a low end system and cannot
be used in production.

V. PRODUCTION READY HTAP DATABASES

While the previous part of this work is solely based on
the systematic literature review this section also highlights
databases, which were not found during the review process, if
they are a valid production ready solution. The focus lays on
technologies already mentioned in the literature review part
of this paper, which are production ready, as well as the big
players. Besides HTAP databases we further include HaaS
solutions, enabling HTAP on existing OLTP cloud systems.
Table I provides a compact overview (only links to free
versions are provided).

VI. CONCLUSION

In this paper, we have shown that HTAP databases are
nowadays serious alternatives to traditional database solutions.
The existence of a market for commercial products like SAP
HANA, IBM Db2 Event Store and Tableau further reinforces
our findings. Moreover, we have highlighted differences of
existing approaches regarding key properties like the fun-
damental architecture, concurrency, or big data capabilities.
Furthermore, we have highlighted a set of currently available
production ready HTAP implementations ranging from open
source systems to commercial products. Thus, this study
can aid both researchers and practitioners in the process of
selecting a matching HTAP solution. Finally, by providing
a comprehensive overview of current approaches, this study
helps to identify trends and point out directions for future
research. As there is a great amount of active research in
this area, this article builds upon our previous literature study
on this topic and enhances it with new alternatives as well
as production ready approaches. The following paragraphs
provide a brief summary of our findings.

Open source and free HTAP products place HTAP databases
on the same level as traditional database systems, allowing
the integration in other products and exploring this new
technology without financial risks.

The combination of OLTP and OLAP queries on one
database efficiently reduces the total cost of ownership and
allows a narrower tech stack for companies. The possibility to
analyse data in real time further validates HTAP databases as
a productive solution with a great added value compared to
conventional databases.

24

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE I
PRODUCTIVE HTAP DATABASE SYSTEMS

Database Availability Pricing Core Facts
F1-Lightning - Google Cloud Platform - Spanner subscription +

- F1-DB subscription +
highly scalable; can be added and removed on the fly; extends existing
OLTP databases; (if already using F1-DB or Spanner) no initial database
migration required; only available for Spanner and F1-DB; no ”real” HTAP

Azure Synapse
Link

- Azure - requires multiple Azure
subscriptions

can be added on the fly; extends existing OLTP databases; no initial
database migration required; only available for Azure Cosmos DB; no
”real” HTAP; high delay between OLTP and OLAP store (2-5 minutes)

IBM Db2
Event Store

- local
- own Linux cluster
- IBM Cloud Pak

- free developer version
- free test, not specified
- not specified

enormous scalability; IoT optimized; free developer version; can be self
hosted (in contrast to Azure/Google Cloud); deeply integrated with other
IBM solutions; very active ongoing research

SAP HANA - self hosted
- cloud

- free test, not specified highly integrated with other SAP products; very active ongoing research;
distributed or single server scaling

IBM Db2 Ana-
lytics Acceler-
ator

- on IBM z/OS systems - not specified HTAP database extension for Db2 for z/OS systems; tightly coupled with
other IBM products; requires a Db2 for z/OS database on a mainframe;
very active ongoing research; one of the most researched systems

Amazon
Aurora

- AWS - multiple AWS subscrip-
tions

cloud only; low visibility in HTAP research; easy scalability

Tableau - hosted
- self hosted

- stating at 12$/month based on HyPer; one of the most researched systems; part of tableau
technology stack; not available as simple database

TiDB - GitHub [72] - open source
- enterprise available

highly scalable; moderate minimal hardware requirements; high fault
resistance; setup requires technical knowledge

Greenplum - GitHub [73] - open source PostgreSQL based; highly scalable; moderate minimal hardware require-
ments; integrated machine learning and analytical capabilities

Swarm64 - self hosted
- cloud

- free test version - starting
528$/month

PostgreSQL based; can be used on common clouds; not present in research

Citus - GitHub [74] - open source PostgreSQL based; great scalability; available on Azure; some research
papers; multi-node PostgreSQL cluster

Hyrise - GitHub [75] - open source very active research; active development; research system not suitable for
production

Many different implementations, providing different advan-
tages, are available and can be used as required by the cos-
tumer. Solutions using main memory as a primary/sole storage
as well as solutions relying on shared data storages exist and
are both valid options. Powerful single server database systems
allow a slim tech stack while still being faster than most
traditional OLTP and OLAP optimized databases. Distributed
multi server clusters allow more fail-safe and easier to scale
solutions, while at the same time requiring less performant ma-
chines. SnappyData and MemSQL, for example, can already
be executed on machines with 8GB of memory, scaling up
from there.

Over the last years, new indices, filters, data structures and
replication techniques were developed, optimizing performant
HTAP systems even further. The future seems to be heading in
three main directions: HHTAP - utilizing new heterogeneous
hardware to include the GPUs in HTAP databases and allow
even more efficient architectures.

Streaming - HTAP databases optimized for streaming are
making a combination with external stream processors un-
necessary, further reducing the total cost of ownership and
reducing the size of the required tech stack.

Optimization - while the bigger part of the 2010’s was spent
on developing the base technologies and databases themselves,
the last quarter was primarily spent on optimization, still
leaving much room for improvement.

Machine learning for self adapting databases also could be
an emerging sector in the future, but currently there is not
enough research in this direction to call it a trend.

There seems to be a growing interest in HTAP solutions
yielding high numbers of novel approaches and providing
innovative solutions regrading many technical aspects of
databases. Therefore, our future work will focus on further
exploring the state of research. Due to the amount of active
research it will be difficult to capture the whole area in a
comprehensive literature review. Thus, we aim at providing
in-depth overviews of different aspects of this database area.
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[55] C. Riegger, T. Vinçon, R. Gottstein, and I. Petrov, “Mv-pbt: Multi-
version index for large datasets and htap workloads,” ArXiv, vol.
abs/1910.08023, 2020.

[56] Y. Sun, G. Blelloch, W. S. Lim, and A. Pavlo, “On supporting efficient
snapshot isolation for hybrid workloads with multi-versioned indexes,”
Proc. VLDB Endow., vol. 13, pp. 211–225, 2019.

[57] “Ibm db2 event store,” last visited: 12.10.2020. [Online]. Available:
https://www.ibm.com/de-de/products/db2-event-store

[58] N. May et al., “Sap hana - from relational olap database to big data
infrastructure,” in EDBT, 2015.

[59] N. Hubig et al., “Hyperinsight: Data exploration deep inside hyper,”
Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, 2017.

[60] R. L. Cole et al., “The mixed workload ch-benchmark,” in DBTest ’11,
2011.

[61] F. Coelho, J. a. Paulo, R. Vilaça, J. Pereira, and R. Oliveira, “Htapbench:
Hybrid transactional and analytical processing benchmark,” in Proceed-
ings of the 8th ACM/SPEC on International Conference on Performance
Engineering, ser. ICPE ’17. New York, NY, USA: Association for
Computing Machinery, 2017. doi: 10.1145/3030207.3030228. ISBN
9781450344043 p. 293–304.

[62] Y. Tian, M. Carey, and I. Maxon, “Benchmarking hoap for scalable
document data management: A first step,” in 2020 IEEE Interna-
tional Conference on Big Data (Big Data), 2020. doi: 10.1109/Big-
Data50022.2020.9377937 pp. 2833–2842.

[63] A. Kipf et al., “Scalable analytics on fast data,” ACM Trans.
Database Syst., vol. 44, no. 1, Jan. 2019. [Online]. Available:
https://doi.org/10.1145/3283811

[64] B. Shiyal, “Chapter 9 - synapse link,” in Beginning Azure synapse
analytics transition from data warehouse to data lakehouse. S.l: Apress,
2021. ISBN 978-1-4842-7060-8

[65] A. Raja, K. Manos, P. Danica, and A. Anastasia, “The case for
heterogeneous htap,” 8th Binnial conference on Innovative Data Systems
Reseach (CIDR ’17), 2017.

[66] M. Pinnecke, G. Campero Durand, D. Broneske, R. Zoun, and G. Saake,
“Gridtables: A one-size-fits-most h2tap data store: Vision and concept,”
Datenbank-Spektrum, 01 2020.

[67] A. Raza, P. Chrysogelos, P. Sioulas, V. Indjic, A. C. Anadiotis, and
A. Ailamaki, “Gpu-accelerated data management under the test of time,”
in CIDR. Zenodo, Jan. 2020. doi: 10.5281/zenodo.3827490

[68] K. Agrawal, A. Balasubramanian, S. Kamat, and G. P. M. Krishnan,
“Scheduling for htap systems on cpu-gpu clusters,” 2020. [Online].
Available: https://arjunbala.github.io/wisc-cs839-ngdb20-paper177.pdf

[69] M. Vogt, N. Hansen, J. Schönholz, D. Lengweiler, I. Geissmann,
S. Philipp, A. Stiemer, and H. Schuldt, “Polypheny-db: Towards bridging
the gap between polystores and htap systems,” in Heterogeneous Data
Management, Polystores, and Analytics for Healthcare. Springer
International Publishing, 2021. ISBN 978-3-030-71055-2 pp. 25–36.

[70] P. Kranas, B. Kolev, O. Levchenko, E. Pacitti, P. Valduriez, R. Jiménez-
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