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Abstract—Inheritance as a relation for expressing generalisa-
tions and specialisations or taxonomies is natural for human
perception and essential for conceptual modelling. However, it
causes evolvability problems in software implementations. Each
inheritance relation represents a tight coupling between entities
with uncontrolled propagation of changes. Such a coupling leads
to a combinatorial effect or even a combinatorial explosion in
the case of complex hierarchies with multiple inheritances. This
extended paper uses our analysis of multiple inheritance and
method resolution order in the Python programming language
to design and demonstrate code generation techniques with
the use of inheritance patterns. The analysis is based on the
design of inheritance implementation patterns from our previous
work. Our design shows how can be conceptual-level inheritance
implemented efficiently in software systems. The proposed design
is demonstrated with Python (sometimes called “executable
pseudocode”). However, it can be implemented with other object-
oriented programming languages, even those that do not support
multiple inheritance. The resulting design and prototype of
expanders for inheritance patterns are ready for application in
practice and further use within different technology stacks.

Index Terms—Multiple Inheritance; Python 3; Evolvability;
Method Resolution Order; Composition Over Inheritance.

I. INTRODUCTION

This paper extends the previous conference paper [1] where
inheritance in Python has been analysed, and conceptual-
level inheritance patterns implementation in Python has been
introduced. It provides more detailed information about the
design and implementation by both adding new sections and
extending the existing ones. Moreover, it includes code gener-
ation design and prototype previously outlined as future work.

Inheritance in the software engineering discipline is a com-
monly used technique for both system analysis and software
development. During analysis, where we want to capture a
specific domain, inheritance serves for refining more generic
entities into more specific ones, e.g., an employee as a special-
isation of a person. It is natural to have multiple inheritance,
e.g., a wooden chair is a seatable physical object, furniture,
and flammable object. On the other hand, in Object-Oriented
Programming (OOP) software implementations, inheritance is
typically used or even misused to re-use methods and attributes
purely. In OOP, it causes so-called ripple effects violating
evolvability of software [2]–[4].

The Python programming language is the most popu-
lar general-purpose and multi-paradigm programming lan-
guage [5]. It is dynamically typed but allows multiple in-
heritance and also type hints [6]. Sometimes, Python is
also called “executable pseudocode” thanks to its easy-to-
read indentation-based syntax and versatility [7]. It is widely
used for prototyping due to its flexibility and then rewritten
into enterprise-ready implementation (e.g., using Java). For
the implementation of conceptual-level inheritance in OOP,
there are several patterns suggested in our previous work [3].
Although the patterns are compared and evaluated, implemen-
tation examples and empirical proofs are not yet provided.

Whenever there is a repeated pattern in software imple-
mentation, it strives for either re-use via generalisation, code
generation or a combination of both. The code generation tech-
niques instantiate patterns using code templates. The produces
code can be then used in a more extensive code base and
further customised. Normalised Systems use a code generation
technique called expansions (the templates are called “Ex-
panders”). One of the core advantages is the produces code’s
evolvability as it supports extensions using features and custom
code insertions. Moreover, the design and provided tooling
is verified by large-scale and real-world use cases. We strive
to implement Expanders for the proposed inheritance patterns
in Python. It should prove that the patterns can be used to
implement conceptual-level inheritance without combinatorial
effects with utilizing code generation.

In this extended paper, we design the conceptual-level
inheritance patterns in Python using its specific constructs
to allow easy use of the patterns instead of traditional OOP
inheritance that causes ripple effects. The prototype implemen-
tation is designed to compare and demonstrate the additional
complexity versus complexity caused by combinatorial effects.
Then, with the patterns prepared, we design and prototype
the expanders. First, Section II outlines the Design Science
Research methodology that is followed within this research.
Section III acquaints the reader with terminology and the
overall context. In Section IV, we analyse how traditional
inheritance works in Python and then describe the design
and implementation of each pattern. Subsequently, Section V
describes the patterns expansion design, and Section VI briefly
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describes the implemented prototype and results. Finally, Sec-
tion VII summarises and evaluates the expanders in contrast
to traditional inheritance, describes the new experience with
developing expanders for Python, and suggests future research.

II. METHODOLOGY

This research follows the Design Science Research (DSR)
methodology [8]. It designs the artefacts based on a three-
cycle view [9]. The knowledge base represents the NS theory
and expanders, previous work on inheritance, and conceptual-
level and software-level inheritance. On the other side, the
environment is the Normalized Systems development, where
we want to deliver the artefacts to allow modelling with
inheritance. However, without causing combinatorial effects
in the implementation – those are the requirements according
to DSR.

The artefacts need to be evaluated and improved in design
cycle iterations. The evaluation considers the measure of elim-
inations of combinatorial effects as well as usability (clarity,
versatility, and extensibility). In this paper, we present the
final artefacts of this procedure; however, we also mention
key improvements done during the iterations.

We set the following research goals that the designed
artefact will address:
G1 – Design and implementation of the conceptual-level

inheritance patterns [3].
G2 – Design a code generation for the proposed implemen-

tation.
G3 – Prove that the designed code generation is feasible and

versatile (i.e., can produce usable source code with the
possibility to extend it).

Whereas G1 and G2 can be considered as traditional design
artefacts, G3 is related to evaluation and actually demonstrat-
ing the value of artefacts supporting G1 and G2. Although
we use Python in our research, the design must be done
language-independent. If someone designs implementation of
the patterns in other languages following our steps, the same
outcomes should be achieved.

The structure of this paper follows the workflow for achiev-
ing the set goals in the natural order. First, we design the
known patterns for implementation for G1. That gives us
reference implementations that we strive to code-generate for
G2, i.e., remove the burden of manual coding of complex
structures for implementation where conceptual-level inheri-
tance is natural and straightforward. Finally, with a designed
code generation technique, we can prove and demonstrate the
feasibility and versatility for achieving G3.

III. RELATED WORK AND TERMINOLOGY

This section briefly introduces the related research and ter-
minology required for our approach and provides an overview
of the knowledge base in terms of DSR. It focuses on Nor-
malized Systems and Expanders, inheritance on conceptual-
level, and Python programming language that we selected for
prototyping due to its versatility and other capabilities..

A. Normalized Systems Theory

Normalized Systems Theory [2] (NST) explains how to de-
sign systems that are evolvable using the fine-grained modular
structure and elimination of combinatorial effects, i.e., size of
change impact is proportional to the size of the system. The
book [2] also describes how to build such software systems
based on four elementary principles: Separation of Concerns,
Data Version Transparency, Action Version Transparency, and
Separation of States. Violation of any of these principles
leads to combinatorial effects. A code generation techniques
producing skeletons from the NS model and custom code
fragments are applied to make the development of evolvable
information systems possible and efficient.

The theory [2] states that the traditional OOP inheri-
tance inherently causes combinatorial effects. Without multiple
inheritance, it even leads to the so-called “combinatorial
explosion”, as you need a new class for each and every
combination of all related classes to make an instance that
inherits different things from multiple classes, e.g., a class
JuniorBelgianEmployeeInsuredPerson. But even
with multiple inheritance, the generalisation/specialisation re-
lation is special and carries potential obstacles to evolvability.
First, the coupling between subclasses and superclasses with
the propagation of non-private attributes and methods is ev-
ident. Also, persisting the objects in traditional databases is
challenging [2] [3] [10].

B. Normalized Systems Expanders

The code templates, together with mapping from NS mod-
els, are called Expanders. It allows the generation of any
textual files from NS models. For software development,
expanders to produce enterprise information systems in Java
are used. However, one can also develop expanders to produce
technical documentation of the system or graphical repre-
sentation using SVG. The expanded code base is expected
to be enhanced by adding custom code fragments called
“craftings” to implement functionality that cannot capture
using elements [11].

To avoid overwriting a system’s craftings upon re-generation
(or so-called rejuvenation), they should be harvested. The
harvesting procedure basically goes through the code base
and stores both insertions and extensions in the designed
location. Then, when a system is rejuvenated, it takes the
selected expanders, NS model of Elements, technical details
and harvested craftings to generate the codebase. There might
be several reasons for re-generation: a change in the model,
updated expanders, or a different underlying framework (cross-
cutting concern) [2], [11], [12].

Finally, the expanders can also be variable using features.
It aims to include pieces of code to multiple expanders. Then,
a feature can be enabled by an option from the NS model
(e.g., by specifying a particular data option for a data element)
or another condition. It typically adds some logic to multiple
artefacts at once to extract cross-cutting concerns from the
expanders (decoupling). As expanders are very variable and
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can become complex, there is also a prepared way to test
them easily [11].

C. Conceptual-Level Inheritance
Inheritance in terms of generalisation and specialisation re-

lation is ontologically aligned with real-world modelling. It is
tightly related to ontological refinements, where some concept
is further specified in higher detail. It forms a taxonomy – a
classification of things or concepts. For example, an employee
is a special type of a person, or every bird is an animal. In
conceptual modelling, inheritance is widely used to capture
taxonomies and refine concepts under certain conditions. Al-
though it is named differently in various languages, e.g., is-a
hierarchy, generalisation, inheritance, all usually work with the
ontological refinements. As shown in [13] different views on
inheritance can be made with respect to implementation, where
it can be (mis)used for reuse of classes without a relevant
conceptual sense [3] [14].

D. Object-Oriented Programming and Inheritance
When talking about inheritance in OOP, it is crucial to

distinguish between class-based and prototype-based style. In
prototype-based languages, objects inherit directly from other
objects through a prototype property. Basically, it is based on
cloning and refining objects using specially prepared objects
called prototypes [15]. On the other hand, a more traditional
and widespread class-based programming creates a new object
through a class’s constructor function that reserves memory
for the object and eventually initialises its attributes. In both
cases, inheritance is used for polymorphism by substituting
superclass instance by subclass instance with eventually dif-
ferent behaviour [13] [16].

Both single and multiple inheritance can be used for reuse of
source code. In [13], a clear explanation between essential and
accidental (i.e., purely for reuse) use of inheritance is made.
Moreover, [17] shows how multiple inheritance leverages reuse
of code in OOP, including its consequences. According to [18],
Python programs use widely (multiple) inheritance and it is
comparable to use of inheritance in Java programs of the
similar sample set.

E. The Python Programming Language
Python is a high-level and general-purpose programming

language that supports (among others) the object-oriented
paradigm with multiple inheritance. It allows redefinition of
almost all language constructs including operators, implicit
conversions, class declarations, or descriptors for accessing
and changing attributes of objects and classes. Both methods
and constants for such redefinitions start and end with a double
underscore and are commonly called “magic”, e.g., magic
method __add__ for addition operator. The syntax is clean
as it uses indentation for code blocks and limits the use of
brackets. Python can be used for all kinds of application from
simple utilities and microservices to complex web application
and data analysis [6] [18].

Often, Python is used for prototyping, and then the
production-ready system is built in different technologies such

as Java EE or .NET for enterprise applications and C/C++
or Rust for space/time optimisation. Another essential aspect
that makes Python a suitable language for prototyping is its
dynamic type system that allows duck typing [19], however
static typing is supported using annotations since version 3.5.
A Python application can be then checked using type checkers
or linters similarly to compilers, while preserving a flexibility
of dynamic typing [6] [20].

“The diamond problem” related to multiple inheritance
is solved using “Method Resolution Order” (MRO) that is
based on the C3 superclass linearisation algorithm. Normally,
a class in Python has method mro that lists the linearised
superclasses. It can also be redefined using metaclasses, i.e.,
classes that have classes as its instances. By default, a class
is a subclass of class object and an instance of metaclass
type. Class object has no superclass and it is an instance
of type. Class type is a subclass of object and is an
instance of itself [6] [16].

IV. PYTHON INHERITANCE ANALYSIS

In this section, we analyse how conceptual-level inheri-
tance implementation patterns proposed in [3] can be used in
Python. We discuss the implementation options with respect
to evolvability and ease of use, i.e., the impact of the pattern
on the potential code base. The proposed implementation of
the patterns fulfils our goal G1.

For demonstration, we use a conceptual model depicted in
Figure 1 using OntoUML [14]. We use monospaced names of
class and object names in the following text, e.g., Person.
We strive to design the implementation of such a model where
object marek is an instance of multiple classes with minimal
development effort but also minimal combinatorial effects. Our
model also contains the potential diamond problem, i.e., class
AlivePerson inherits from Locatable via Insurable
but also via LivingBeing and Person. Overriding is also
included using derived attributes, as we avoid methods for the
sake of clarity; however, it would work equivalently.

Note that Figure 1 is a conceptual model and not an
implementation model. For example, one may object that
Man and Woman can be just an attribute and enumeration.
That would be true only for traditional programming. In the
conceptual model, that approach is not correct as Man and
Woman are types of Person, not property. In programming,
when considering evolvability, the reason is that enumeration
does not allow evolution in a sense where items have own
properties and change over time. Therefore, in Normalized
Systems, there is no such concept of enumeration.

A. Traditional OOP Inheritance

The first of the patterns uses a default implementation of
inheritance in the underlying programming language. In case
of Python, multiple inheritance with MRO allows creating sub-
classes for combinations given by the conceptual model. We
immediately run into the combinatorial effect. First, we need
to implement classes according to the model with inheritance
and call the initializer of superclass(es) in the initializer (i.e.,
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«mixin»
Locatable

- location

{disjoint,
complete}

{disjoint,
complete}

«subkind»
Woman

- /greeting

«subkind»
Man

- /greeting

marek: Person

«relator»
Employment

- position

«role»
Employee

«mixin»
Insurable

- condition

«phase»
DeceasedPerson

- deathdate
- /isAlive

«phase»
AlivePerson

- /isAlive

«kind»
Person

- name
- /isAlive
- /greeting

«category»
Living Being

- birthdate
- /age

employed via 
«mediation»1 1..*

Fig. 1. Diagram of OntoUML example model with instance

__init__ method). In case of single inheritance, it can be
easily resolved using the built-in super function, but in case
of multiple inheritance, all superclasses must be named again
as call of the function super returns only the first matching
according to MRO as shown in Figure 2. Also notice that all
arguments of the initializer must be propagated and repeated.
A possible optimization would be to use variadic *args and
**kwargs, but in exchange for readability and checks with
respect to number (and type) of arguments passed. Another
interesting fact in our example is that EmployeeMan does
not need to define the initializer, as it inherits the one from
Employee and Man inherits it from Person. If Man has its
own attributes, then EmployeeMan would have the initializer
similarly to AlivePerson.

After having the model classes implemented, extra classes
must be generated as an object can be instance of only
one class. For example, marek is instance of such class
EmployeeMan. For our simple case, number of extra classes
is six – Man and Woman combined with AlivePerson,
DeceasedPerson, and Employee. Adding a single new
subclass of Person, e.g., DisabledPerson, would re-
sult in doubling the number and therefore a combinatorial
explosion. The second point where a combinatorial effect
resides is the order of superclasses (bases or base classes in
Python), which influences MRO. For instance, if Person and
Insurable define the same method – in our case the one
from Person – it would be resolved for execution according
to order in list EmployeeMan.mro(). On the attribute level,
each change propagates to all subclasses, i.e., it is again a

class LivingBeing(Locatable):

def __init__(self, birthdate, location):
super().__init__(location)
self.birthdate = birthdate

@property
def age(self):

# computation of age
return result

class Man(Person):

@property
def greeting(self):

return f'Mr. {self.name}'

class AlivePerson(Person, Insurable):

def __init__(self, name, birthdate, location,
condition):↪→

Person.__init__(self, name, birthdate,
location)↪→

Insurable.__init__(self, condition)

@property
def is_alive(self):

return True

class EmployeeMan(Employee, Man):
pass # Employee __init__ inherited

marek = EmployeeMan("Marek", ...)

Fig. 2. Part of the traditional inheritance implementation

combinatorial effect. This can be avoided using the men-
tioned **kwargs and their enforcing, as shown in Figure 3.
Knowledge of superclasses for initialization can be then used
to automatically call the initializer of all the superclasses.
We implement this in helper function init_bases, where
superclasses are iteratered a initialized in the reverse order to
follow the MRO, i.e., the initializer of first listed superclass is
used as the last one to eventually override effects of others.

With implementation shown in Figure 3, all classes with
initializers can be easily generated automatically from the
model with a single exception. The order of classes – i.e.,
if AlivePerson should be a subclass of Person and then
Insurable or vice versa – is not captured in the model,
but it is crucial for MRO. The order of superclasses has to be
encoded in the model, or alternatively all permutations must be
generated, which would result in a significantly higher number
of classes that are not necessarily needed. Navigation is done
naturally thanks to MRO and Python itself, for example,
marek.greeting or marek.location.

B. The Union Pattern

The Union pattern basically merges an inheritance hierarchy
into a single class. In our case, the “core” class of hierarchy
can be naturally selected as Person. All subclasses are
uniquely merged into Person and Person merges also all
superclasses as shown in Figure 4. For example, if there is
another subclass of Insurable, it would not be merged into
Person. On the other hand, for example, a new subclass of
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def init_bases(obj, cls, **kwargs):
for base in reversed(cls.__bases__):

if base is not object:
base.__init__(obj, **kwargs)

class Person(LivingBeing):

def __init__(self, *, name, **kwargs):
init_bases(self, Person, **kwargs)
self.name = name

class AlivePerson(Person, Insurable):

def __init__(self, **kwargs):
init_bases(self, AlivePerson, **kwargs)

# ...

class EmployeeMan(Employee, Man):

def __init__(self, **kwargs):
init_bases(self, EmployeeMan, **kwargs)

marek = EmployeeMan(name="Marek", ...)

Fig. 3. Implementation of initializers and extra classes with use of keyword
arguments and helper function for model-driven development

Man would be merged. This pattern is inspired closely by
the “single-table inheritance” used in relational databases, but
it immediately runs into problems once behaviour should be
implemented.

According to the pattern, each decision on generalisation
set of subclasses must be captured in the class that unions the
hierarchy. In our case, we need three discriminators – for Man
and Woman, for AlivePerson and DeceasedPerson,
and for Employee. Value of each discriminator described
what subclass(es) are “virtually” instantiated. All of these
generalisation sets are disjoint and complete with the exception
of the one with Employee that is not complete (i.e., not all
alive persons must be employees). If there is a non-disjoint
generalisation set, it would be solved using enumeration of all
possibilities for the discriminator. For example, if Man/Woman
is not disjoint nor complete, there would be four possible
options (no, just man, just woman, both) instead of current
two (just man or woman).

To allow polymorphism without branching and checking the
discriminator value and taking a decision on behaviour with
combinatorial effect, we use directly classes for delegation as
values for discriminators, similarly to the well-known “State
pattern”. With this implementation, it incorporates separation
of concerns and improves re-usability. It is crucial that all
attributes, i.e., data, are encapsulated in the single object that
is passed during the calls. Figure 4 shows Delegation
descriptor for secure delegation of behaviour to separate
classes that even do not need to be instantiated; therefore,
static methods are used, and an instance of the union class is
passed.

It is essential to point out that this solution may reduce
the number of classes, but only of purely data classes without
behaviour. Union classes can be then easily generated from
a conceptual model. The detection of the “core” class is a

class Man:

@staticmethod
def greeting(person):

return f'Mr. {person.name}'

class Delegation:

def __init__(self, discriminator, attr):
self.discriminator = discriminator
self.attr = attr

def __get__(self, instance, owner):
d = getattr(instance, self.discriminator)
a = getattr(d, self.attr) if d else None
return a(instance) if callable(a) else a

class Person:

greeting = Delegation('_d_man_woman',
'greeting')↪→

is_alive = Delegation('_d_alive_deceased',
'is_alive')↪→

age = Delegation('_x_living_being', 'age')

def __init__(self, name, birthdate, location,
condition):↪→

self.location = location
self.condition = condition
self.birthdate = birthdate
self.name = name
# optional-subclass attributes
self.employment = None
self.deathdate = None
# discriminators
self._d_man_woman = None
self._d_alive_deceased = None
self._d_employee = None
# superclasses with behaviour
self._x_living_being = LivingBeing

def d_set_man(self):
self._d_man_woman = Man

def d_set_employee(self, employment):
self._d_employee = Employee
self.employment = employment

# ...

Fig. 4. Part of union pattern implementation

matter of the model – if OntoUML is used, naturally all
identity providers (e.g., with stereotype Kind) are suitable.
In modelling languages that have no such explicit indication,
a special flag has to be encoded in the model. Classes encapsu-
lating behaviour can also be easily generated from the model
and related to data class using the explained Delegation
descriptor. There is one problem with this pattern implemen-
tation – it does not support isinstance checks. When
avoiding inheritance, the only possible solution lies in special
metaclass that would override __instancecheck__. This
would also require to forbid instantiation of behaviour classes,
so it is unambiguous if the object is an instance of a data or
a behaviour class.
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C. Composition Pattern

The composition pattern follows the well-known precept
from OOP – “composition over inheritance”. Similarly to
union pattern, a “core” class per hierarchy in the model must
be identified. Classes are then connected using association is-
a instead of inheritance. The Union pattern basically merges
an inheritance hierarchy into a single class. For the original
subclass, it is required to have a link to its superclass(es), but
the other direction is optional unless the generalization set is
complete or the superclass is abstract.

The final implementation of this pattern is based on the
improved traditional OOP inheritance. Instead of inheritance,
i.e., specification of superclasses, all superclasses from the
conceptual model are instantiated during the object initializa-
tion. During this step, a bidirectional link must be made to
allow navigation from both superclass and subclass instances.
The “core” class must be again chosen to allow creation of
composed object using multiple subclasses, e.g., an instance
of Person that is also an Employee and a Man.

class Delegation:

def __init__(self, p_name, a_name):
self.p_name = p_name
self.a_name = a_name

def __get__(self, instance, owner):
p = getattr(instance, f'{self.p_name}')
a = getattr(p, self.a_name) if p else None
return a(instance) if callable(a) else a

def __set__(self, instance, value):
p = getattr(instance, f'{self.p_name}')
setattr(p, self.a_name, value)

class LivingBeing:

location = Delegation('_p_locatable',
'location')↪→

def __init__(self, *, birthdate, _c_person=None,
_p_locatable=None, **kwargs):↪→

self._p_locatable = _p_locatable or
Locatable(_c_living_being=self,
**kwargs)

↪→

↪→

self._c_person = _c_person
self.birthdate = birthdate

# ...

Fig. 5. Part of composition pattern implementation

The example in Figure 5 shows that we also incorporated
a Delegation descriptor. Although it results in repetition when
defining where to delegate, it clearly describes the origin of
a method or an attribute, and it can be generated easily. With
the fact that these parts can be generated, combinatorial effects
related to renaming or other changes of methods and attributes
used for delegation are mitigated. The diamond problem is
solved directly by passing child and parent class objects as
optional arguments during initialisations. It could also be
solved using metaclasses, but as this code can be generated,
it allows higher flexibility and eventual overriding.

As the built-in MRO is not used, the resolution must be
made manually on the model level similarly to the Union
pattern, i.e., to decide what overrides and what is overridden.
By replacing inheritance with bidirectional links, we managed
to significantly limit combinatorial effects, but in exchange
for the price in requiring additional logic and moving the
MRO into the model itself. Unfortunately, this implementation
needs also to incorporate model-consistency checks, as we do
not enforce multiplicity in child-parent links according to the
pattern design.

D. Generalisation Set Pattern

This pattern enhances the Composition pattern by adding
particular constructs that encapsulate logic regarding general-
isation sets. Inheritance relation is not transformed into is-a
association but into connection via a special entity that handles
related rules, such as complete or disjoint constraints and
cardinality. As we present in Figure 6 this helps to remove
shortcomings of the Composition pattern and its difficult links
and composed-object instantiation. Instead of multiple child
links, there is just one per Generalisation Set (GS), and parent
links are changed accordingly. An object of GS class maintains
the inheritance and ensures the bi-directionality of links.

class Delegation:

# ...

def __get__(self, instance, owner):
gs = getattr(instance, f'{self.gs_name}')
p = getattr(gs, f'{self.p_name}')
a = getattr(p, self.a_name) if p else None
return a(instance) if callable(a) else a

# ...

class GS_ManWoman:

_gs_name = '_gs_man_woman'

disjoint = True
complete = True

def __init__(self, person, man=None,
woman=None):↪→

self.person = person
self.man = man
self.woman = woman
self.update_links()

def update_links(self):
setattr(self.person, self._gs_name, self)
if self.man is not None:

setattr(self.man, self._gs_name, self)
if self.woman is not None:

setattr(self.woman, self._gs_name, self)

# ...

Fig. 6. Generalisation Set implementation example

Introduction of an intermediate object to encapsulate inher-
itance and related constraints adds complexity in two aspects.
First, the diamond problems must be still treated by sharing
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superclass objects in the hierarchy for eventual reuse. Second,
the delegation must operate with the intermediary object
when accessing the target child (or parent) object. However,
solutions to these issues can be also generated directly from
the model and in principle – despite their complexity – they
do not hinder evolvability.

Finally, this solution (if entirely generated from a model)
is the most suitable, since it limits combinatorial effects and
allows to efficiently check consistency with the model in terms
of inheritance and generalisation set constraints. Although in
some cases, the GS object is not adding any value (e.g., a single
child and a single parent case), implementing a combination of
a generalisation set and composition patterns would make the
software code harder to understand. Unity in implementation
of conceptual-level inheritance is crucial here.

V. INHERITANCE EXPANDERS DESIGN

In this section, we describe the common design of the in-
heritance patterns code generation using Normalized Systems
Expanders and related tooling. We do so for all of the patterns
and again using Python programming language.

A. Capturing Inheritance in Models

The input models for expanders describe all the entities
with their properties and relations. Although creating a custom
meta-model for using expanders is possible, that is not part of
our goals. Therefore, we use the NS meta-model of so-called
Elements. Our focus is on Data Elements, which can be seen
as counterparts to classes or entities from structural conceptual
modelling. For data elements, we are interested in their fields –
link fields representing relationships between data elements
and value fields that are attributes with a data type.

Due to the evolvability issues, there is no way how to
model inheritance directly with the current NS meta-model.
Nevertheless, it is required to capture this somehow in a model,
e.g., that a data element Person is a specialisation of a data
element Living Being. For the same reason, there is no way to
model an abstract class (or entity) as it makes no sense without
inheritance. Another complication comes with generalisation
sets that are groups of inheritance relations.

NS meta-model provides a way to encode additional infor-
mation using so-called options flexibly. Various options are
based on the construct to which they are attached, e.g., field
options are related to a certain field. We use these options to
encode inheritance-related information in NS models:

• Abstract Element – Indication that a data element is
abstract, i.e., must be further specialised. It is captured
using a single data option on a data element – if present,
it is an abstract data element.

• Inheritance – Indication that a link between two data
elements forms an inheritance relation. There might be a
field option stating that the target is a generalisation or
specialisation on a link field.

• Generalisation Set – Instead of creating groups of re-
lations and then stating if those are disjoint, complete,
or both, we capture these atomically. On a link field

with an inheritance indication, a field option might add
if the relation is disjoint with other such fields (a field
is uniquely identified by the name and the data element
name).

B. Code Templates and Mapping

With the inheritance-related information encoded in NS
models, the expanders can be designed. First, it is required to
prepare a mapping that queries the information from a model
and supplies it to corresponding code templates. Then, a code
template creates a file based on these supplied inputs. The
high-level design is shown in Figure 7.

Source code
with expanded inheritance patterns

Expansion output

Expansion input

Static File
(Helpers)

Code Template

Mapping

NS Expanders

Manual modelling

...

PersonLivingBeing

NS model with encoded inheritance

...

PersonLivingBeing

Conceptual model with inheritance

    opt

opt

Fig. 7. High-level design of inheritance patterns expansion

For all data elements in a component, the template needs
all data options, fields, and fields options. Other model parts
are out of our scope. Data elements are turned into classes,
with fields turned into instance attributes based on a specific
inheritance pattern used. The patterns designed in the previous
section are a basis for this step. All model-specific names are
variable and queried from an input model.

There might be some additional static constructs, e.g.,
Delegation class or init_bases function, that requires
no inputs from a model. Those common definitions are sep-
arated into static files, which are just copied. Code templates
may rely on such definitions – import them from a known
location and use them. That is depicted by the dashed arrow
in Figure 7.

As our purpose is to generate class hierarchies in Python
based on the design presented in the previous section, there
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will be one expander per pattern. An expander, in our case,
produces a single Python file with all classes, including hier-
archies for a given input model. It simplifies both generation
and manipulation with the result as we are comparing different
inheritance patterns. Moreover, it is natural for Python to have
all data classes of a single component inside one file in contrast
to Java with file-per-class.

C. Anchors in Expanders

Anchors are an essential part of expanders. We follow the
best practices in using anchors. It delimits generated fragments
based on a particular entity, e.g., when a class is formed from a
data element, it is delimited by anchor comments. Similarly, it
is done for a block of fields assignments or method parameters
that are generated from a model.

Another type of anchor is related to custom code. Wherever
it may be necessary to add custom code, there should be
such an anchor delimiter. Then, expanded code can be easily
enhanced with insertions that can be later harvested and
eventually re-injected upon rejuvenation. These anchors are
added on module, class, and method levels. To maintain code
readability after generation, there are multiple anchors for each
level, e.g., at the top of a module for imports, before class
declarations, and finally, at the end after all class declarations.

D. Features in Expanders

Similarly to anchors, expanders may also contain so-called
features. It can be used as optional parts of expanders or for
potential future extensions of expanders. We follow the same
principles and add anchors so that future extensions may add
code fragments to any part of the output source code. That will
simplify the future prototyping of enhancements and adding
optionally generated code. However, we did not identify any
practical use of features for this work as we aim to generate
specific inheritance patterns described in the previous section.

VI. EXPANDING INHERITANCE PATTERNS

The design described above outlines the common design for
code generation of all inheritance patterns as part of G2. In this
section, we provide additional details in the design specific to
a certain pattern. It also addresses G3 as we implement and
demonstrate the expanders. The implementation also serves
evaluation purposes according to the DSR methodology.

An expander takes a model of NS elements together with
technical details (configuration) as inputs. A mapping (part
of expander) defines what is extracted from the model and
eventually transformed (e.g., new derived variables). Finally, a
code template (part of expander) is filled based on the mapping
with data originating in the input model and files are produced
and stored according to the expander and project configuration.
The input model can be seen in an XML representation, but
that is just a projection for serialization; from our perspective,
the syntax does not matter; we care about semantics.

A. Traditional Inheritance Expanders

The first presented pattern uses the traditional inheritance.
In the first stage, the inheritance is done using the multiple
inheritance with MRO that is standard in Python. That will
serve as the reference for other patterns which should “work
the same” but without using the inheritance directly for
evolvability reasons. Moreover, at this stage, the expander is
the most straightforward to design:

1) All data elements become classes.
2) For each data element, all superclasses must be resolved

by checking link fields for the specialisation option.
3) For each data element, all value fields and non-

inheritance link fields are instance attributes (using ini-
tialisation __init__).

4) For each data element, all calculated fields become a
method with property decorator and anchors for imple-
menting the calculation.

The second stage is to generate classes representing all
possible combinations of classes (e.g., EmployeeMan from
Figure 2). It clearly shows the potential of a combinatorial
explosion. As an optimisation, we exclude the unnecessary
combinations with disjoint classes for generalisation sets:

1) For each class in a single hierarchy, list all combinations
for its specialisations.

2) Remove combinators where any two classes are disjoint.
3) Create classes from the list, with the corresponding

superclasses.
4) List all properties for the class and remove duplicates.
5) Create initialisation that calls correct initialisation of the

parents.
When using the proposed ‘init_bases‘ function, the

two list steps are significantly reduced. Only own fields are
initialised directly and other are passed to this function. It
makes both expanders and resulting code simpler and shorter.

B. Union Pattern Expanders

Expansion with the union pattern has the opposite procedure
when compared to the previous one. It requires resolving the
“folding” of class hierarchy into a single one. It must solve
several edge cases such as hierarchies with multiple ultimate
parents or the creation of discriminator attributes. Then all
fields are merged into a single union class based on the
previous expander design.

1) Find a root in a hierarchy; if there is not a single root,
add an artificial one.

2) Create data element for each hierarchy.
3) Create a discriminator instance attribute for every dis-

joint generalisation set in the hierarchy.
4) Add all value, link, and calculated fields as for traditional

inheritance into the single class.
The logic about solving the potential issue with the hierar-

chy and folding it to a single class must be robust, and it is
resulting in quite complex code in expanders and mapping.
Moreover, the resulting classes are also very complex and
hard to use, as we discuss the results further in the next



41

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

section. We did not use the Delegation feature here as
it adds complexity for methods, but at this point, there are no
generated methods – only attributes.

C. Composition Pattern Expanders

The composition pattern that follows the “composition over
inheritance” rule with the use of delegation can be expanded
more easily than the union pattern. It creates a class per data
element as for traditional inheritance, but instead of using
inheritance, it uses the Delegation descriptor. For parents
and children, there are additional special attributes just as
shown in Figure 5. The steps are as follows:

1) All data elements become classes.
2) For each data element, all superclasses are represented

as _p_-prefixed attributes.
3) For each data element, all subclasses are represented as

_c_-prefixed attributes.
4) For each data element, all value fields and non-

inheritance link fields are instance attributes (using ini-
tialisation __init__).

5) For each data element, all calculated fields become a
method with property decorator and anchors for imple-
menting the calculation.

6) For each data element, all inherited fields are added
using Delegation description on the class level.

Steps 1, 4, and 5 are the same as for the traditional
inheritance expanders. It shows that only the inheritance part
is replaced by delegation and necessary preparations (of the
linking attributes). Also, note that this pattern does not take
into account disjoint nor complete constraints of generalisation
sets.

D. Generalisation Set Pattern Expanders

As explained, the generalisation set pattern can be seen as
an extension to the composition pattern. However, in terms
of expansion, there is a significant overhead needed to find
the generalisation sets in the input model. It must group
the inheritance relations where disjoint, and union constraints
through options are used. Based on these groups, additional
GS classes can be generated as shown in Figure 6.

It creates classes from data elements as for composition
pattern but uses GS class for _p_-prefixed and _c_-prefixed
where it exists. The added complexity in both expanders and
resulting code turned to be very significant. One of the main
issues was the different handling of single-class generalisation
sets and multiple-class generation sets. Therefore, we create
GS classes also for single-class sets to keep consistency across
source code.

E. Expanders Implementation

With the design described in the previous section and steps
for each pattern expander, the implementation did not require
any additional knowledge. The steps are represented in “code”
of mappings that queries and transforms the information from
an input model to desired form, e.g., a list of data elements
in a component or a list of superclasses for a data element.

Although the expressiveness of XML mappings in expanders
is limited, it was entirely sufficient for our implementation.
Figure 8 shows a basic mapping common for all of our
expanders.

<mapping>
<value name="componentName"

eval="component.name"/>↪→

<list name="dataElements"
eval="component.dataElements"
param="dataElement">

↪→

↪→

<value name="name" eval="dataElement.name"/>

<list name="valueFields"
eval="dataElement.fields" param="field"
filter="field.valueField neq null">

↪→

↪→

<value name="name" eval="field.name"/>
<value name="type" eval="field.valueField.

valueFieldType.name"/>↪→

</list>

<list name="linkFields"
eval="dataElement.fields" param="field"
filter="field.linkField neq null">

↪→

↪→

<value name="name" eval="field.name"/>
<value name="targetElement"

eval="field.linkField.
targetElement.name"/>

↪→

↪→

<value name="lnType" eval="field.linkField.
linkFieldType.name"/>↪→

</list>
</list>

<!-- ... -->
</mapping>

Fig. 8. Fragment of a basic mapping

Whereas the mapping file queries and transforms the infor-
mation to be supplied into a code template, the code template
itself may contain a more complex transformation. It uses the
String Templates well-known from Java that are capable of
using conditions, loops, functions, and many other constructs.
For example, filtering the non-inheritance link fields has been
done in templates when generating the corresponding code
(instance attributes). In summary, the implementation based
on the design described above turned to be straightforward
without any unexpected issues. A fundamental code template
fragment from traditional inheritance expanders is shown in
Figure 9.

F. Expanders Comparison

Both the design of the expanders and their implementation
provided valuable knowledge about the patterns and verifi-
cation of the theoretical comparison made in the previous
work. In terms of complexity (computed based on logic and
mathematical operations needed in mappings and templates),
the composition pattern shows the best results even when
compared to the traditional inheritance. The leading cause
has been identified in omitting the disjoint and complete
constraints.

The resulting code varies a lot based on the input model
and hierarchies. Generally, traditional inheritance suffers from



42

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

delimiters "$", "$"

base() ::= <<
# Generated traditional inheritance patterns for
# component "$componentName$"
import Delegration from .helpers
@anchor:imports
# anchor:custom-imports:start
# anchor:custom-imports:end

# anchor:dataElements:start
$dataElements:dataElementEntry()$
# anchor:dataElements:end

# anchor:custom-moduleEnd:start
# anchor:custom-moduleEnd:end
>>

dataElementEntry(de) ::= <<

class $de.name$(
# anchor:de-$de.name$-bases:start
$deSuperclasses(de)$
# anchor:de-$de.name$-bases:end

):

$deInitializer(dataElement)$

@anchor:methods
# anchor:custom-$de.name$-methods:start
# anchor:custom-$de.name$-methods:end

...

>>

Fig. 9. Fragment of a code template

a combinatorial explosion. Union pattern encapsulates the
explosion inside a single class which is unmaintainable when
it “folds” a more complex hierarchy with several generali-
sation sets. It may be helpful for smaller and mostly linear
hierarchies. The code with generalisation sets pattern is the
most complex in terms of additional classes and navigation
between subclasses and superclasses.

VII. EVALUATION AND DISCUSSION

In this section, we summarize and evaluate achievements of
our research. Based on our observations and implementation of
inheritance using patterns, we evaluate inheritance in Python.
The patterns and its key aspects are compared in Table I. Then,
we also describe the future steps that we plan to do as follow-
up research and projects based on outputs described in this
paper.

A. Initial Prototype Implementation

We demonstrated our implementation of all four previously
designed patterns as set in the goal G1. Mostly, results and
related usability options are consistent with the design. The
more we minimize or constrain combinatorial effect, the more
complex and hard-to-use (in terms of working with final
objects) the implementation gets. We were able to simplify
use of objects for the price of repetition and use of special
constructs for delegation. Contrary to the original patterns

design, we were not able to efficiently combine multiple
patterns together based on various types of inheritance used
in the model. As a result, our implementation of the most
complex generalisation set pattern is suggested as a prototype
of how inheritance may be implemented if one wants to avoid
combinatorial effects while still needing to capture inheritance
in a generic way for models of any size and complexity.

B. Expanders Prototype

To also fulfil the goals G2 and G3, we designed code genera-
tion for all of the inheritance patterns (in Python programming
language) and proved its feasibility by implementing them
with the use of Normalized Systems Expanders. It revealed
several implementation issues and helped to refine the design
based on the DSR design cycle. It verified the hypothesis
that union and generalisation set patterns create over-complex
source code that is hard to maintain and extend. The most
suitable composition pattern keeps flexibility, and additional
constraints can be supplied using custom insertions and extra
logic where needed.

The expanders clearly mitigate the burden of additional
complexity brought by inheritance implementation patterns as
that is something generated and managed only in the code
templates. A change in the inheritance can be easily projected
into code by re-generating. The burden that remains is related
to custom code, where a programmer must use the navigation
between superclasses and subclasses that may not be natural,
but the patterns were designed to make this as effortless as
possible.

C. Evolvability of Python Inheritance

During the implementation of the patterns, it became ob-
vious that even high flexibility of programming language
and allowed multiple inheritance do not help in terms of
coupling and combinatorial effects caused by using class-based
inheritance. With a simple real-world conceptual model, we
were able to show how the combinatorial explosion endangers
the evolvability of software implementation. MRO algorithm
used in Python does not help with limiting combinatorial
effects. Rather it is the opposite since order in which super-
classes are enumerated significantly influences implementation
behaviour. Also, it makes harder to combine overriding from
two superclasses, for example, both class A and B implement
methods foo and bar but subclass C cannot inherit one from
A and other from B (solution is to override both and call it
from subclass manually).

On the other hand, the flexibility of Python proved to
be useful while we were implementing the patterns. Thanks
to magic methods, descriptors, and metaclasses, the final
implementations allow creating easy-to-use and inheritance-
free objects even though underlying complex relations with
constraints are needed as shown in the examples. Notwith-
standing, such possibilities of Python are similar to constructs
and methods in other languages (e.g., reflection). While trying
to implement the patterns efficiently, we concluded that gener-
ating implementation from a model is crucial for evolvability
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TABLE I. COMPARISON OF THE INHERITANCE IMPLEMENTATION PROTOTYPES

Implementation Classes* Extra constructs CE-handling Issues

Traditional N + 2N 0 none initialization, order of superclasses, uncon-
trolled change propagation

Traditional + init_bases N + 2N init_bases function shared initialization shared attributes across hierarchy, order of
superclasses, uncontrolled change propaga-
tion

Union pattern 2 Delegation class shared class (merged) Separation of Concerns violated, maintain-
ability, discriminators

Composition pattern N Delegation class shared initialization, delegation manual handling of GS constraints, added
complexity (for humans)

GS pattern N + 1 Delegation class, GS helpers shared initialization, delegation added complexity (for humans)

(*) per single hierarchy of N classes, worst case (all combinations needed)

regardless of what technologies are used, as a lot of repetition
is needed.

D. Future Work – Inheritance Modelling for NS

As explained and practically demonstrated, we had to en-
code the inheritance relations in an NS model using fields
options. A software analyst must create a link between data
elements and then mark it as an inheritance in terms of
modelling. In visualisations of such a model, it still looks like
a regular relation. A potential next step would be to propose
an extension to the NS Elements meta-model to directly model
inheritance relations. That would require enhancement in the
meta-model as well as incorporation in existing expanders.

E. Future Work – Production-Ready Technologies

The goal of the paper was to use Python to show reference
patterns implementation prototypes. The next step may be to
leverage the lessons learned to formulate a single transfor-
mation description using production-ready technology stack,
e.g., Java EE. This final transformation of conceptual-level
inheritance should allow simple extensibility and customiza-
tions. Moreover, it should cover all possibilities with respect
to the underlying modelling language. This language does
not have to be OntoUML used in this paper; however, it
must be expressive enough to capture all the necessary details
for a correct implementation – for instance, hierarchy “core”
classes.

F. Future Work – Inheritance in UI/UX

Another step or aspect of implementing conceptual-level
inheritance lies in creating a related user interface compatible
with data and behaviour encapsulation. After there is MDD-
based generation of code from a model for backend service,
it should also be considered how to generate UI for related
frontend. To elevate user experience, special relations made
for implementing inheritance should look different than others.
Moreover, the user should be able to easily create an object
with a selection of possible subclasses closer to the model
rather than to the implementation on the backend.

VIII. CONCLUSIONS

This extended paper proposes code generation design for
conceptual-level inheritance patterns that minimise the issues
caused by combinatorial effects. We analysed and demon-
strated the evolvability of inheritance in Python using already-
designed implementation patterns. Due to Python’s flexibility
and ability to redefine core constructs, we managed to imple-
ment the conceptual-level inheritance implementation patterns
while maintaining code readability and maintainability. Fur-
ther, we designed code generation of those constructs from
models using Normalized Systems Expanders and existing
tooling. It proved the feasibility of implementing the patterns
in larger codebases. Although we used Python for this work,
it can be used as a basis for implementation in other object-
oriented languages. Finally, future work has been outlined. The
following challenges are identified in the generation of user
interface fragments, e.g., forms or details, for entities with
inheritance.
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