
Environment Code-First Framework: Provisioning Scientific Computational
Environments Using the Infrastructure-as-Code Approach

Daniel Adorno Gomes
University of Trás-os-Montes and Alto Douro

Vila Real, Portugal
www.utad.pt

e-mail: adornogomes@gmail.com

Pedro Mestre and Carlos Serôdio
Centro Algoritmi

University of Minho, Guimarães, Portugal and
CITAB - Centre for the Research and Technology of Agro-

Environmental and Biological Sciences
University of Trás-os-Montes e Alto Douro

www.utad.pt
e-mail: pmestre@utad.pt, cserodio@utad.pt

Abstract— Nowadays, computational resources are vital
practically in all areas of science. At the same time, science's
dependence on computing is pointed to by experts as one of the
main causes of the reproducibility crisis. Many factors have
contributed to the low reproducibility of scientific research.
They are related to the cultural aspects of the scientific
software's development, the behavior of the scientist-developer,
and technical issues. Based on these factors, the authors
presented the Environment Code-First (ECF) framework to
guide researchers on increasing the reproducibility of their
works by developing computational environments that can be
easily recreated without manual intervention. The
framework's foundation is the Infrastructure-as-Code
approach, and it intends to permit other researchers to
recreate an environment only by executing a script. A real case
is presented, demonstrating the provision of a bioinformatics
environment by using the Prokaryotic Genomics and
Comparative Genomics Analysis Pipeline (PGCGAP) protocol,
and the ECF framework. The paper shows a comparison
between these two methods in terms of time-consumption,
manual intervention, platform-agnosticism, and portability.
The tests perfomed on three different machines demonstrated
that there are many benefits on using the ECF framework such
as independency of platform, total portability, and practically
any manual intervention. Of course, there is a cost, and it is
related to the hard work on developing the code that generates
the environment. Another point that needs to be highlighted is
the time spent and efforts on achieving the necessary
knowledge to create those programs.

Keywords-computational environment; infrastructure-as-
code; open science; computer programming; containerization;
virtualization; reproducible research.

I. INTRODUCTION

The use of computing is essential in all sciences. Many
areas such as biology, physics, and chemistry are dependent
on simulations to perform experiments in silico. It is faster
and cheaper to execute simulations than conduct actual
experiments. In other situations, it is impossible to conduct
an experiment without computational resources, for example,
when it is necessary to process and analyze a large amount of
data in a short space of time. Over the past 70 years, research
methods have become more and more sustained by
computational means. Nowadays, this dependency is pointed

by specialists as one of the main factors responsible for the
crisis of scientific reproducibility [1][2].

Reproducibility is one of the most important pillars of
science, along with transparency and openness [3]. It is a
crucial element to recreate and extend the research work
developed by others. And this practice is critical to keep
science evolving.

From an economic point of view, many losses on
investment have been reported in the last few years related to
the reproducibility of scientific research. In [4], authors
report that, in the United States, around 50% of the total
amount invested every year in biomedical research, is
supporting scientific studies that other researchers cannot
reproduce. Recently the European Commission reported that
the losses related to low reproducibility on clinical trials are
estimated at 28 billion USD per year [5].

Besides the crisis in science related to reproducibility [6],
there is pressure from funding institutions and publishers on
authors to adopt open science principles like Open
Reproducible Research (ORR) [7]. This means to provide
access to the resources (e.g., data, source code,
documentation) used to generate the results reported in their
publications [8].

These factors increase the need to improve
reproducibility and transparency in science, especially in
research where computation has an important role [9]. In a
survey published by Nature with 1576 researchers, Baker
asked them which kind of factors contribute to the
irreproducibility. More than 40% of respondents reported
computational issues, such as unavailability of computational
methods, code, and data [10].

Despite the absence of code and data being the most
common issues on reproducibility, it is essential to highlight
the problems related to the computational environments that
support the research. Incompatibility of operating systems,
different versions of the same compiler or interpreter, lack of
software packages and libraries, the dependency of libraries
of a specific software platform, are all issues related to the
environment used to develop scientific applications.
Accordingly with Boettiger in [11], these kind of
computational issues related to the environment can be
classified as dependency hell or code rot.

It is critical for the reproducibility of any research work
that made use of computational resources to provide the

1

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

environment besides the code, the data, and the
documentation [12]. As Donoho wrote in [13]: “An article
about computational results is advertising, not scholarship.
The actual scholarship is the full software environment, code
and data, that produced the result.”

As the way to share scientific knowledge is changing
from traditional articles to this new concept based on Open
Reproducible Research, it is necessary to change the way
scientific applications are developed, focusing not only on
generating results but on being reproducible and useful to the
wider scientific community, as well [14].

Today, we can count on technologies (e.g., virtual
machines, containers and cloud computing), and new
technical approaches that permit the treatment of the
computational infrastructure that supports scientific research
as a software system, a method also known as Infrastructure-
as-Code (IaC). Using Infrastructure-as-Code, we can provide
the infrastructure programmatically, having many benefits
such as treating the infrastructure like a computer system,
versioning it, and avoiding typical issues like dependency
hell [15]. However, there are many cultural barriers related
to scientific software development that contributes to
irreproducibility, despite the technical and technological
resources available. They are related to the purpose of the
scientific applications, the behavior of scientists when
developing software, the lack of use appropriate software
engineering practices, among other factors.

Considering the issues, particularities and characteristics
related to the development of scientific applications, and
having the IaC approach as a technical foundation, the
authors present in this paper the Environment Code-First
Framework. The goal of the framework is to help to increase
reproducibility by reducing the time and the efforts when
reproducing specific research, mitigating issues related to the
availability of the computational environment created and
used by the researchers. It guides the scientists on developing
the infrastructure's code to make the computational
environment available before they start to develop the
scientific application in itself. In the end, the environment
will be a deliverable as the others objects used and produced
by the research, being stored and accessible in the same
repository (e.g., Git or Github) with them. That means other
researchers will have access to environment code,
application code, data, and documentation, all together,
avoiding reproducible issues.

The framework defines an architecture based on virtual
machines and containers, the two technologies most used by
the scientific community in the last fifteen years to create
self-contained computational environments. The innovation,
in this case, is in the fact that the framework combines the
two technologies instead of using them in an isolated way.
This approach permits developing more homogeneous
environments independent of hardware and software
platforms.

Besides increasing reproducibility and transparency of
new scientific research works, this proposal can be helpful in
other aspects like education and dissemination of the open
science principles. It can help experient and future
researchers understand and prepare to produce executable

papers and migrate old research to this new approach. Also,
it can help bring down cultural barriers that impede the
advance of the open science philosophy, such as authors'
hesitation to share their work to avoid publishing erroneous
papers.

The rest of the paper is organized as follows: Section 2
presents some typical technical issues on reproducible
research, related to scientific computational environments.
Section 3 presents some cultural aspects of the scientific
community that difficults the increasement of
reproducibility. Section 4 presents some related work on IaC.
Section 5 makes an explanation about what is this new
approach called Infrastructure-as-Code. Section 6 presents
the Environment Code-First framework. Section 7 describes
a case study of a recent bioinformatics pipeline
implementation, and compares it to the ECF framework
implementation. Section 8 presents the discussion. Finally, in
Section 9 it is presented the conclusion.

II. TECHNICAL ISSUES

In this section, the authors present some typical issues on
reproducible research, related to computational resources,
which have been faced by researchers.

Collberg et al. show in [16] the technical issues that
researchers have to deal when trying to reproduce results
published by others. In general, considerable effort is needed
to recreate the original computational environment and
achieve similar results. The authors analyzed 613 executable
papers. Only 123 applications were correctly compiled. Of
them, 102 ran with success. Unavailability of a specific
version of a software component and missing third-party
packages or libraries are the reasons that caused 36% of the
failed builds.

In [17], Glatard et al. expose how complex pipelines that
are composed by several parts of software from different
sources, can have unexpected outputs or a failed execution of
the entire workflow, due minor changes introduced in the
computational environments, for example, when a updated is
applied in the operating system.

In [11] the author describes a typical issue called "code
rot". It is a kind of issue that affects the results of the original
code due to updates applied in the software environment to
fix bugs, add new features, or deprecate old ones. All the
software that composes the environment like the operating
system, the development language, and the libraries, can be
affected by an update generating different results from the
original. Also, the author describes another problem known
as dependency hell. It occurs when installed software
packages have dependencies on specific versions of other
software packages. It also includes platform-specific
dependencies that are related to a software development
platform. The most common types of dependency hell are
DLL hell, JAR hell [18].

Ince et al. reported in [19] problems related to differences
between the published and the reproduced results using the
same source code of computer programs that were
implemented and executed with success by non-original
researchers. The issue, in this case, occurred when the
programs were deployed using hardware and software

2

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

configurations that diverged from the original. As a solution,
the authors suggested that the source code of the programs
should be made available along with documentation
describing the hardware and software environment on which
the program was developed and should be executed.

In [20] Ben Marwick highliths how important is, in
archaeology, the simulation studies executed by
computationally-intensive analysis that use mathematical
functions based on single-precision floating-point arithmetic.
In this case, the issues are related to the variation of the
results when executed accross different opearting systems.
Also, the author describes the high difficulty in maintaining
an environment reproducibly, even when using only one
machine, due to automatic updates that software components
sofer considering an extended period.

III. SCIENTIFIC APPLICATIONS AND CULTURAL BARRIERS

Besides the technical issues reported in the last topic,
there are other factors related to scientific applications'
purposes and the behaviors of the scientists that have
impacted the reproducibility of scientific works.

 Scientific applications are a special category of software
generally developed to support comprehending a particular
scientific domain that would be impossible to perform
without computational resources. Also, the scientific
application development process differs significantly from
the development of traditional information systems.

As shown in [21], most of the habits and behaviors of the
scientists, when the subject is software development, had
been adopted during more than last 60 years. Over this
period, a culture had emerged and disseminated, creating the
role of the scientist end-user developer, as defined by the
authors. In this role, the scientist is responsible for planning,
designing, developing, testing, and using the results
generated by the application. Most of the time, the scientist
works alone, using a PC, focusing entirely on the scientific
problem.

In [20], Ben Marwick highlights most scientists' primary
computational environment is a PC (i.e., desktop or laptop)
using one of these three operating systems, Microsoft
Windows, MacOS, or Linux.

Hannay et al. performed a survey with almost 2000
respondents to investigate how scientists develop and use
scientific software. On the computational environment,
48.5% of the scientists reported that they use exclusively a
desktop or a laptop when working on their scientific
applications [22].

As reported in [23], a survey performed with 60 scientific
software developers, around 80% of the respondents develop
their applications alone.

Related to the software engineering principles and
practices, generally, most researchers do not test, document,
or release their applications [24]. In [25], a systematic
mapping study on using software engineering practices for
scientific application development, those facts are reinforced.
The study points to that self-education is the most common
way adopted by researchers when learning about software
development. Also, it highlights that the absence of training
is one reason for the low level of knowledge of the

researchers on software engineering practices and their
benefits.

IV. WHAT KIND OF SOLUTIONS HAS BEEN REPORTED?

In this section, the authors present a set of works related
to IaC that had applied this practice in different areas of the
software industry and scientific applications.

Boettiger in [11] discusses the issues of reproducible
research with a focus on the computational environment that
supported the research. He describes the main issues that
impede the successful execution and extension of the code
by other researchers. Besides, he makes a review of some
approaches used in IaC such as containerization and
virtualization. The author analyzes in-depth containerization
based on Docker technology, showing the advantages of this
approach, such as portability, reusability, versioning, and
cross-platform, and how it can help provision computational
environments for scientific research.

In [26] the authors present a study on the benefits that
could be brought by the adoption of cloud computing and
virtualization techniques in scientific applications. They
discuss a cultural problem that avoids using virtualization
and cloud resources due to the idea that virtualization
techniques hurt the results of the scientific applications in
comparison with the execution of physical machines. Also,
they explore the feasibility of the IaC approach to meet the
requirements of computer science and the main issues that
need to be addressed by cloud actors to provide the
conditions necessary to obtain the maximum benefit from
this type of infrastructure.

In [27], the authors present the main characteristics of
cloud computing technology, highlighting those that can help
in the development of more robust applications based on
aspects such as scalability, resilience, fault tolerance, and
security. Besides, they discuss the low cost of adopting cloud
computing and show how to transition from traditional
biomedical computing workflows to cloud computing
environments.

In [28], the authors discuss the complexity on creating
scientific computing environments. They discuss common
issues in the scientific community like the inability of the
scientists on setting up isolated and uniform computational
environments. Abscense of best practices, software
redundance problems, platform dependency are some of the
situations described by the authors. To address these kind of
issues, they present means to use DevOps concepts, practices
and tools to improve the provision of computational
environments and reduce the complexity. The use of
virtualization, containerization and configuration
management are some of the resources used by DevOps
engineers suggested in this paper.

Howe discusses in [29] the challenges of provisioning
computational environments for scientific research projects
through virtualization on cloud computing platforms. The
author presents how a complete working environment of
specific research containing dataset, software, notes, logs,
and scripts, can be included in a virtual machine. Also, he
presents a discussion on the advantages and disadvantages of

3

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the adoption of this approach, and how it can help to increase
reproducibility.

Cacho and Taghva [30] present the main difficulties
researchers face in reproducing research in the Computer
Science field. Some of the problems they highlighted include
missing original data, issues with the version of the data,
deprecated dependencies, unavailable source code, and
missing documentation. They provide a solution for
reproducible research based on containerization. A real
experiment is used to demonstrate the solution using the
application OCRSpell. The authors make the provision of a
Docker container that embeds the application by creating an
image, uploading it, and making it available to other
researchers that want to run the OCRSpell. From this image
a researcher just needs to download the image and run the
container.

Ben Marwick in [20] demonstrates in a practical way
how to produce an executable paper relating principles of
reproducible research to DevOps practices and tools. The
author describes the efforts to create a publication of
archaeological research using resources like Docker, R
programming language, Git, and Linux operating system.
Also, the author explains each tool used to develop the paper
and exposes the reasons that motivate the use of each
resource.

V. WHAT IS INFRASTRUCTURE-AS-CODE?

Infrastructure-as-Code (IaC) is the management and
provisioning of IT infrastructure using source code rather
than manual processes. It automates the provisioning of
infrastructure and eliminates the need to provision and
manage servers, operating systems, database connections,
storage, and other infrastructure elements manually, avoiding
mistakes.

The infrastructure is treated like a software system,
which means development tools and agile practices such as
Test-Driven Development (TDD), Continuous Integration
(CI), and Continuous Delivery (CD) can be used to improve
the quality [31]. Programmatically defining our
infrastructure means that our environments will be more
consistent and reliable, and identical every time. Manual
provisioning generally has diverse interpretations of the
same instructions, resulting in different configurations [32].

IaC is based on a few practices as follows [15]:
 All the provisions and configurations related to the

infrastructure are defined in executable files, such as
shell scripts. The actions that need to be applied in
the infrastructure like installing a database,
increasing the memory of a server, and even creating
a new server, are executed from these files.

 The scripts contain the commands that make the
maintenance of the infrastructure, and the
documentation of the systems and processes.

 The scripts are the source-code that represents the
infrastructure. They need to be kept in a version
control system like Git or Github.

 Even in infrastructure source-code, tests are critical
to finding errors. Continuous integration pipelines

can be set up to test and guarantee the quality of the
code, supporting practices like continuous delivery
and deployment, which can help decrease the
downtime of the systems on upgrades or fixes.

There are many benefits to adopting IaC due to the
following characteristics of this approach [33][34]:

 Repeatability: having the infrastructure defined as
code ensures that we can recreate it as many times as
needed, getting the same result.

 Automation: creating and configuring the
infrastructure from executable scripts are tasks that
can be automated in addition to mitigating manual
intervention and avoiding human mistakes.

 Agility: using resources such as source code
management systems and version control systems to
store the infrastructure code permits us to apply
changes anytime, responding to defects and business
demands faster because we can always backward the
infrastructure to a known state.

 Scalability: the combination of repeatability and
automation allows us to increase our infrastructure in
an easy and fast way.

 Consistency: repeatability and automation also
guarantee that we will always have the same
environment, as defined in the source code.

 Disaster recovery: as we have all the infrastructure
defined as code, in case of a catastrophic event
where we lose all the environment, it will be easy to
recover and recreate it from our source code
repository.

The most common issues that IaC addresses in the
software industry are related to environment similarity and
scalability. Regarding environment similarity, the IaC is
helping companies increase the similarities between
development, testing, and production environments and
ensuring applications have the same behavior in any of them.
It also avoids the differences that generally are present when
creating the infrastructure by manual intervention. In terms
of scalability, the approach is being used by companies that
need a high level of dynamism in their infrastructure, like e-
commerce. For example, IaC permits rapidly increasing the
number of servers when the sales volume is growing and
reducing them when the sales are decreasing, which is
essential to control the costs [34].

The IaC approach appeared due to the evolution and
growth of cloud computing demands. In general, this new
approach is related to cloud-based environments, but, it can
be used in on-premises infrastructure, as well. Even, it can be
applied to isolated machines [35].

There are different ways and tools to implement IaC,
depending on the need. The most common tools used in
scientific environments are that related to the provision of
virtual machines or containers, which embed the software
environment, the dataset, and the source-code that composes
a specific experiment [11][29].

Using IaC, researchers can write and execute code to
define, deploy, update, and destroy the necessary
infrastructure for their experiments. This code will be stored

4

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in a version control system, making the experiment
reproducible as many times as needed, by the originals and
other researchers [10] [11].

VI. THE ENVIRONMENT CODE-FIRST FRAMEWORK (ECF)

Based on the findings presented before, there are three
main issues related to software environments that support
scientific research and directly impact on their
irreproducibility. The first is the absence of proper
documentation providing a step-by-step on how to reproduce
the environment, including all software like libraries,
packages, compilers, interpreters, databases, their versions,
and how to install and configure them. The second is the
dependency of a specific platform of software or hardware
due to the use of the researchers made of their personal
computers. Creating a computational environment in a
specific machine with a specific operating system forces us
to use the same platform to reproduce the same environment.
The last one is the dependency hell. When a computational
environment is built on a specific machine by a researcher in
a manual way, it is being created with many dependencies on
libraries, packages, and software versions that will exist only
on that machine. It is almost impossible to reproduce the
same environment on other machines, especially by other
researchers different from the original. Producing unique
computational environments in software and configuration is
an issue called snowflake servers [15] or snowflake systems
[34].

As discussed earlier, these issues have their origins in the
following root causes arising from the cultural and
behavioral aspects of the scientist developer:

 The use of the researchers made of their personal
computers;

 Most of the time, the scientist end-user developer
works alone or in small teams;

 The scientist end-user developer does not produce
documentation;

 Researchers are not interested in software
engineering best practices because their focus is on
the research. The applications developed by the
scientist end-user developer are just tools that help
him obtain and process the data they need to
analyze.

Also, some of the root causes identified have
characteristics that contribute to the manual intervention of
the researchers when creating the computational
environments that support their research work. The practice
of the installation and configuration of the environment in a
manual way can be considered another root cause that
aggravates the second and the third issues mentioned before.

In this paper, a framework is being proposed to mitigate
these issues and to conduct the researchers to create self-
contained computational environments more reproducible,
isolated, portable, and independent of any platform of
software and hardware.

The framework shall drive the development of an
environment that is:

 Independent of hardware and software platform,
regarding operating systems;

 Ready to run on-premise, on a PC or more powerful
servers, or even in the cloud;

 Fully provisioned programmatically, with no
installations and configurations manually performed,
using a repository (e.g., Github or GitLab) to store
the source code of the environment;

 Dynamic in terms of software resources, allowing
the addition or remotion of them from the
environment's source code at any time, and in a fast
way;

 Storable in small files, in Megabyte order, not
Gigabyte order, without the need for exhaustive
downloads;

 Quickly reproducible and ready to use in the order of
minutes.

The framework has two parts. The first part determines
the architecture of the computational environment, and the
second is a guide that defines a step-by-step procedure that
must be followed by the researcher for the development and
maintenance of the infrastructure.

A. The ECF Architecture

The main goal of the architecture defined by the ECF is
to create a homogeneous environment independent of the
hardware and software platforms used by the researcher. For
example, a team of five researchers using various types of
PCs (e.g., notebooks and desktops) with different operating
systems would still have the same environment in all
machines when following the ECF framework.

In the last fifteen years, two main technical approaches
had been used by the scientific community to create self-
contained computational environments proper to
reproducibility. The first one are the virtual machines (VMs)
and the other are the containers. Both permit us to create
packaged computing environments composed of many IT
elements (e.g., CPU, memory, and storage) available in file
format. When executed inside the host machine, both isolate
their environments from the rest of the system. But, while the
VMs offer complete isolation from the host operating
system, the containers offer lightweight isolation. It occurs
due to the use of containers made of the host machine's
resources, while VMs have their operating system, CPU,
memory, network interface, and storage. This is an
advantage of the VMs in terms of security and a barrier in
terms of availability and portability, because of the size of
their files. The size of a container image file is generally
measured in MB, while that of a VM can take several GB
[36]-[38].

Nowadays, there is a growing adoption and use of Linux
container technology (e.g., Docker, LXC) compared to
virtual machines by the software industry and the scientific
community. Many scientific papers have been published
presenting executable paper solutions based on containers to
help grow reproducibility and transparency in science
[11][20][30][39][40]. However, the proposal presented by
the most of papers related to this subject is usually to use the
containers directly on the host machine. This can be a

5

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

challenge in terms of platform because the containers have to
be compatible with the operating system [41]. Currently,
Docker is considered the de facto standard for
containerization [42]. The Linux containers based on this
standard, only can run directly on machines that have a
Linux distribution as the operating system. To run Docker
Linux containers on other operating systems such as
Microsoft Windows and MacOS, it is necessary to install and
configure a set of software that will adapt them to support
Linux containers, usually in a manual way [43].

The ECF defines an architecture composed of two
modules to permit researchers to obtain precisely the same
computational environment when reproducing a research
work. The first, called Container Module (CM), is a Linux
container with all the software, libraries, and packages
needed to develop and run the scientific application. The
second, called Virtual Machine Module (VMM),
comprehends a hypervisor, a lightweight virtual machine
based on Linux distribution, and a container engine (e.g.,
Docker). In the development phase, the modules will be
developed separately. But, in the execution phase the CM
will run inside the VMM, on top of the container engine
layer. Practically, the CM will work as another layer of the
CMM. As shown in Fig. 1, the layers in green represent the
physical machine and the operating system installed on it.
The other layers, that appears involved by a dotted line, are
all part of the architecture defined by the ECF framework.
Both modules have to be provisioned programmatically
using IaC resources such as ad-hoc scripts, configuration
management tools, server templating tools, orchestration
tools, and provisioning tools.

Figure 1. The ECF architecture.

Provisioning the computational environment based on the
ECF architecture guarantees the container will always run on
the same operating system, independent of the software
platform used by the researchers on their physical machine,
as shown in the example of Fig. 2.

Figure 2. Example of the ECF architecture running on different platforms.

B. The ECF Guidence

The goal of this part of the framework is to guide the
researchers on implementing the two modules defined by the
ECF architecture, the CM and the VMM. The CM have to be
implemented first, as it is one of the four layers that compose
the VMM. For both modules, the framework establishes a
series of steps that have to be systematically followed by the
researchers to get each of them implemented.

1) The CM implementation guide
The implementation of the CM can be summarized in

five high-level guidelines:
 Requirements identification;
 Development of the CM source code;
 Source code storage;
 Container image generation;
 Container image storage.
Fig. 3 shows the guidelines in a diagram where we can

see in which order researchers have to perform such actions.
It is essential to notice the researcher will not perform these
actions only once but in a cycled way as many times as
needed due to the maintenance of the environment. For
example, after the environment is ready and running, if a
researcher identify a need to add a new library, it will
necessary execute all the steps to get the new version of the
container image stored and available for download.

Figure 3. Steps involved in the CM development.

In the requirements identification step, the researcher will
identify all the software, libraries, and packages necessary to
develop and run the scientific application. The first
requirement that has to be defined in this step is the container
engine. It is mandatory to know what container engine will
be used to build the environment before all the other
requirements. The source code the researcher will write to
define the installations and configurations to create the
environment depends on this definition. It has to follow the
patterns and syntax required by the chosen engine. The other
requirements can vary from one environment to another,
depending on the experiment's needs. The source code files
must contain all the instructions and explanations needed to
document the commands and configurations specified. The
ECF framework defines a form model with a set of questions
based on the most common types of software components

6

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

used in scientific environments that have to be answered by
the researchers when analyzing the requirements to build the
CM. Of course, this model must be adapted for each case,
including or removing requisites according to the situation.
Table I shows the form with the questions defined by the
ECF. Besides the column with the question, there are two
more columns in the form. One for the answer in itself, and
the other two specify the software's version.

TABLE I. CONTAINER MODULE DEVELOPING FORM

Question Answer Version

Which container engine will be used?

Which will be the base image of the
containers?

Which programming languages and
compilers will be used?

Which libraries, packages and third part
software have to be installed?

Which databases will be installed?

Is it necessary to perform any configuration?
In which files?

Is it necessary to copy any files into the
container? Which files?

The next step consists of developing the container

image's source code based on the requisites identified before.
After writing the container image’s source code, the
researcher needs to store it in a version control system like
Github and Gitlab. In the following step, it is necessary to
compile the source code to generate the image used to create
the container that supports the scientific application's
development and execution. Also, it is necessary to perform
some tests with the image. The last step is to store the image
in a container repository (e.g., Docker Hub).

2) The VMM implementation guide
Similarly to the CM, the implementation of the VMM is

composed by three high-level guidelines:
 Requirements identification;
 Development of the VMM source code;
 Source code storage.
The sequence the steps have to be executed is shown in

Fig. 4. Although the diagram demonstrates that the steps can
be performed cyclically, it is not typical for the VMM
because it will not change with as much frequency as the CM
can change. For example, it will be necessary to change the
VMM when we have to increase the quantity of memory or
the number of CPUs.

Figure 4. Steps needed to create the VMM.

The VMM is limited to four essential layers: the
hypervisor, the virtual machine, the container engine and, the
CM in itself. That means there is no need to add or remove
any layer. In the requirements identification step, the
researcher will have to define which hypervisor will support
the virtual machine, how much memory it will use, how
many CPUs it will have, and which operating system will be
installed. At this point, the container engine is already
known, and the CM is ready to use. The other definitions are
related with the IaC tools the researcher wants to use to
develop the VMM. Also, the ECF defines a form with the
main questions to guide the researcher in this phase. It can be
visualized in Table II.

TABLE II. VIRTUAL MACHINE MODULE DEVELOPING FORM

Question Answer Version

Which hypervisor will be used?

How much memory will be allocated for the
virtual machine?

How much CPUs will be dedicated to the
virtual machine?

Which operating system will be installed on
the virtual machine?

Which IaC tools will be used to automate the
provisioning of the environment?

At this point, the researcher has all the elements that is

necessary to develop the source code of the VMM. The
source code must guarantee the hypervisor installation on the
physical machine, the provisioning of the virtual machine
with the container engine and the CM inside it. The
documentation about the actions performed to create the
VMM have to be included in the source code files. The
source code produced in this phase must be stored in a
version control system, but the virtual machine image does
not. It will be used only to create an instance of the container
image that represents the scientific environment. In this way,
the virtual machine image only has to keep stored locally,
and it can be destroyed and recreated as many times as
needed. During the initialization, the VMM has to check if a
new version of the CM is on the image repository. In a
positive case, it needs to download the new container image
before instantiating it. Once the VMM source code covers all
these actions and is already available in a version control
system, any researcher can use the produced scripts to
recreate an environment.

In Fig. 5, a flowchart shows all the steps involved in
running a VMM script on provisioning an entire scientific
computational environment.

7

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Steps performed by the VMM scripts.

VII. CASE STUDY: THE PROKARYOTIC GENOMICS AND

COMPARATIVE GENOMICS ANALYSIS PIPELINE (PGCGAP)

In this section, we describe our experience in recreating a
computational environment called PGCGAP, the Prokaryotic
Genomics and Comparative Genomics Analysis Pipeline,
following the guide presented by H. Liu et al. in [44]. Also,
we describe how we recreate the same environment
following the guidelines defined by the ECF framework.

A. Material and Methods

We performed both implementations on three different
physical machines. The machine one (M1) is a PC notebook
configured with Microsoft Windows 10 Professional Edition
64-bit operating system, an Intel(R) Core(TM) i5-7200U
CPU @ 2.50GHz processor, 16 GB of RAM and a hard disk
512 GB SSD. The machine two (M2) is a PC notebook
configured with Microsoft Windows 10 Home Edition 64-bit
operating system, an Intel(R) Core(TM) i7-5500U CPU @
2.40GHz processor, 16 GB of RAM and a hard disk 512 GB
SSD. The last one, machine three (M3), is a PC notebook
configured with Linux Fedora v34 64-bit operating system,
an Intel(R) Core(TM) i7-6500U CPU @ 2.50GHz processor,
16 GB of RAM and a hard disk 512 GB SSD.

In [44], the authors split the paper that presents the
PGCGAP into two parts. The first part is related to the step-
by-step defined by the protocol to provisioning the pipeline.
The second part uses the pipeline provisioned to execute a
bioinformatics application, processing a significant amount
of data and generating results. As our focus is on providing
the computational environment, we considered only the first
part of the paper in our analysis and comparison.

The comparison of the two implementations considered
time consumption, efforts, manual intervention, platform-
agnosticism, and portability.

B. Implementing the Original PGCGAP

The PGCGAP is a protocol that guides researchers on
implementing a scientific computational environment that
supports applications related to genomics and comparative
genomics analyses of microbes. This protocol comprises a
set of genomic analysis software packages, scripts developed
by the PGCGAP’s creators, and a guide that specifies
configurations and software installations that have to be
performed by the researchers in a correct sequence to
reproduce the environment. The PGCGAP is free and open-
source software licensed under GPLv3. All the third-party
software packages used to create the protocol are open
source. The source code is available on Github [45].

In the paper, the authors demonstrate the protocol's
applicability on a Linux Ubuntu 18.04 operating system. But,
they used a machine configured with Microsoft Windows 10
and a feature called Windows Subsystem for Linux (WSL)
[46] to create the virtual machine that supported the
PGCGAP implementation. The Linux Ubuntu 18.04 OS was
installed from the Microsoft Store.

As mentioned before, we reproduced the steps of the
paper on three different physical machines. The M1 PC
notebook is configured with Microsoft Windows 10 x64 OS,
and it has the version 1 of the WSL installed. The M2 is
configured with Microsoft Windows 10 x64 OS and WSL
version 2. On both PCs were created virtual machines with
Linux Ubuntu 18.04 OS installed from the Microsoft Store.
Even though the authors did not specify if they used version
1 or 2 of the WSL, we decided to test the PGCGAP on both
to verify if it can work adequately on any version. Regarding
the M3 PC notebook, it is configured with Linux Fedora v34
x64 OS. We considered testing the protocol on the M3
machine to extend the research and check if it can work
correctly on other Linux distributions that are not running on
top of the Microsoft Windows Subsystem for Linux.

The PGCGAP protocol defines twelve steps that have to
be executed by a researcher when provisioning the
environment. These steps include installations of the WSL,
the Linux OS, and third-party package software like
Miniconda and the PGCGAP in itself. Also, it includes
configurations that have to be included in files and
performed in a command-line terminal. The authors reported
that all the steps were performed in around sixty minutes.

On M1 PC, the provisioning of the PGCGAP
environment failed. It presented a corruption error during the
eleventh step that corresponds to the setup of the COG
database.

8

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

All the steps to provision the PGCGAP environment
were successful on M2 PC. It was necessary 80 minutes to
perform the entire procedure. But, it is essential to highlight
that it was needed 30 minutes more to install and configure
version 2 of the WSL before executing the PGCGAP steps
[47]. This was not an action foreseen by the protocol, but if
we consider it, the whole process took 110 minutes in total.
In terms of portability, we exported an image of the virtual
machine created by the WSL to a zip file around 13.60 GB.
Using this file, we could import the virtual machine on a
fourth PC notebook (M4), used in this part of the experiment
only for the portability test. It was configured with Microsoft
Windows 10 operating system, WSL version 2, an Intel(R)
Core(TM) i7-9850H CPU @ 2.60GHz processor, 16 GB of
RAM and a hard disk 512 GB SSD. After to import the
virtual machine from the zip file, it was possible to initialize
the PGCGAP environment successfully.

The provision of the PGCGAP on M3 PC was performed
successfully, as well. To execute all the steps on this
machine it was needed 81 minutes. This is a very close result
that we obtained on M2 machine for this part of the
provision. In this case, there was no extra installations and
configurations to be considered. The portability of the
PGCGAP from this machine is not possible, once the
environment was provisioned directly on a physical machine.

The implementation of the PGCGAP protocol on the
three machines mentioned before was performed manually,
according to the steps presented in [44].

C. Implementing the PGCGAP Based on the ECF

For the development of the CM and VMM that will be
described in this topic, we used the M4 PC notebook, already
mentioned and detailed before.

As defined by the ECF framework, the first step on
creating a computational environment is to develop the
container module following the CM implementation guide.

For the analysis phase, it was necessary 30 minutes to
review and fill the form with the requirements of the
environment once most of them are described in [44]. Table
III shows the form with the questions and answers used to
develop the container module for the PGCGAP environment.

TABLE III. PGCGAP’S CM FORM

Question Answer Version
Which container engine will be
used?

Docker and
dependencies

20.10

Which will be the base image
of the containers?

Ubuntu Linux 18.04

Which programming languages
and compilers will be used?

Python and
dependencies

3.7.6

Which libraries, packages and
third part software have to be
installed?

Miniconda and
dependencies

3

Is it necessary to perform any
configuration? In which files?

Add into .bashrc:
export
OMPI_MCA_opal_cu
da_support=true

N/A

Is it necessary to copy any files
into the container? Which files?

pgcgap_latest_env.yml N/A

Based on the form shown in Table III, we could write the
source code that defines the infrastructure needed to develop
and run the scientific application. Practically, we developed
the Dockerfile, a prerequisite necessary to generate the
Docker container that will embed all the PGCGAP
computational environment. Also, the Dockerfile works as
part of the documentation. For programming and
documenting the environment, it was necessary around 60
minutes.

The next step consisted of generating the container image
based on the definitions of the Dockerfile. Docker performed
this operation in 49 minutes, and the final base image file
had a size of 8.14 GB. With the container’s image ready to
be used, it was necessary to execute a set of tests to ensure
that a properly PGCGAP environment was being
provisioned. We had to test the upload of the image to the
Docker Hub, its download from the Docker Hub, and the
instantiation of containers from the downloaded base image.
Also, we ran some commands on the PGCGAP environment
to verify that all the components were adequately installed.
The image test operation was performed in 85 minutes.

Considering all the phases executed in the CM
development, achieving a successful result took around 224
minutes.

With the container module working correctly, we started
to work on the virtual machine module following the VMM
guide. Initially, we analyzed the requirements needed to
create a virtual machine capable of supporting the PGCGAP
container, considering the bioinformatics profile of the
applications that will run on this environment. Despite the
ECF framework being tool-agnostic, it was designed for
Linux containers. In this context, we opted to use only free
and open-source software tools commonly used by the
scientific community, as shown in Table IV. This step was
performed in 30 minutes.

TABLE IV. PGCGAP’S VMM FORM

Question Answer Version

Which hypervisor will be used? Virtualbox 6.1.32

How much memory will be
allocated for the virtual
machine?

8 GB N/A

How much CPUs will be
dedicated to the virtual
machine?

2 CPUs N/A

Which operating system will be
installed on the virtual
machine?

Ubuntu Linux 18.04

Which IaC tools will be used to
automate the provisioning of
the environment?

Vagrant and
dependencies

2.2.19

Ansible and
dependencies

2.12.2

Other resources

Shell-scripts Linux
(main script)

N/A

Shell-scripts Windows
(main script)

N/A

For this module, the first step was to implement a script

used to start the PGPGAP environment, the main script. As
our intention was to perform tests on Linux and MS-

9

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Windows machines, we had to develop the main script for
both operating systems. The script verifies if the PC has the
Virtualbox installed. If not, the hypervisor is downloaded
and installed on the machine. After, it verifies if Vagrant and
Ansible are installed. In the negative case, the installation is
performed, followed by the provisioning of the virtual
machine configured with Ubuntu Linux. Otherwise, Vagrant
only will start the virtual machine. In order to permit Vagrant
to create the virtual machine, we had to specify the
configurations and installations required in a file called
Vagrantfile, as shown in Fig. 6. In this file, we defined the
amount of RAM and the number of CPUs must be allocated
for the VM. Also, we requested the installation of the Docker
engine using Ansible. Having the VM running up, the script
downloads the CM from the Docker Hub, if needed, and
starts a container that embeds the PGCGAP environment.

Figure 6. Vagrantfile implemented for the virtul machine module.

The codification of all parts that compose the VMM,
considering the scripts for Linux and Windows and the
configuration files for Vagrant and Ansible, took around 280
minutes to be concluded. The scripts developed in this phase
had to be tested individually and together, consuming around
350 minutes. This time includes the tests performed with the
CM and the VMM together. Considering the time needed to
implement both modules, CM and VMM, the total time was
884 minutes.

After the implementation of the CM and the VMM, we
were ready to start the tests on the three PC notebooks
described before: M1, M2 and M3. We started downloading
the main script from the repository for both operating
systems, MS-Windows and Linux. Actually, it is the only
file that has to be downloaded manually by a researcher that
wants to recreate the environment. The PGCGAP
environment was provisioned automatically and succesfully
by running this script on the three machines. Considering a

scenario where all the software components (e.g.,
Virtualbox, Ansible, Vagrant, CM) had to be downloaded to
make the environment available, this operation took 92
minutes on M1, 89 minutes on M2, and 95 minutes on M3. It
is essential to highlight that these times can vary depending
on the download capacity of the internet connection used to
obtain the CM and the VMM. Both of them have to be
downloaded, and, in this case, it was used an internet
connection with 27 Mbps of download speed.

VIII. DISCUSSION

First of all, it is essential to clarify that the ECF
framework’s primary goal is to enhance the reproducibility
using the IaC approach. In this way, it focuses on guiding
original researchers in providing a computational
environment that is easily reproducible by them and other
researchers. By them, when new members have to be
integrated into a research team, for example. And by other
researchers when they want to reproduce published results of
a research papers. Of course, to enhance reproducibility and
develop means that allow to recreate computational
environments efficiently, a great effort from the researchers
responsible for the provision in terms of learning and
programming IaC tools will be necessary. The comparison
presented in this topic can not be interpreted literally, but
from two points of view, one from the original researcher
that is creating the environment by programmatic ways, and
another from the researcher that is reproducing it. The work
presented in [44], only shows the second perspective.

In terms of time consumption, from the point of view of
the original researcher, it was necessary around fifteen hours
to build the entire computational environment that supports
the PGCGAP usinf the ECF framework. It is essential to
highlight that it was designed to assist those directly
involved in research development and anyone who wants
only to run an application and verify published results. From
this second point of view, the effort necessary would be
simply downloading and executing only one script to get the
computational environment ready to use. Our practical test
on this operation consumed 92 minutes, on average,
considering the three machines used in the tests (M1, M2,
and M3). By following the method presented in [44], our
provisioning of the environment took on average 80.5
minutes, remembering that we did not have success in
implementing it on the M1 PC notebook. The authors
reported in [44] a total time of 94 minutes to provisioning it.

Another concern of the ECF framework is reducing the
manual intervention when provisioning computational
environments. Our experience in reproducing the original
PGCGAP environment proved that, by following this
method, all the steps must be performed manually. From
enabling the WSL resource on MS-Windows operating
system, installing the Ubuntu operating system, downloading
and installing the Miniconda platform, adding configuration
on some specific Linux files until the installation of the
PGCGAP, all of them were performed in a manual way.
And, this is not a good practice when trying to produce
reproducible environments. On the contrary, manual
intervention is one of the leading causes of issues like the

10

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

snowflake servers and snowflake systems mentioned earlier.
Implementing the PGCGAP based on the guidelines of the
ECF framework showed us that it is possible to provide an
entire computational environment automatically and
programmatically, reducing the manual intervention to a
download and execution of only one script.

The platform-agnosticism is another relevant topic that is
covered by the ECF framework. The framework focuses
mainly on the three most used operating systems by
scientific researchers: Linux, MS-Windows and MacOS.
But, it does not exclude other platforms like HPC and cloud
computing. Once the framework defines a standard layer
represented by a virtual machine, the only condition to run
an ECF environment is to support virtualization. This
abstraction turns different platforms in one common platform
using the same distribution of the Linux operating system.
The Linux container representing the computational
environment can be instantiated from this point, permitting
that the applications consistently produce the same results.
The PGCGAP environment implemented by the ECF
framework could be provisioned successfully on the three
machines used in our experiments. Differently, the original
PGCGAP could be provisioned only on two of the three
machines due to an issue related to version 1 of the WSL
resource, which is part of the MS-Windows and is a vital
tool of this proposal.

In terms of portability, as the ECF framework was
designed to be tool-agnostic, one implementation can be
more portable than another depending on the way they were
implemented. For example, using Python instead of
operating system scripts to develop the VMM produces a
more portable environment. In our case, we decided to use
shell scripts to implement the main script of the VMM due to
our high knowledge of this subject. Choosing another
programming language like Python would require more time
to learn, implement and test this deliverable. In this way, we
had to create one main script for Linux and another for the
MS-Windows platform because the hypervisor (Virtualbox)
installation is different on both operating systems. All the
source code produced is common for any platform from this
point ahead. The configuration files created for Vagrant,
Ansible, and Docker, for example, will be the same on
provisioning the environment for any operating system. The
main script is the only deliverable that needs to be download
and executed manually by a researcher that wants to reacrete
the environment. When it is executed, all the softwares that
compose the infrastructure (e.g., Virtualbox, Vagrant, and
Ansible) are downloaded and installed automatically from
official repositories. The CM is downloaded from the Docker
Hub. That means the environment is always provisioned with
the same components and versions obtained from the same
sources. It can be installed on physical machines or
infrastructures supported by cloud computing. Based on
what we produced in our experiment, it is limited to Linux
and MS-Windows. But, we can extend this coverage only by
creating the main script for other platforms (e.g., MacOS,
Solaris). Once the original researchers provided access to the
source code of the environment, it is possible yet, for other
researchers to reproduce it by compiling this code. This

practice is another advantage of the ECF framework. There
is no need to perform the portability manually, using
traditional means like copying a file from one computer to
another. On the other hand, this is the only way presented by
the original PGCGAP, considering that both machines have
MS-Windows 10 operating system and WSL version 2
installed. In this case, it is important to remember that, in our
experiment, WSL generated a file with 13.60 of size in the
export operation. The container image file that represents the
CM had 8.14 GB. A difference of 40.14% between them.

The documentation is another positive point of using the
ECF framework to develop the PGCGAP environment. As
the framework uses the IaC approach, all the components of
the environment are based on code. In this way, we
described and explained the environment, installations, and
configurations, into the source-code files we had created for
Vagrant, Docker, Ansible, and the shell scripts. The
documentation is fundamental to guide those who need to
recreate the environment, but also for anyone that wants to
understand how the environment was developed.

Of course, we can not show only the benefits of the ECF
framework. There are costs on adopting it. First of all, it is
important to highlight the time that the original researchers
must dedicate to programming the components of the
environment. As mentioned earlier, it took about fifteen
hours to develop and test the source code, given our high
level of expertise in the programming languages and tools
used in the experiment and the Infrastructure-as-Code
approach. The development and test phases tend to be higher
when researchers are not information technology specialists
(e.g., biologists, chemists, and archeologists). This implies
the factor that we consider to be the second higher cost: the
time and effort needed to learn about the programming
languages, IaC tools and software engineering practices.

IX. CONCLUSION

In [44], the authors presented a step-by-step on recreating
an entire computational environment that supports scientific
research. That is what we expect from an executable paper in
terms of documentation. However, it is based on a manual
intervention approach which is not good reproducibility
practice. When recreating an environment, increasing
reproducibility implies substituting the actions manually
performed by automatic means.

The framework proposed in this paper has as primary
intention to help researchers enhance the reproducibility of
their work regarding the provision of the computational
environment. Our study contributes by mitigating typical
issues such as the absence of documentation, platform
dependency, and manual intervention. The central idea is
provisioning the environment based on the Infrastructure-as-
Code approach instead of using traditional means. The pre-
defined homogeneous architecture permits us to have a big
picture of the environment. And the practical guidelines
conduct researchers on developing environments that are
more reproducible, isolated, portable, and independent of any
software and hardware platform.

Our goal in proposing the ECF framework is to support
the development of new research works and help researchers

11

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

migrate papers already published based on traditional
provisioning approaches to this new way easily reproducible.

In the case study presented, the ECF framework proved
in practice that it is possible to provide an entire
computational environment programmatically with minimal
intervention of the researcher who wants to recreate it. In the
results, we can testify its benefits, especially regarding the
behavior of the environment that was the same on the three
machines used in our experiment. This kind of evidence
allows us to understand how valuable it is to mitigate manual
intervention because we will always have the same
environment many times as we reproduce it.

The adoption of the ECF framework has costs. Firstly,
we have to highlight the time and effort from the scientist-
developer side when producing and testing the code that will
generate the environment. These activities require them to
dedicate a lot of time and attention. Besides, it is necessary a
continuously learn behavior from the scientist-developer,
which we consider the second cost when adopting the
framework. Developing competence in software engineering
practices, programming languages, and IaC tools is
challenging and time-consuming. But, it is also a gain for
researchers once they are preparing themselves for a new era
based on open science principles.

We recommend using open source software for
researchers who desire to implement their computational
environments following the ECF guidelines. Besides being
aligned with the open science principles, open source tools in
the general count with large communities supporting the
users, accelerating the learning process, and helping them
when they face technical problems. The use of mature tools
already approved by the scientific community (e.g., Docker,
Virtualbox, and Python) is also recommended. Compared
with more recent tools, they tend to have fewer technical
issues, and there is more documentation and forums to guide
new users.

We consider a significant contribution of the ECF
framework the educational role that it can have in helping to
prepare future generations of researchers on creating more
transparent and reproducible research that aggregates value
and benefits the scientific community.

As future work, we propose implementing computational
environments for different domains of science to help to
improve the ECF framework.

REFERENCES
[1] D. A. Gomes, P. Mestre, and C. Serôdio, “Infrastructure-as-Code for

Scientific Computing Environments,” CENTRIC 2019: The Twelfth
International Conference on Advances in Human-oriented and
Personalized Mechanisms, Technologies, and Services, Nov. 2019.

[2] J. A. Papin, F. Mac Gabhann, H. M. Sauro, D. Nickerson, A.
Rampadarath, “Improving reproducibility in computational biology
research,” PLoS Comput Biol 16(5): e1007881, 2020,
https://doi.org/10.1371/journal.pcbi.1007881.

[3] B. A. Nosek et al., “Promoting an Open Research Culture,” Science,
New York, N.Y., 348, 2015.

[4] L. P. Freedman, I. M. Cockburn, T. S. Simcoe, “The Economics of
Reproducibility in Preclinical Research,” PLOS Biology 13(6):
e1002165, 2015, https://doi.org/10.1371/journal.pbio.1002165.

[5] European Commission. Reproducibility of scientifc results in the EU.
[Online] Available from: https://op.europa.eu/en/publication-detail/-
/publication/6bc538ad-344f11eb-b27b-01aa75ed71a1. [Accessed:
2022.05.31].

[6] J. R. F. Cacho and K. Taghva, “The State of Reproducible Research,”
in Computer Science, 17th International Conference on Information
Technology – New Generations (ITNG 2020), Advances in
Intelligent Systems and Computing, Volume 1134, Springer, 2020.

[7] M. Munafò et al., “A manifesto for reproducible science,” Nat Hum
Behav 1, 0021, 2017.

[8] J. C. Burgelman et al., “Open Science, Open Data, and Open
Scholarship: European Policies to Make Science Fit for the Twenty-
First Century,” Frontiers in Big Data, Volume 2, 2019.

[9] J. R. F. Cacho and K. Taghva, “Reproducible research in document
analysis and recognition,” in Information Technology-New
Generations, Springer, Berlin, pp. 389–395, 2018.

[10] M. Baker, “1500 scientists lift the lid on reproducibility,” Nature
News 533 (7604), 452, 2016.

[11] C. Boettiger, “An introduction to Docker for reproducible research,
with examples from the R environment,” ACM SIGOPS Oper. Syst.
Rev., 49, 2014.

[12] S. M. Powers and S. E. Hampton, “Open science, reproducibility, and
transparency in ecology,” Ecological Applications 29(1):e01822,
2019.

[13] D. L. Donoho, “An invitation to reproducible computational
research,” Biostatistics (Oxford, England), 11, 2010, pp. 385-8.

[14] A. Brinckman et al., “Computing environments for reproducibility:
Capturing the “Whole Tale”,” Future Generation Computer Systems,
Volume 94, pp. 854-867, 2019.

[15] K. Morris, “Infrastructure as Code: Managing Servers in the Cloud,”
1st ed. O’Reilly Media, Inc., 2016.

[16] C. Collberg, T. Proebsting, G. Moraila, A. Shankaran, Z. Shi, and A.
M. Warren, “Measuring Reproducibility in Computer Systems
Research,” Department of Computer Science, University of Arizona,
Technical Report. [Online]. Available from:
http://reproducibility.cs.arizona.edu/tr.pdf [Accessed: 2022.05.31]

[17] T. Glatard, L. B. Lewis, R. Ferreira da Silva, R. Adalat, N. Beck, C.
Lepage, and A. C. Evans, “Reproducibility of neuroimaging analyses
across operating systems,” Frontiers in Neuroinformatics, 9, 12, 2015,
doi:10.3389/fninf.2015.00012.

[18] C. Riccomini, D. Ryaboy. “The Missing README: A Guide for the
New Software Engineer,” 1st ed. No Starch Press, 2021.

[19] D. C. Ince, L. Hatton, and J. Graham-Cumming, “The case for open
computer programs,” Nature. 2012; 482(7386):485-488. Published
2012 Feb 22.

[20] B. Marwick, “Computational Reproducibility in Archaeological
Research: Basic Principles and a Case Study of Their
Implementation,” J Archaeol Method Theory 24, 424–450, 2017,
https://doi.org/10.1007/s10816-015-9272-9.

[21] J. Segal and C. Morris, "Developing Scientific Software" in IEEE
Software, vol. 25, no. 04, pp. 18-20, 2008, doi:10.1109/MS.2008.85.

[22] J. E. Hannay, C. MacLeod, J. Singer, H. P. Langtangen, D. Pfahl and
G. Wilson, "How do scientists develop and use scientific
software?," 2009 ICSE Workshop on Software Engineering for
Computational Science and Engineering, 2009, pp. 1-8,
doi:10.1109/SECSE.2009.5069155.

[23] L. Nguyen-Hoan, S. Flint, and R. Sankaranarayana, “A survey of
scientific software development,” In Proceedings of the 2010 ACM-
IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM '10). Association for Computing
Machinery, New York, NY, USA, Article 12, 1–10, 2010,
doi:https://doi.org/10.1145/1852786.1852802.

[24] Z. Merali, “Computational science: Error, why scientific
programming does not compute,” Nature 467, 7317, 2010,
https://doi.org/10.1038/467775a.

12

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[25] E. M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou, J. C. Carver,
“Software engineering practices for scientific software development:
A systematic mapping study,” Journal of Systems and Software,
Volume 172, 2021, 110848, ISSN 0164-1212,
https://doi.org/10.1016/j.jss.2020.110848.

[26] Á. L. García and E. F. del Castillo, “Analysis of scientific cloud
computing requirements,” in Proceedings of the 7th Iberian Grid
Infrastructure Conference, Madrid, Spain, Sep. 2013, pp. 147-158.

[27] B. S. Cole and J. H. Moore, “Eleven quick tips for architecting
biomedical informatics workflows with cloud computing,” PLOS
Computational Biology, vol. 14, issue 3, Mar. 2018.

[28] D. Clark, A. Culich, B. Hamlin, and R. Lovett, "BCE: Berkeley’s
Common Scientific Compute Environment for Research and
Education," in Proceedings of the 13th Python in Science Conference,
Austin, USA, Jul. 2014, pp. 5–12.

[29] B. Howe, “Virtual Appliances, Cloud Computing, and Reproducible
Research,” Computing in Science & Engineering, vol. 14, no. 4, pp.
36-41, Jul.-Aug. 2012.

[30] J. R. Fonseca and K. Taghva. “Reproducible Research in Document
Analysis and Recognition,” Advances in Intelligent Systems and
Computing: Information Technology - New Generations, Springer,
738 389-395, 2018

[31] Amazon Web Services. Introduction to DevOps on AWS, White
Paper, 2014. [Online]. Available from:
https://d1.awsstatic.com/whitepapers/DevOps/infrastructure-as-
code.pdf [Accessed: 2022.05.31]

[32] Amazon Web Services. Infrastructure as Code, White Paper, 2017.
[Online] Available from:
https://d1.awsstatic.com/whitepapers/DevOps/infrastructure-as-
code.pdf [Accessed: 2022.05.31]

[33] S. Nelson-Smith, “Test-Driven Infrastructure with Chef,” 2nd ed.
O’Reilly Media, Inc., 2013.

[34] K. Morris, “Infrastructure as Code: Dynamic Systems for the Cloud
Age,” 2nd ed. O’Reilly Media, Inc., 2020.

[35] IBM Cloud Education. Infrastructure as Code, Blog, 2019. [Online]
Available from: https://www.ibm.com/cloud/learn/infrastructure-as-
code [Accessed: 2022.05.31]

[36] IBM Cloud Education. Containers vs. Virtual Machines (VMs):
What’s the Difference?, Blog, 2021. [Online] Available from:

https://www.ibm.com/cloud/blog/containers-vs-vms [Accessed:
2022.05.31]

[37] Red Hat Topics Website. Containers vs VMs, 2020. [Online]
Available from:
https://www.redhat.com/en/topics/containers/containers-vs-vms
[Accessed: 2022.05.31]

[38] Microsoft Technical Documentation Website. Containers vs. virtual
machines, 2021. [Online] Available from:
https://docs.microsoft.com/en-
us/virtualization/windowscontainers/about/containers-vs-vm
[Accessed: 2022.05.31]

[39] K. Wiebels and D. Moreau, “Leveraging Containers for Reproducible
Psychological Research.” Advances in Methods and Practices in
Psychological Science, Apr. 2021, doi:10.1177/25152459211017853.

[40] X. Qiao, Z. Li, F. Zhang, D. P. Ames, M. Chen, E. J. Nelson and R.
Khattar, “A container-based approach for sharing environmental
models as web services,” International Journal of Digital Earth, 14:8,
2021, 1067-1086, doi:10.1080/17538947.2021.1925758.

[41] Red Hat Topics Website. What's a Linux container?, 2018. [Online]
Available from: https://www.redhat.com/en/topics/containers/whats-
a-linux-container [Accessed: 2022.05.31]

[42] J. Sparks, “Enabling Docker for HPC,” Concurrency and
Computation: Practice and Experience, Dec. 2018,
https://doi.org/10.1002/cpe.5018.

[43] Docker Documentation Website. Docker Desktop overview. [Online]
Available from: https://docs.docker.com/desktop/ [Accessed:
2022.05.31]

[44] H. Liu et al., “Build a bioinformatics analysis platform and apply it to
routine analysis of microbial genomics and comparative genomics,”
Protocol Exchange, 2020, https://doi.org/10.21203/rs.2.21224/v5.

[45] Github of the Project PGCGAP. [Online] Available from:
https://github.com/liaochenlanruo/pgcgap [Accessed: 2022.05.31]

[46] Official documentation of the Windows Subsystem Linux. [Online]
Available from: https://docs.microsoft.com/en-us/windows/wsl/
[Accessed: 2022.05.31]

[47] Windows Subsystem Linux’s documentation on how to migrate from
version 1 to version 2. [Online] Available from:
https://docs.microsoft.com/en-us/windows/wsl/install-manual/
[Accessed: 2022.05.31]

13

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

