
162

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Connectivity Improvement Method for Behavior Driven Acceptance Tests

Tugkan Tuglular
Department of Computer Engineering

Izmir Institute of Technology
Izmir, Turkey

mail: tugkantuglular@iyte.edu.tr

Nazım Umut Ekici
Department of Computer Engineering

Izmir Institute of Technology
Izmir, Turkey

mail: nazimekici@iyte.edu.tr

Abstract—Behavior Driven Acceptance Tests (BDATs) are not
necessarily written in a semantic flow. Sometimes they are
written in an ad-hoc manner, and some other times they are
grouped by features or requirements. Connecting BDATs for
faster test execution may prevent reset or set operations in test
environments. Moreover, if BDATs cannot be connected, that
may mean missing BDATs. Therefore, better-connected
BDATs result in better implementation and testing. This work
proposes a method for improving the connectivity of BDATs
utilizing natural language processing techniques and a graph
model-based test generation technique called Event Sequence
Graphs (ESGs). For the connection of BDATs, we utilize the
technique called elimination of tags by combination in ESGs
introduced in our previous work. The proposed method here
improves the connectivity of existing behavior-driven
acceptance test suites. It is validated through two non-trivial
examples. The results demonstrate the feasibility of the
proposed method.

Keywords-model-based testing; event sequence graphs;
behavior driven acceptance tests; Gherkin.

I. INTRODUCTION
The proposed method in this paper improves the

connectivity of behavior-driven acceptance test suites
developed using the method presented in [1]. Behavior
Driven Development (BDD) is focused on defining fine-
grained specifications of the behavior of the targeted system
[2]. In BDD, tests are clearly written using a specific
ubiquitous language, such as Gherkin [3]. For developing
Behavior Driven Acceptance Tests (BDATs), there are
environments like Cucumber [3], which forces testers to use
a test template using Gherkin language and environments
like Gauge [4], which does not impose any language. The
scope of this study is BDATs developed in Gherkin.

Although Gherkin and its scenario template helps test
designers in writing test scenarios, there is no guidance on
the connectivity of test scenarios. All public Github
repositories are searched for files with the extension
".feature". Github does not report the number of unique
repositories that match a given query. Instead, it reports that
there are over 2M unique files that match the query at the
time of reporting. Github also limits the query results to the
top 1000 files, most of which are hosted in the same
repositories (i.e., 1000 file results are not from 1000 unique
repositories). By executing the same query at different times,
we collected 1314 unique repositories with Gherkin

scenarios. The largest repository has 1041 feature files. Our
search results can be found at
https://github.com/esg4aspl/Gherkin-Scenario-Collection-
and-Analysis/blob/main/README.md. We analyzed 5% of
these 1314 repositories manually and did not find any work
(i.e., explanation, code) related to connectivity of Gherkin
scenarios. This work addresses this problem and provides a
method for improvement of connectivity of BDATs.

The method proposed here utilizes natural language
processing (NLP) techniques and a graph model-based test
generation technique. Therefore, we borrow the connectivity
definition from the theory of directed graphs. As a solution,
we utilize semantic similarity measure to tag BDATs, then
transform tagged BDATs into formal graph test models, and
finally connect them through elimination by composition
method introduced in [1]. So, if there are unconnected
BDATs, or Gherkin test scenarios, the proposed method
warns test designer to improve existing BDATs by adding
new BDATs.

The proposed method assumes that clauses written in
Gherkin can be represented by events. In that case, an event-
based formal model would fit better to BDATs. Therefore,
we propose the use of Event Sequence Graphs (ESGs) for
modeling BDATs. To model a BDAT as an ESG, ESGs are
extended with tags. This is one of the novelties presented in
this paper. Another novelty presented here is the process of
finding missing BDATs. To find missing BDATs, the
proposed method follows elimination of tags by
combination. After the missing BDATs are completed, an
ESG without any tags is obtained. The proposed method is
explained with a running example in Section III. For
evaluation, a BDAT test suite is selected from GithubTM and
the proposed method is applied to this test suite. The results
are shared in Section IV.

This paper makes the following main contributions:
(i) Method: The proposed method creates a corpus from

exiting Gherkin statements and tries to match end of a test
scenario with the beginning of another test scenario through
semantic similarity. A unique tag is automatically generated
for the matched statements. For the unmatched statements
unique tags are also generated with a table entry of close
statements. Then tagged BDATs are transformed to tagged
ESGs and combined by utilizing the elimination by
composition method introduced in [1]. Analysis of the
resulting ESG or ESGs reveals improvement in the
connectivity of BDATs.

163

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(ii) Tool: We developed a tool that implements the
method explained in (i) and shared in a public repository.

The manuscript is organized as follows: In the next
section, the fundamentals of the concepts used in this
research are given along with examples and figures. The
proposed method is explained in Section III using a running
example and Section VI presents the software tools
developed and used in this research. Section V gives an
evaluation of the proposed method along with a discussion in
Section VI. Section VII sets out the threats to validity.
Section VIII outlines related work, and the last section
concludes the paper.

II. FUNDAMENTALS

A. Gherkin
Gherkin uses a set of special keywords to give structure

and meaning to executable specifications [3]. It provides the
behavior definitions of the intended software not only to
product owners and business analysts, but also to developers
and testers [5]. Gherkin is a line-oriented language in terms
of structure and each line must be divided by the Gherkin
keyword except feature and scenario descriptions [3]. In this
paper, some of the Gherkin keywords; namely Feature,
Scenario, Given, When, And, Then, are utilized. Throughout
the paper, the terms Gherkin scenario, scenario, and BDAT
are used interchangeably.

Tests should be independent of each other so that they
can be run in any order or even in parallel. This principle is
also applied in developing BDATs. So, each BDAT should
be run manually or automatically independent of other
BDATs. However, they should also be composable so that it
will be possible to execute a BDAT after a related one.

B. Natural Language Processing
Cosine similarity is a method for measuring similarity

between two vectors [6]. By converting text documents to
vectors, cosine similarity is widely used to assess the
similarity between documents. Term Frequency/Inverse
Document Frequency (TF-IDF) is used to convert text
documents to vectors [6]. Given a corpus and a document
from the corpus, for each word in the document, TF-IDF
uses the frequency of the word in the document (its
significance for the document) and the corpus (its
informativeness for the corpus). By normalizing TF with DF,
TF-IDF outputs a relative significance of each word in the
document with respect to the corpus. TF-IDF and cosine
similarity are commonly used together to assess the
similarity of arbitrary documents in the context of the corpus
[7], [8].

Text pre-processing is an essential part of NLP, which
aims to improve any further processing [9], [10]. Two
common types of pre-processing are stop word removal and
stemming. Stop words are frequent words in the language,
which have little informativeness (e.g., the, a, an for the
English language) but can affect the output. Their removal
also helps reduce the size of the corpus. Stemming is applied
to words to strip them from any modifiers and transform
them to their root form. For instance, withdrawal,

withdrawing, and withdraws can all be stemmed from the
word withdraw. Stemming aids in identifying semantic
similarities out of the syntactic context.

C. Event Sequence Graphs
A model of the system, which requires the understanding

of its abstraction, helps in testing its behavior. A formal
specification approach that distinguishes between legal and
illegal situations is necessary for acceptance testing. These
requirements are satisfied by event sequence graphs [11].

Differing from the notion of finite-state automata, inputs
and states are merged in ESG, hence they are turned into
“events” to facilitate the understanding and checking the
external behavior of the system. Thus, vertices of the ESG
represent events as externally observable phenomena, e.g., a
user action or a system response. Directed edges connecting
two events define allowed sequences among these events
[11]. Definitions from 1 to 3 and related examples and
explanations along with Figure 1 are taken exactly as
presented in [12]-[15].

Definition 1. An event sequence graph ESG = (V, E, X, G) is
a directed graph where V ≠ ∅ is a finite set of vertices
(nodes), E Í V´V is a finite set of arcs (edges), X,G Í V are
finite sets of distinguished vertices with x Î X, and γ Î Γ,
called entry nodes and exit nodes, respectively, wherein "v
Î V there is at least one sequence of vertices áξ,v0, . . . ,vkñ
from each ξ Î Ξ to vk = v and one sequence of vertices áv0, . .
. ,vk,γñ from v0 = v to each γ Î Γ with (vi,vi+1) Î E, for i = 0, .
. . ,k-1 and v ≠ξ,γ.

To mark the entry and exit of an ESG, all ξ Î Ξ are

preceded by a pseudo vertex ‘[’ Ï V and all γ Î Γ are
followed by another pseudo vertex ‘]’ Ï V. The semantics of
an ESG are as follows. Any v Î V represents an event. For
two events v, v’ Î V, the event v’ must be enabled after the
execution of v iff (v, v’) Î E. The operations on identifiable
components of the GUI are controlled and/or perceived by
input/output devices, i.e., elements of windows, buttons,
lists, checkboxes, etc. Thus, an event can be a user input or a
system response; both are elements of V and lead
interactively to a succession of user inputs and expected
desirable system outputs.

Example 1. For the ESG given in Figure 1: V={a,b,c},
Ξ={a}, Γ={b}, and E = {(a,b), (a,c),(b,c),(c,b))}. Note that
arcs from pseudo vertex [and to pseudo vertex] are not
included in E.

Furthermore, α(initial) and ω(end) are functions to
determine the initial vertex and end vertex of an ES, e.g., for
ES= (v0, . . . ,vk) initial vertex and end vertex are α(ES)=v0,
ω(ES)=vk, respectively. For a vertex vÎV, N+(v) denotes the
set of all successors of v, and N-(v) denotes the set of all
predecessors of v. Note that N-(v) is empty for an entry xÎΞ
and N+(v) is empty for an exit gÎΓ.

164

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. An ESG with a as entry and b as exit and pseudo vertices ‘[‘ and
‘]’.

Definition 2. Let V, E be defined as in Definition 1. Then,
any sequence of vertices áv0, . . . ,vkñ is called an event
sequence (ES) iff (vi,vi+1) Î E, for i=0, . . . ,k-1.

The function l(length) of an ES determines the number of

its vertices. If l(ES)=1 then ES=(vi) is an ES of length 1.
Note that the pseudo vertices [and] are not considered in
generating any ESs. Neither are they included in ESs nor
considered to determine the initial vertex, end vertex, and
length of the ESs. An ES = ávi,vkñ of length 2 is called an
event pair (EP).

Definition 3. An ES is a complete ES (or, it is called a
complete event sequence, CES), if α(ES)=xÎΞ is an entry
and ω(ES)=gÎΓ is an exit.

A CES may not invoke interim system responses during

user-system interaction. If it does not, that means that it
consists of consecutive user inputs and only a final system
response. CESs represent walks from the entry of the ESG to
its exit, realized by the form (initial) user inputs → (interim)
system responses → ··· (interim) user inputs → (interim)
system responses → ··· → (final) system response.

ESGs are hierarchical models enabling sub-ESGs, or sub-
models, which are also ESGs. A hierarchical ESG can be
refined or flattened to one layer. Please see [12]-[15] for
further details. Therefore, we can say that ESGs support and
manage large models by following the divide-and-conquer
approach in computer science.

D. Connectivity in Directed Graphs
Two vertices u and v in a graph G are connected if u = v,

or u ≠ v and a u-v path exists in G [16]. A graph G is
connected if every two vertices of G are connected;
otherwise, G is disconnected [16]. The ESG obtained after
graph transformation of BDATs and their composition might
be a disconnected directed graph. By improving the
connectivity of this graph, we would like to make it a
connected ESG, so that test sequences can be automatically
generated and reset operations are minimized.

III. PROPOSED METHOD
The proposed method improves connectivity of a BDAT

test suite by NLP analysis, graph-based modeling, and model
composition. The proposed method not only improves
connectivity but also enables coverage-based test sequence
generation by ESGs.

With the assumption that Gherkin clauses can be
represented by events, the proposed method suggests the use

of ESGs for modeling BDATs. To model a BDAT as an
ESG, ESGs are extended with tags. This is explained first in
this section. Then, how BDATs are combined using tagged
ESGs is presented. After that, elimination of tags by
combination process that is used to find missing BDATs is
outlined. This section concludes with an example where all
BDATs, i.e., original, missing, and additional BDATs, are
composed into one ESG without any tags.

A. Extension of BDATs with tags
Best practice for Gherkin scenarios is to describe

behavior rather than functionality. A behavior driven
acceptance test is a specification of the behavior of the
system, which verifies the interactions of the objects rather
than their states [17]. A scenario that makes up a BDAT is
composed of several steps. A step is an abstraction that
represents one of the elements in a scenario which are:
contexts, events, and actions [2]. So, a Gherkin scenario
template is as follows:

Given context
When event
Then action

Contexts, events, and actions can be represented by

events. A context, or state, is formed after a sequence of
events. For instance, the line Given I am on the homepage in a
scenario indicates that the context is being on the homepage
and the user can reach the homepage by a sequence of
events. So, we can say that a context is the result of a
sequence of events. Sometimes, the sequence of events may
be empty. An action is an event or results in an event
depending on your standpoint. For instance, the line Then
product list is displayed in a scenario is the action of the
software, but for the user it is an event. We conclude that all
Gherkin clauses are either events or a result of an or a series
of events and therefore, we claim that all Gherkin clauses
can be expressed as events.

Algorithm 1 defines the steps for extracting semantic
relations between step definitions by utilizing NLP
techniques. Given a set of Gherkin scenarios, a corpus is
constructed by aggregating all step definitions from all
scenarios. Punctuation and stop words are removed from the
corpus to highlight more important words. Furthermore,
words are stemmed to reduce them to their root form. After
the conversions, pairwise cosine similarity is calculated for
all items in the corpus by using the TF-IDF transformation
[6]. For every Given and Then step definition, their
similarity scores with every other Given and Then step
definition are collected to a list. The list is sorted in the
descending order of similarity score. The resulting collection
lists best matching step definitions for each step definition.
Output of the algorithm can be interpreted as a list of match
suggestions for each step definition.

Algorithm 1 is applied to the running example. Number
of correct matches present in each list length is also
presented in Table I up to a list length of 5. Table I shows
that, out of 17 possible matches, 12 of them are correctly
identified as the best match by Algorithm 1. All possible

165

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

matches are identified within the first 5 suggestions by the
algorithm.

Algorithm 1. Match Gherkin Then Statement and Given Statement Pairs
Input: Scenarios
Corpus ← { }
For each scenario in Scenarios:
 Corpus = Corpus U scenario.stepDefinitions
Endfor
Corpus.removePunctuation()
Corpus.removeStopWords()
SimilarityScores = Corpus.calculatePairwiseSemanticSimilarity()
sortedMatchesForStepDefinitions = { }
For each stepDefinition in Corpus:
 Scores = SimilarityScores.getScoresForStepDefinition(stepDefinition)
 Scores.sortDescending()
 sortedMatchesForStepDefinitions[stepDefinition] = Scores
Endfor
Output: sortedMatchesForStepDefinitions

TABLE I. CORRECT TAG MATCH COUNTS IN A GIVEN LIST LENGTH
FOR THE RUNNING EXAMPLE

Tagged
step

definition
count

List
length

1

List
length

2

List
length

3

List
length

4

List
length

5

17 12 14 15 15 17

As an example of Algorithm 1’s results, consider the two

Given step definitions from the running example below. Step
definitions are best match for each other according to
Algorithm 1. Both Given step definitions describe the same
state in the program execution. Therefore, the match is
considered to be correct.

Scenario: srch01- Do a valid search with a single keyword
 Given I am on the homepage to do a single keyword search
Scenario: srch02- Do a valid search with multiple keyword
 Given I am on the homepage to do a search with multiple

keywords

Algorithm’s output is plotted in Figure 2, where the y-
axis shows the cumulative number of correctly matched step
definitions when the length of the possible matches list is
limited with a given number (i.e., only x of the most
semantically relevant step definitions is considered).

B. Representation of BDATs with tagged ESGs
This work utilizes event sequence graphs for modeling

BDATs. To model a BDAT as an ESG, ESGs are extended
with tags [1].

Definition 4. A tagged ESG is an ESG, where a node or
vertex may contain a tag instead of an event.

A tagged ESG is useful in transforming Gherkin

scenarios or BDATs to ESGs. Contexts and actions are
represented by tags and this way, tags become connection or
composition points for ESGs.

Figure 2. Number of correct matches for a given list length.

For instance, in the following Scenario cart02, Given
event is tagged with #productPage and Then event is tagged
with #shoppingBasket. Its ESG representation is shown in
Figure 3.

 Scenario: cart02 - Adding a product to cart
 Given I am on a product detail page #productPage
 When I select the amount
 And I click the add to cart button
 Then the product is added to my shopping cart
#shoppingCart

Figure 3. Tagged ESG for Scenario cart02.

Annotating Gherkin clauses with tags and representing
BDATs with tagged ESGs enable us to combine BDATs.

C. Combining two BDATs on tagged ESG
To combine two BDATs, the following method is

proposed. Ending Gherkin clause can be combined with
starting Gherkin clause if they have the same tag. This means
two Gherkin scenarios can be run in a sequence. We can
connect Scenario cart02 with Scenario check01 presented
below, where Given event is tagged with #shoppingBasket
and Then event is tagged with #orderConfirmed. ESG
representation of Scenario check01 is shown in Figure 4.

 Scenario: check01 - Successful checkout
 Given I have added an item to my shopping bag
#shoppingCart
 When I proceed to the check out
 And I enter valid delivery details
 And I select a payment method
 And I confirm the order
 Then I am redirected to the thank you page
#orderConfirmed

166

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Tagged ESG for Scenario check01.

As seen, tags are used as connection points. Following
the method presented in Section III-A, we can combine these
two BDATs on a tagged ESG, since both are represented as a
tagged ESG. The resulting tagged ESG is shown in Figure 5.

Figure 5. Tagged ESG for combined Scenarios cart02 and check01.

Algorithm 2 outlines the steps explained above.

Algorithm 2. Create Tagged ESG Segments
Input: Scenarios
Segments ← { }
For all scenario in scenarios
 entryNode ← ∅
 entryNode.label ← scenario.entryTag
 entryNode.isTag ← true
 prevNode ← entryNode
 For all stepDefinition is scenario.stepDefinitions
 stepNode ← ∅
 stepNode.label ← stepDefinition.text
 stepNode.isTag ← false
 prevNode.next ← stepNode
 prevNode ← stepNode
 exitNode ← ∅
 exitNode.label ← scenario.exitTag
 exitNode.isTag ← true
 prevNode.next ← exitNode
 Segments ← Segments U {entryNode}
Endfor
Output: Segments

D. Finding missing BDATs
To find missing BDATs, elimination by combination is

proposed [1]. As seen above, once two BDATs are combined
using a tag, that tag is eliminated. Therefore, first all possible
tagged scenarios or their graphical representations, i.e.,
tagged ESGs, are merged. Algorithm 3 outlines the process
of this operation.

Algorithm 3. Merge Tagged ESG Segments
Input: Segments
discoveredTags ← { }
For segment in segments

 For node in segment
 if(node.isTag)
 if(node.label in discoveredTags)
 // replace tag node with matched tag node

 // by adding node’s descendents to matched node
 discoveredTags[node.label].takeoverNeighbors(node)

 else
 discoveredTags ← discoveredTags U {node}
 Endif
 Endif
 Endfor
Endfor
// remove orphan tags after matching
For segment in segments
 if(segment.length = 1)
 Segments ← Segments / {segment}
 Endif
Endfor
Output: Segments

It should be noted that a merged tagged ESG may be

merged with another simple or merged tagged ESG. The
goal is to reach an ESG without any tags, as shown in Figure
6. After all possible combinations are completed, if a tag
remained on a tagged ESG indicates that there is a missing
BDAT. If there are more than one tag, that may mean more
missing BDATs. The process of tag removal is given in
Algorithm 4.

Algorithm 4. Remove Tags from ESG Segments
Input: segments
discoveredTags ← { }
For segment in segments

For node in segment
 if(node.isTag and node.hasAncestor and node.hasDescendant)
 For neighbor in node.neighbors
 node.label ← node.label U neighbor.label
 node.takeoverNeighbors(neighbor)
 Endfor
 Endif
Endfor

Endfor
Output: segments

For instance, in the following Scenario acc03, Given

event is tagged with #atHome and Then event is tagged with
#orderDetail.

 Scenario: acc03 - Check orders
 Given I am logged in on the site #atHome
 When I navigate to my orders
 Then I see a list of my orders
 And I can open an order to see the order details
#orderDetail

This BDAT is the only Gherkin scenario that has the tag
#orderDetail. Since there is no match, it indicates that a
BDAT that starts with #orderDetail tag is missing. We can
complete this missing BDAT as follows:

Scenario: acc10 - Back to order list page
 Given #orderDetail
 When I press OK button

 Then order list page is displayed #orderList

167

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As seen in the running example, elimination by
combination gives us clues about the connectivity of
BDATs. The method proposed here is to check whether all
tags are combined. Any tag that is not eliminated suggests a
missing BDAT.

E. Composition of BDATs on tagged ESG
After completing the missing BDATs and improving

existing BDATs, the BDATs are composed on an ESG. The
resulting ESG is shown in Figure 6. Elimination by
combination enables us to find five missing BDATs, which
are drawn in red on the resulting ESG in Figure 6.

IV. TOOL SUPPORT
Algorithms 1 to 4 are implemented using Python and are

provided at https://github.com/esg4aspl/Connectivity-
Improvement-for-Behavior-Driven-Acceptance-Tests along
with test data. For NLP operations, Natural Language
Processing Toolkit (NLTK) [18] is used. Algorithm 1 is
implemented in scenario_matcher.py, where the script takes
a list of directories containing Gherkin scenarios and for
each directory outputs the per step definition list of step
definitions sorted according to semantic similarity. In
addition to the output, match rate vs list length is plotted.
Algorithms 2 to 4 are implemented in scenario_to_esg.py,
where the script takes a directory containing tagged Gherkin

scenarios and applies Algorithms 2 to 4 in order, converting
scenarios to ESG segments and merging those segments by
connecting them at the matching tags.

Once an ESG is ready then CES for edge and for edge-
pair coverage can be generated for BDATs. The details of
CES generation can be found in [14]. We utilized the TSD
tool [19] to generate CES for both coverage criteria. The
results are given in Section V-A.

V. EVALUATION
For evaluation, the proposed method is applied to an

existing test suite for an e-commerce software [20], which is
also used as a running example in Section III, and the results
are explained in Section V-A. For further evaluation, we
asked five teams of graduate students to write BDATs for the
same bank ATM software [21] after learning Gherkin and
BDATs in a software testing graduate course. Their results
are given Section V-B.

A. Evaluation of an E-commerce Software Test Suite
For the existing test suite for an e-commerce software

[12], six features out of eight are taken for evaluation. The
features locale and newsletter are left. The existing test suite
has 15 scenarios, or BDATs, with 64 Gherkin clauses.
Clause per scenario ratio is 4.26.

Figure 6. Composed ESG.

168

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

After applying the proposed method, we end up with 24
BDATs and 85 Gherkin clauses. There are 9 new scenarios
but only 5 of them are missing scenarios. The other 4
scenarios are introduced to simplify and standardize some
original scenarios. So, clause per scenario ratio is decreased
to 3.54 from 4.26. The comparison of before and after the
proposed method is given in Table II. The resulting test suite
has the scenarios that are simplified, standardized, and
tagged. Moreover, they become composable.

A further analysis of the resulting ESG shows that event
sequences are stuck in the child pages of home page. There is
no return to home page from child pages, which means that
features of the software cannot be tested in sequence. In
addition, it is discovered that there is no scenario about
cancellation of the check-out process. Those BDATs are
added in green to the resulting ESG in Figure 6. It should be
noted that the graphical representation of BDATs enables us
to perform such an analysis. Without tool support, it is very
hard for test designers to conduct such analysis on text
represented BDATs.

TABLE II. COMPARISON OF BEFORE AND AFTER PROPOSED
APPROACH

Criteria Before After

Number of scenarios 15 24

Number of clauses 64 85

Clause per scenario ratio 4.26 3.54

There is another advantage of the proposed method.

Since BDATs are transformed to ESGs and then combined,
we have an ESG from which we can automatically generate
test sequences, i.e., sequences of BDATs. CES for edge
coverage computed by the TSD tool is shown below. There
is only one test sequence for the whole BDATs. This shows
that the proposed method improves the connectivity in such a
way that there is no need for reset operations in test
execution.

CES 111 events:

[, login page is displayed, enter username, enter password, click login
button, home page is displayed, go to order list page, order list page is
displayed, click on an order, order details are displayed, press OK button,
order list page is displayed, click home icon, home page is displayed, click
shopping cart button, shopping cart page is displayed, click check out
button, check out page is displayed, enter new address, enter new invalid
payment, confirm invalid order, "invalid payment" is displayed, press OK
button, check out page is displayed, enter new address, enter new invalid
payment, click cancel button, check out page is displayed, enter new
address, enter new valid payment, click cancel button, check out page is
displayed, select existing address, select existing payment, click cancel
button, check out page is displayed, enter new address, enter new valid
payment, confirm valid order, "order taken" is displayed, press OK button,
order list page is displayed, click home icon, home page is displayed, enter
multiple keyword, click search button, product list page is displayed, select a
filter, click filter button, filtered product list page is displayed, click on a
product, product details are displayed, select amount, add to cart, shopping
cart page is displayed, click home icon, home page is displayed, enter single
keyword, click search button, product list page is displayed, click on a
product, product details are displayed, click home icon, home page is
displayed, select a product list page, product list page is displayed, click
home icon, home page is displayed, click account button, account page is
displayed, update payment, "payment updated" is displayed, press OK

button, account page is displayed, update address, "address updated" is
displayed, press OK button, account page is displayed, click home icon,
home page is displayed, click shopping cart button, shopping cart page is
displayed, click check out button, check out page is displayed, select
existing address, select existing payment, confirm valid order, "order taken"
is displayed, press OK button, order list page is displayed, click home icon,
home page is displayed, select a product list page, product list page is
displayed, select a filter, click filter button, filtered product list page is
displayed, click home icon, home page is displayed, click shopping cart
button, shopping cart page is displayed, click check out button, check out
page is displayed, click home icon, home page is displayed, click logout
button, login page is displayed, enter username, enter password, click login
button, home page is displayed, click logout button,],

CES for edge-pair coverage computed by the TSD tool
has a complete event sequence of 224 events. The CES for
edge-pair coverage is not given here because of space
limitations.

B. Evaluation of an E-commerce Software Test Suite
Five teams of graduate students wrote BDATs for a bank

ATM software [21], which can be found at
https://github.com/esg4aspl/Connectivity-Improvement-for-
Behavior-Driven-Acceptance-Tests. We applied Algorithm 1
to all five BDAT suites to compare them. The first three list
length match percentages (rounded to two digits) are given in
Table III. Table III shows that, on the average, 84% of
possible tag matches are identified as the first suggestion by
Algorithm 1. Average match percentages increase to 87%
and 90% respectively, when second and third suggestions are
added to the consideration. For TS4, all step definition
matches are identified as the first result by the algorithm;
while for TS2, all matches are present in top three
suggestions.

All the results obtained after applying Algorithm 1 to five
BDAT suites are drawn and shown in Figure 7. List length is
normalized to account for varying step definition counts.
Figure 7 shows that, apart from TS1, all TS have a match
rate over 90% within the 5% of the list length (i.e., a correct
match is present for 90% of the step definitions within the
top 5% of suggested matches list). Match rate further
increases to 95% for a 10% list length. For TS1, 90% and
95% match rates are possible at 40% and 65% of the list
length respectively.

TABLE III. SCENARIO COUNT, TAG COUNT AND ALGORITHM 1
RESULTS FOR STUDENT GENERATED GHERKIN SCENARIOS

ID Scenario
count

Tagged step
definition

count

Match rate for list length

L=1 L=2 L=3

BDAT TS1 24 46 57% 61% 63%

BDAT TS2 18 25 88% 92% 100%

BDAT TS3 48 87 87% 92% 94%

BDAT TS4 17 31 100
%

100
% 100%

BDAT TS5 55 109 89% 91% 93%

AVERAGE 32.4 59.6 84% 87% 90%

169

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Number of correct matches for five BDAT suites under
consideration.

Due to space constraints, we chose ESG of BDAT suite 2
for presentation. Elimination by combination enables us to
find one missing BDAT, which is drawn in red on the
resulting ESG in Figure 8. Further analysis showed that three
scenarios are stuck and cannot lead to exit. For those,
scenarios represented in green on the ESG in Figure 8 are
added to improve connectivity. Finally, CES for edge
coverage computed by the TSD tool is given below. This
time there are four CESs. The TSD tool minimizes both the
number of CESs and the number of events for efficiency.

CES 3 events: [, insert invalid cash card to ATM, ATM shows error

message, eject the card,],
CES 5 events: [, insert valid cash card to ATM, redirect to password

page, password page is shown, user clicks take card button, eject the card,],
CES 11 events: [, insert valid cash card to ATM, redirect to password

page, password page is shown, enter wrong password, click correction
password, clear password, password page is shown, enter wrong password 3
times, freeze the account, display frozen account warning, eject the card,],

Figure 8. Composed ESG.

170

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

CES 60 events: [, insert valid cash card to ATM, redirect to password
page, password page is shown, enter right password, confirm button is
clicked, redirect to menu page, show menu page, click change password,
display change password page, write original password, write new password,
click update button, show success message, redirect to menu page, show
menu page, click inquiry button, redirect to inquiry page, display inquiry
page, select balance inquiry, ATM shows ten balance of the account, click
home icon, show menu page, click transfer button, redirect to transfer page,
display transfer page, write transfer account number, write amount of
money, click confirm button, ATM shows success message, redirect to menu
page, show menu page, click deposit button, redirect to deposit page, display
deposit page, select the account, open money drawer, user puts money, close
money drawer, ATM shows amount deposited money, click confirm button,
ATM shows success message, redirect to menu page, show menu page, click
withdraw button, redirect to withdraw page, display withdraw page, write
amount of money to withdraw, click confirm button, ATM gives money,
redirect to menu page, show menu page, click inquiry button, redirect to
inquiry page, display inquiry page, select detail inquiry, ATM shows ten
recent transaction details, click home icon, show menu page, user clicks take
card button, eject the card,],

VI. DISCUSSION
The proposed method assumes that Gherkin clauses can

be represented by events. This assumption holds for the
selected two BDAT suites used in the evaluation. We were
able to represent all possible Gherkin clauses by events.

In the previous section, evaluation of Algorithm 1 results
for five BDAT suites showed that Algorithm 1 performs
significantly worse for TS1. In fact, excluding TS1 increases
the first and third result hit rate in average to 91% and 97%
up from 84% and 90%, respectively. To explain this
discrepancy, TS1 Gherkin scenarios were examined, and the
issue was traced back to the original set of requirements. In
the original set of requirements, the system is described as
two interacting modules. The team of the TS1 converted
these requirements into 2 separate Gherkin features with
different perspectives and terminologies. As a result,
matching step definitions’ semantic similarities were
severely weakened across features. 85% of the missed first
suggestion matches for TS1 were observed to be between
step definitions from different features. This observation also
leads us to a known fact that BDATs should be written
without considering any design or implementation issues.

The evaluation of the second case reveals that using NLP
techniques on written BDATs helps us improve the
connectivity of BDATs. Moreover, the proposed method
shows that through modeling BDATs, it is possible to
generate test sequences automatically. UML use case
diagrams and activity diagrams can also be used for
modeling BDATs and then automatically generate tests. The
research in this area is explained in the related work section.

Scalability of the models is an important concern. ESGs
allow us to work on some small and modular models through
sub-ESGs [12]-[15] like subroutines. The TSD tool is also
designed to support sub-ESGs. This way, it is possible to
generate manageable large models. Moreover, these sub-
ESGs can be flattened into one large ESG if necessary.

VII. THREATS TO VALIDITY
One threat to validity is internal validity, which deals

with the effects on the evaluation. The selection of BDAT
test suite used in evaluation is obtained by searching GitHub
repositories. This cannot be considered as random selection.

Moreover, the proposed method is applied to the selected
BDAT test suite by the author.

Another threat to validity is external validity, which deals
with the generalizability of the results. The evaluation in this
study is based on a single BDAT test suite. Although this test
suite is developed for e-commerce software, which may
represent business software generally, evaluation of other
BDAT test suites from different domains with the proposed
method will help generalize the results.

VIII. RELATED WORK
Tuglular [22] proposed a model-based approach for

feature-oriented testing using Event Sequence Graphs
(ESGs). In this approach, ESGs are extended to save state
and pass it to the following ESG. This way, tests written for
features can be combined on state information. However,
capturing state is not always possible for acceptance tests.

UML use case diagrams can also be used for modeling
BDATs and then automatically generate tests. Gutierrez et al.
[23] proposed an approach for working with Gherkin
scenarios using UML use case models. They transform from
the UML use case diagrams to the Gherkin plain text syntax.
They also developed a tool for running Gherkin scenarios in
UML as test cases.

Alferez et al. [24] proposed an approach, named AGAC
(Automated Generation of Acceptance Criteria), which
supports the automated generation of AC specifications in
Gherkin. They used UML use case diagrams and activity
diagrams to create specifications, derive acceptance criteria
from them, and then generate test cases from derived
acceptance criteria. UML activity diagrams are not formally
defined as directed graphs and therefore, in this work we
choose to use formally defined ESGs to benefit from existing
algorithms in directed graphs. However, with the help of
some theoretical background UML activity diagrams can be
used instead of ESGs.

Kudo et al. [25] proposed the software pattern meta
model that bridges requirement patterns to groups of
scenarios with similar behaviors in the form of test patterns.
This meta model is used to describe the behavior of a
requirement pattern through a time executable and easy-to-
use language aiming at the automatic generation of test
patterns.

Wanderley and da Silveria [26] proposed using a mind
model specification, which serves as a basis for transforming
the definitions of the scenario and generating a conceptual
model represented by a UML class diagram. The mind
model functions as a bond that represents the business
entities, and enables simple association, aggregation, and
composition relationships between the entities.

An adjacent area is process discovery in business process
management literature. Rozinat and van der Aalst [27]
worked on whether event logs conform to the process model
and vice versa. They proposed two dimensions of
conformance, namely fitness and appropriateness, to be
checked along with corresponding metrics. They developed a
Conformance Checker within the ProM Framework.

Beschastnikh et al. [28] proposed algorithms for inferring
communicating finite state machine models from traces of

171

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

concurrent systems, and for proving them correct. They also
provided an implementation called CSight, which helps
developers find bugs.

Pecchia et al. [29] proposed an approach that employs
process mining for detecting failures from application logs.
Their approach discovers process models from logs; then it
uses conformance checking to detect deviations from the
discovered models. They were able to quantify the failure
detection capability of conformance checking despite
missing events, and its accuracy with respect to process
models obtained from noisy logs [29].

As a novel approach, this work aims to transform
executable specification in Gherkin language to an ESG.
Additionally, this work introduces a novel methodic analysis
on BDATs that can reveal missing BDATs.

IX. CONCLUSION
This paper proposes a method to improve the

connectivity of behavior-driven acceptance tests. The
method utilizes NLP techniques and ESGs. With the
proposed method, the test designer not only finds and
completes missing BDATs, but also combines them to know
which BDAT can be executed after which BDAT. When the
final composition is supplied to the TSD tool, it
automatically generates a test sequence that covers all
BDATs. So, the proposed method improves the connectivity
of BDATs.

As future work, we plan to enhance the developed tool
with new capabilities to further aid in the design and
application of acceptance tests. Also, as future work, our
goal is to enhance the tool with ontologies so semantically
related scenarios are easily decoded. Moreover, we plan to
use UML activity diagrams instead of event sequence graphs
and compare their advantages and disadvantages. Finally, we
will apply all these improvements to large Gherkin-based
specifications and acceptance criteria.

REFERENCES
[1] T. Tuglular, “On the Composability of Behavior Driven

Acceptance Tests,” in The Seventh International Conference
on Advances and Trends in Software Engineering
(SOFTENG 2021), 2021, pp. 1–4.

[2] M. G. Cavalcante and J. I. Sales, "The Behavior Driven
Development Applied to the Software Quality Test," Proc.
14th Iberian Conference on Information Systems and
Technologies (CISTI), IEEE, 2019, pp. 1–4.

[3] Cucumber Gherkin. https://cucumber.io/docs/gherkin/
reference/. [retrieved: March, 2021].

[4] Gauge. https://gauge.org. [retrieved: March, 2021].
[5] T. Tuglular and S. Şensülün, “SPL-AT Gherkin: A Gherkin

Extension for Feature Oriented Testing of Software Product
Lines,” in IEEE 43rd Annual Computer Software and
Applications Conference (COMPSAC), 2019, vol. 2, pp. 344–
349.

[6] G. Salton and C. Buckley, “Term-weighting approaches in
automatic text retrieval,” Information processing &
management, vol. 24, no. 5, pp. 513–523, 1988.

[7] P. Sitikhu, K. Pahi, P. Thapa, and S. Shakya, “A comparison
of semantic similarity methods for maximum human
interpretability,” in 2019 artificial intelligence for

transforming business and society (AITB), 2019, vol. 1, pp.
1–4.

[8] A. R. Lahitani, A. E. Permanasari, and N. A. Setiawan,
“Cosine similarity to determine similarity measure: Study
case in online essay assessment,” in 2016 4th International
Conference on Cyber and IT Service Management, 2016, pp.
1–6.

[9] S. Kannan et al., “Preprocessing techniques for text mining,”
International Journal of Computer Science & Communication
Networks, vol. 5, no. 1, pp. 7–16, 2014.

[10] S. Vijayarani, M. J. Ilamathi, and M. Nithya, “Preprocessing
techniques for text mining-an overview,” International
Journal of Computer Science & Communication Networks,
vol. 5, no. 1, pp. 7–16, 2015.

[11] T. Tuglular, F. Belli, and M. Linschulte, "Input contract
testing of graphical user interfaces," International Journal of
Software Engineering and Knowledge Engineering, 26(02),
2016, pp. 183–215.

[12] F. Belli and C. J. Budnik, "Test minimization for human-
computer interaction," Applied Intelligence, 26(2), 2007, pp.
161–174.

[13] F. Belli, C. J. Budnik, and L. White, "Event based modelling,
analysis and testing of user interactions: approach and case
study," Software Testing, Verification and Reliability, 16(1),
2006, pp. 3–32.

[14] F. Belli and C. J. Budnik, "Minimal spanning set for coverage
testing of interactive systems," International Colloquium on
Theoretical Aspects of Computing. Springer, Berlin,
Heidelberg, 2004, pp. 220–234.

[15] T. Tuglular, C. A. Muftuoglu, F. Belli, and M. Linschulte,
"Event-based input validation using design-by-contract
patterns," Proc. 20th International Symposium on Software
Reliability Engineering, ISSRE’09, IEEE Press, 2009, pp.
195–204.

[16] G. Chartrand, “Introductory Graph Theory,” Courirer
Corporation, 1977.

[17] E. Evans, "Domain-Driven Design: Tackling Complexity in
the Heart of Software," Addison-Wesley Professional, 2003.

[18] S. Bird, E. Klein, and E. Loper, Natural language processing
with Python, 1st ed. Beijing ; Cambridge [Mass.]: O’Reilly,
2009.

[19] TestSuiteDesigner. http://download.ivknet.de/. [retrieved:
March, 2021].

[20] Barzilay, "Example of an ECommerce cucumber web test
automation suite,". https://github.com/spriteCloud/ecommerce
-cucumber-web-test-automation-suite. [retrieved: March,
2021].

[21] Team-111, “Bank ATM software,” https://github.com/Team-
1111/bankbankatm. [retrieved: June, 2021]

[22] T. Tuglular, "Event sequence graph-based feature-oriented
testing: A preliminary study," 2018 IEEE International
Conference on Software Quality, Reliability and Security
Companion (QRS-C). IEEE, 2018, pp. 580–584.

[23] J. J. Gutiérrez, I. Ramos, M. Mejías, C. Arévalo, J. M.
Sánchez-Begines, and D. Lizcano, "Modelling Gherkin
Scenarios Using UML," Proc. 26th International Conference
on Information Systems Development (ISD), 2017.

[24] M. Alferez, F. Pastore, M. Sabetzadeh, L. Briand, and J. R.
Riccardi, "Bridging the gap between requirements modeling
and behavior-driven development," 2019 ACM/IEEE 22nd
International Conference on Model Driven Engineering
Languages and Systems (MODELS), IEEE, 2019, pp. 239–
249.

[25] T. N. Kudo, R. F. Bulcão-Neto, and A. M. Vincenzi, "A
conceptual metamodel to bridging requirement patterns to test
patterns," Proc. of the XXXIII Brazilian Symposium on
Software Engineering. 2019, pp. 155–160.

172

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[26] F. Wanderley and D. S. da Silveria, "A framework to
diminish the gap between the business specialist and the
software designer," 2012 Eighth International Conference on
the Quality of Information and Communications Technology.
IEEE, 2012, pp. 199–204.

[27] A. Rozinat and W.M.P. van der Aalst, "Conformance testing:
Measuring the fit and appropriateness of event logs and
process models," Proc. 4th Business Process Management
Workshops, Springer, 2006, pp. 163–176.

[28] I. Beschastnikh, Y. Brun, M.D. Ernst, and A. Krishnamurthy,
"Inferring models of concurrent systems from logs of their
behavior with CSight," Proc. 36th International Conference
on Software Engineering, ACM, 2014, pp. 468–479.

[29] A. Pecchia, I. Weber, M. Cinque, and Y. Ma, “Discovering
process models for the analysis of application failures under
uncertainty of event logs,” Knowledge-Based Systems, vol.
189, p. 105054, 2020.

