International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

182

A Large Scale Empirical Evaluation of the Accuracy

of Function Points Estimation Methods

Luigi Lavazza
Dipartimento di Scienze teoriche e Applicate
Universita degli Studi dell’Insubria
21100 Varese, Italy
Email: 1luigi.lavazza@uninsubria.it
Geng Liu
School of Computer Science and Technology
Hangzhou Dianzi University
Hangzhou, China
Email: 1iugeng@hdu.edu.cn

Abstract—Functional size measures of software—especially Func-
tion Points—are widely used, because they provide an objective
quantification of software size in the early stages of development,
as soon as functional requirements have been analyzed and
documented. Unfortunately, in some conditions, performing the
standard Function Point Analysis process may be too long and
expensive. Moreover, functional measures could be needed before
functional requirements have been elicited completely and at the
required detail level. To solve this problem, many methods have
been invented and are being used to estimate the functional size
based on incomplete or not fully detailed requirements. Using
these methods involves a trade-off between ease and timeliness
on one side and accuracy on the other side. In fact, estimates
are always affected by some error; knowing the magnitude of
estimation errors that characterize the estimates provided by a
given method is of great importance to practitioners. This paper
reports the results of an empirical study devoted to evaluate the
accuracy of estimates provided by Function Points estimation
methods. The results of the study show that some of the evaluated
methods—including the Early & Quick Function Points, the
ISBSG average and the NESMA estimated method)—provide
estimates that are accurate enough for practical usage, while
some other methods appear quite inaccurate.

Keywords—Function Points; IFPUG; Function point Analy-
sis; Functional Size Measurement; Functional Size Estimation;
NESMA Estimated; NESMA Indicative; Early Size Estimation.

I. INTRODUCTION

This paper extends the results provided in a previous pa-
per [1], in which we started estimating the accuracy methods
for estimating functional size measures.

The availability of accurate functional size measures can
help software companies plan, monitor, estimate development
costs, and control software development processes. So, the
availability of accurate functional size measures may provide
software companies with competitive advantages over other
companies.

Among the functional size measurement methods that have
been proposed, Function Point Analysis (FPA) [2] is by far the

most popular. The International Function Points User Group
(IFPUG) took charge of maintaining FPA and publishes the
official Function Point counting manual [3].

In some conditions, performing the standard FPA process
may be too long and expensive. Moreover, standard FPA can be
applied only after the completion of the software requirements
elicitation stage, while functional measures could be needed
earlier, i.e., before functional requirements have been elicited
completely and at the required detail level.

Therefore, many methods were invented and used to provide
estimates of functional size measures based on less or coarser
grained information than required by standard FPA.

Among the most widely known and used methods are
the NESMA methods [4], Early&Quick Function Points
(EQFP) [5], [6], the Tichenor ILF Model [7], the simplified
FP (sFP) approach [8], the ISBSG distribution model and the
ISBSG average weights model, the latter two methods being
based on the analysis of the ISBSG dataset [9]. Actually, the
NESMA methods were adopted by IFPUG as the preferred
methods for early estimation of Function Point size [10]
(IFPUG renamed the NESMA Estimated method ‘High Level
FPA Method’ and the NESMA Indicative method as ‘Indicative
FPA Method’; nonetheless, in this paper we use the original
NESMA names).

Inevitably, all the early functional size estimation methods
involve some estimation error. Hence, project managers need to
know—at least approximately—the magnitude of the potential
error that affects size estimates.

Not surprisingly, several researchers and practitioners eval-
uated the accuracy of the proposed functional size estimation
methods (as described in Section VII). However, most eval-
uations were based on academic software projects or small
datasets, hence most evaluations cannot be considered very
reliable, and they are hardly generalizable. In order to assess
the actual value of the FP estimation methods for industry, it
is necessary to perform an experimental evaluation based on a
large dataset collecting measures from industrial settings.

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In this paper, we present the experimental evaluation of the
accuracy of several estimation methods, based on a dataset that
includes data from 479 software development projects in the
finance and banking domain. The size of the dataset and the
real-life nature of the data make the analysis presented here the
most exhaustive and reliable published evaluation of Function
Point estimation methods.

This paper extends the results provided in a previous pa-
per [1], in which we estimated only the accuracy of NESMA
methods. This paper also replicates a previous empirical
study [11], in which we evaluated the accuracy of the same
estimation methods studied in this paper. In [11] we were able
to study only 18 project data, while here we analyze a dataset
collecting measures from 479 software projects. The results
provided here are relevant in the following respects:

— We were able to confirm that the ‘NESMA Estimated’
method is among the most accurate proposed methods.

— Some methods appear definitely not accurate; more
precisely, their accuracy appears too low, even for usage
in the earliest phases of software development.

— Some methods appear even more accurate than the
NESMA method, hence project managers can consider
using these methods, instead of the NESMA Estimated,
even though the latter was chosen as the ‘official’
estimation methods by IFPUG.

The study described in this paper is of practical relevance
because of the following reasons:

— One of the main hindrances perceived by software
developers when applying FPA is that it is relatively
difficult and expensive, and requires specifically trained
and certified measurers. To this end, estimation methods
were proposed not only to make FPA applicable be-
fore functional requirement specifications are complete
and detailed, but also as an easier—hence quicker and
cheaper—alternative to FPA, to be applied even when
requirements have been fully documented.

— The application of standard functional size measurement
does not fit in agile development processes, which are
being adopted by software development organizations
to a continuously increasing degree. On the contrary,
estimation methods are simple enough to fit into agile
development processes. Consider for instance that the
data required to estimate Function Points using methods
like the Early & Quick Function Points or the NESMA
methods can be easily derived from the ‘stories’ that are
often used to describe requirements in agile contexts.

— Anticipating the moment when (approximated) func-
tional measures become available means that develop-
ment effort estimations can be anticipated as well. This
is often of great importance, e.g., in bidding processes.

The rest of the paper is organized as follows. Section II
briefly describes FPA. Section III gives a concise introduction
to the FP estimation measurement methods studied in this
paper. Section IV describes the empirical study. Section V
proposes some considerations on the outcomes of the empirical

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

183

study. Section VI discusses the threats to the validity of
the study. Section VII illustrates the related work. Finally,
Section VIII draws some conclusions and outlines future work.

II. FUNCTION POINT ANALYSIS

This section provides a concise introduction to FPA. Readers
are referred to the official documentation [3] for further details.

Function Point Analysis was originally introduced by Al-
brecht to measure the size of data-processing systems from
the end-user’s point of view, with the goal of estimating the
development effort [2].

The initial interest sparked by FPA, along with the recog-
nition of the need for maintaining FPA counting practices,
led to founding the IFPUG (International Function Points
User Group). The IFPUG (http://www.ifpug.org/) maintains
the counting practices manual [3], provides guidelines and
examples, and oversees the standardization of the measurement
method.

The IFPUG method is an ISO standard [12] in its “unad-
justed” version. The adjustment factor originally proposed by
Albrecht and endorsed by IFPUG is meant to obtain measures
more apt for effort estimation, by accounting for factors not
dealing with functional requirements, namely with product and
process features that do not belong to the notion of functional
size. As such, the adjustment was not accepted by ISO; so,
throughout the paper we refer exclusively to unadjusted FP
(UFP), even when we omit adjective “unadjusted.”

Albrecht’s basic idea—which is still at the basis of the
IFPUG method—is that the “amount of functionality” released
to the user can be evaluated by taking into account 1) the
data used by the application to provide the required functions,
and 2) the transactions (i.e., operations that involve data
crossing the boundaries of the application) through which
the functionality is delivered to the user. Both data and
transactions are evaluated at the conceptual level, i.e., they
represent data and operations that are relevant to the user.
Therefore, IFPUG Function Points are counted on the basis
of the user requirements specification. The boundary indicates
the border between the application being measured and the
external applications and user domain.

FURs are modeled as a set of base functional components
(BFCs), which are the measurable elements of FURs: each of
the identified BFCs is measured, and the size of the whole
application is obtained as the sum of the sizes of BFCs.

The IFPUG model of a software application to be measured
is shown in Figure 1. IFPUG BFCs are data functions (also
known as logical files), which are classified into internal logical
files (ILF) and external interface files (EIF), and elementary
processes (EP)—also known as transaction functions—which
are classified into external inputs (EI), external outputs (EO),
and external inquiries (EQ), according to the activities carried
out within the process and its main intent.

So, the functional size of a given application, expressed in
unadjusted Function Points, Sizeypp, is given by the sum

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

| SW functional speciﬁcations‘
! 1
[

Transaction
El y Process)
EIF

A

Figure 1. The IFPUG model of software.

of the sizes of the different types of functions, as shown in
equation (1).

Sizeyrpp = Z S’iZGILF(f)+ Z S’iZGEIF(f)-i- (D)

feILFs fEEIFs
Z Sizepr(f) + Z Sizego(f) + Z Sizepq(f)
fEEIs fEEOs fEEQs

In equation (1), ILF’s is the set of all data functions of type
ILF, FEls is the set of all transactional functions of type EI, etc.
Also, Sizex(f) is the weight of function f, which depends
on its complexity, and its type (X € {ILF, EIF, EI, EO, EQ},
as described in Table I.

TABLE I. FPA WEIGHT TABLE.

Complexity
Function type | Low Average High
ILF 7 10 15
EIF 5 7 10
EI 3 4 6
EO 4 5 7
EQ 3 4 6

The complexity of a data function (ILF or EIF) depends
on the RETs (Record Element Types), which indicate how
many types of information (e.g., sub-classes, in object-oriented
terms) can be contained in the given logical data file, and
DETs (Data Element Types), which indicate how many types
of elementary information (e.g., attributes, in object-oriented
terms) can be contained in the given logical data file.

The complexity of a transaction depends on the number
of file types references (FTRs)—i.e., the number of types
of logical data files used while performing the required
operation—and the number of DETs—i.e., the number of types
of elementary data—that the considered transaction sends and
receives across the boundaries of the application.

Details concerning the determination of complexity can be
found in the official documentation [3].

The core of FPA involves three main activities:
1) Identifying data and transaction functions.

2) Classifying data functions as ILF or EIF, and transac-
tions as EI, EO or EQ.

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

184

3) Determining the complexity of each data or transaction
function.

The first two of these activities can be carried out even if
the FUR have not yet been fully detailed. On the contrary, the
last activity requires that all details are available, so that such
details can be analyzed, to get the number of RET or FTR and
DET involved in every function. In the next section, several
FP estimation methods are presented. All of these method do
not require activity 3 above, thus allowing for size estimation
when FUR are not fully detailed. In addition, since activity 3 is
the most effort- and time-consuming, the presented estimation
methods are relatively fast and cheap, with respect to full-
fledged FPA.

III. FUNCTION POINTS ESTIMATION METHODS

In this section we briefly present the FP estimation methods
mentioned in the introduction.

A. The NESMA methods

The NESMA methods were proposed to get an estimate of
the functional size of a given application without analyzing
data and transactions in detail [4].

There are two NESMA estimation methods: the NESMA
Indicative method and the NESMA Estimated method.

The former estimates size (EstSize) based on the number of
ILF (#ILF) and the number of EIF (#EIF), as follows:

EstSize = #ILF X Wip + #EIF X Wgr

where Wiz is 25 or 35 and Wggr is 10 or 15, depending on
ILF and EIF being identified based on a data model in third
normal form or not, respectively.

The process of applying the NESMA indicative method
involves only identifying logic data and classifying them as
ILF or EIF. Accordingly, it requires less time and effort than
standard FPA. However, the NESMA Indicative method is
quite rough in its computation: the official NESMA count-
ing manual specifies that errors in functional size with this
approach can be up to 50%.

The NESMA Estimated method requires the identification
and classification of all data and transaction functions, but
does not require the assessment of the complexity of each
function: Data Functions (ILF and EIF) are assumed to be of
low complexity, transactions (EI, EQ and EO) are assumed to
be of average complexity. Hence, estimated size is computed
as follows:

EstSize = 7 #ILF + 5 #EIF + 4 #EI + 5 #EO + 4 #EQ

IFPUG adopted the NESMA methods as the official early
function point analysis methods [10].

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. The Early & Quick Function Points method

One of the most well-known approach for simplifying the
process of FP counting is the Early & Quick Function Points
(EQFP) method [5], [6]. EQFP descends from the considera-
tion that estimates are sometimes needed before requirements
analysis is completed, when the information on the software to
be measured is incomplete or not sufficiently detailed. Since
several details for performing a correct measurement following
the rules of the FP manual [3] are not used in EQFP, the result
is a less accurate measure. The trade-off between reduced
measurement time and costs is also a reason for adopting the
EQFP method even when full specifications are available, but
there is the need for completing the measurement in a short
time, or at a lower cost. An advantage of the method is that
different parts of the system can be measured at different detail
levels: for instance, a part of the system can be measured
following the IFPUG manual rules [3], [12], while other parts
can be measured on the basis of coarser-grained information,
possibly considering analogy with previously measured soft-
ware parts. The EQFP method is based on the classification
of the processes and data of an application according to a
hierarchy (see Figure 2 [6]).

Application to
be measured
| [|
Macro General
process " data group "
I
[
General Data
process BFC
Transactional Data
BFC BFC
Data
BFC

Figure 2. Functional hierarchy in the Early & Quick FP technique.

|
General
process

Transactional
BFC

Transactional }

Transactional
BFC

BFC

Transactional BFC and Data BFC correspond to IFPUG’s
elementary processes and LogicData, while the other elements
are aggregations of processes or data groups. The idea is that
if you have enough information at the most detailed level
you count FP according to IFPUG rules; otherwise, you can
estimate the size of larger elements (e.g., General or Macro
processes) either on the basis of analogy (e.g., a given General
process is “similar” to a known one) or according to the
structured aggregation (e.g., a General process is composed
of 3 Transactional BFC). By considering elements that are
coarser-grained than the FPA BFC, the EQFP measurement
process leads to an approximate measure of size in IFPUG
FP.

Tables taking into account the previous experiences with the
usage of EQFP are provided to facilitate the task of assigning
a minimum, maximum and most likely quantitative size to
each component. For instance, Table II provides minimum,

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

185

TABLE II. EQFP: FUNCTION TYPE WEIGHTS FOR GENERIC FUNCTIONS.

Weight
Function type | Low Likely High
Generic ILF 74 7.7 8.1
Generic EIF 52 54 5.7
Generic EI 4 42 4.4
Generic EO 49 52 5.4
Generic EQ 3.7 3.9 4.1

maximum and most likely weight values for generic (i.e.,
not weighted) functions as given in [6]. The time and effort
required by the weighting phases are thus saved. Such saving
can be relevant, since weighting a data or transaction function
requires analyzing it in detail.

C. Tichenor method

The Tichenor ILF Model [7] bases the estimation of the
size on the number of ILF via the following formula for
transactional system (for batch systems, Tichenor proposes a
smaller multiplier): EstSize = 14.93 #ILF

This model assumes a distribution of BFC with respect to
ILF as follows: EI/ILF = 0.33, EO/ILF = 0.39, EQ/ILF = 0.01,
EIF/ILF = 0.1. If the considered application features a different
distribution, the estimation can be inaccurate.

The fact that a method based only on ILF requires a given
distribution for the other BFC is not surprising. In fact, the
size of the application depends on how many transactions are
needed to elaborate those data, and the number of transaction
cannot be guessed only on the basis of the number of ILF, as
it depend on the number of ILF just very loosely. Instead of
allowing the user to specify the number of transactions that
are needed, the Tichenor method practically imposes that the
number of transactions complies with the distribution given
above.

D. Simplified FP

The simplified FP (sFP) approach assumes that all BFC are
of average complexity [8], thus:

EstSize = 4 #EI + 5 #EO + 4 #EQ + 10 #ILF + 7 #EIF

E. ISBSG distribution model

The analysis of the ISBSG dataset yielded the following
distribution of BFC contributions to the size in FP: ILF 22.3%,
EIF 3.8%, EI 37.2%, EO 23.5%, EQ 13.2%

The analysis of the ISBSG dataset also shows that the
average size of ILF is 7.4 UFP. It is thus possible to compute
the estimated size on the basis of the number of ILF as follows:

FEstSize ="7.4 #ILF%

The same considerations reported above for the Tichenor
model apply. If the application to be measured does not fit
the distribution assumed by the ISBSG distribution model, it
is likely that the estimation will be inaccurate.

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

F. ISBSG average weights

This model is based on the average weights for each BFC,
as resulting from the analysis of the ISBSG dataset [9], which
contains data from a few thousand projects. Accordingly, the
ISBSG average weights model suggests that that the average
function complexity is used for each BFC, thus

EstSize = 4.3 #FI + 5.4 #E0 + 3.8 #EQ +
74 #ILF + 5.5 #EIF

(=)
g _
=
(=2
[++]
>
2 o |
[T+]
=
o
e
o _|
- F
o _|
(4]
o
I ! ! | | |
M~ = (] Qo [{e] =
w o [=4] o 9]
=+ [+7] o P~
& § 8
Size [UFP] e

Figure 3. Distribution of projects’ sizes in the studied dataset (note the
logarithmic scale on the x axis).

IV. THE EMPIRICAL STUDY

In this section, we first provide a brief description of the
dataset used for the evaluation of functional size estimation
methods; then, we describe the analysis and the resulting
accuracy evaluations.

A. The Dataset

We use a dataset that collects data from 479 software appli-
cations developed and used by a Chinese financial enterprise.

Descriptive statistics of the dataset are given in Table III.

TABLE III. DESCRIPTIVE STATISTICS OF DATASET.

Standard UFP
Mean 3554
St. Dev. 6673
Median 1155
Min 4
Max 80880

The distribution of size is given in Figure 3. Specifically,
it is worth noting that the studied dataset contains relatively
few data from small projects (32 projects not greater than 50
UFP) and relatively few data concerning very large projects
(17 projects bigger than 20000 UFP).

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

186
B. The Analysis

For each of the 479 project in the dataset, we computed the
estimated size, using each of the estimation method described
in Section III.

To assess the estimates, in Figures 4 and 5 we plot the
values of the estimates with respect to the actual size mea-
sured according to the standard IFPUG counting manual [3].
Specifically, Figure 4 illustrates the estimates yielded by the
most accurate methods, while Figure 5 shows the estimates
yielded by the less accurate methods.

In Figures 4 and 5, we also draw the estimated size = actual
size line: if the estimates were perfect, all the points would lie
on the line.

Looking at Figure 4, it is easy to see that the estimates
provided by the NESMA Estimated, EQFP, Simplified FP,
and ISBSG average methods are close to the x=y line, thus
indicating fairly accurate estimates. On the contrary, in Fig-
ure 5 it can be observed that the estimates provided by the
NESMA indicative (normalized and not normalized), Tichenor,
and ISBSG distribution methods are widely spread, with many
points definitely far from the x=y line, thus indicating that
many estimates are quite inaccurate.

To better appreciate the accuracy of estimates, in the Ap-
pendix, Figures 13 and 14 illustrate estimates for projects
having size in the [50, 20000] UFP range.

Figures 5 and 14 seem to indicate that the NESMA indica-
tive (normalized and not normalized), Tichenor, and ISBSG
distribution methods are rather inaccurate. To better investigate
this indication, in Figure 6 we give the boxplots that illustrate
the distributions of errors (errors are defined as the difference
actual size minus estimated size). To keep the figure readable,
outliers (i.e., the biggest errors) are not shown.

It is easy to see that NESMA Estimated, EQFP, Simplified
FP, and ISBSG average weight methods have narrow errors
distributions, close to the zero-error line. On the contrary, the
other methods feature widespread distributions, in some cases
centered on positive errors. Specifically, the Tichenor method
provides the worst accuracy and tends to underestimate (for
over 75% of the projects, estimates are smaller than the actual
size). Similar considerations—although to a lesser extent—
apply to the NESMA indicative (normalized) and ISBSG
distribution methods. The NESMA indicative (not normalized)
method does not tend to underestimate nor overestimate, but
its estimation errors are often quite large.

To better study the errors of the best methods, in Figure 7
we give the boxplots of the estimation errors of the NESMA
Estimated, EQFP, Simplified FP, and ISBSG average weight
methods.

Figure 7 shows that the NESMA Estimated method tends
to underestimates, while the Simplified FP method tends to
overestimate. On the contrary, the EQFP and the ISBSG av-
erage weights methods appear symmetrically distributed with
respect to the zero-error line.

It is worth noticing that size underestimation is quite dan-
gerous, since it may lead to underestimating development cost

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

EQFP (likely weights)

Simplified FP

= [5)
=
3 S
o
E]
g 8
< 3 7 o
&
a g
4 .
=
=
T ! T T T
0 20000 60000
UFP
W [(]
5 2
T ©
3]
¢ s
@ (=T a
= =] (o
.
o | 8§
W
fie]
W
=5
I |] I I
0 20000 60000
UFP

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

187
% | (]
2
g
] Q
= 8°
=
| | | | |
0 20000 60000
UFP
g o
g —
[«=]
3
=R OO
= §°
o —
I | | | |
0 20000 680000
UFP

Figure 4. Standard IFPUG UFP measures vs. estimates provided by most accurate methods.

and duration, hence to defining not realistic plans, that usually
lead to bad project organization, understaffing, overspending,
etc.. Accordingly, using the NESMA Estimated method could
be risky.

This observation concerning the NESMA Estimated method
is particularly interesting because the NESMA Estimated
method is also the one that most frequently provides the best
accuracy in the lot of estimation methods, as shown in Figure 8
(the most accurate estimate here is the one characterized by
the least absolute error). So, practitioners must consider that
the NESMA Estimated method is likely to provide the smallest
estimation errors, but is also most frequently underestimating.

C. Accuracy Evaluation

It is now necessary to evaluate quantitatively the accu-
racy of estimates. First of all—as suggested by Shepperd
and MacDonell [13]—we checked whether estimates perform
better than “baseline” models. Shepperd and MacDonell [13]
proposed that the accuracy of a given estimation method be
measured via the Mean Absolute Residual (MAR): M AR =
i1 |yi — 95|, where y; is the actual value of the 7"
observation, and g; is its estimate. Shepperd and MacDonell
suggest to use random estimation, based solely on the known
(actual) values of previously measured applications, as a
baseline model. Shepperd and MacDonell observed also that
the value of the 5% quantile of the random estimate MARs
can be interpreted like o for conventional statistical inference,
that is, any accuracy value that is better than this threshold

has a less than one in twenty chance of being a random
occurrence. Accordingly, the MAR of a proposed model should
be compared with the 5% quantile of the random estimate
MARSs, to make us reasonably sure that the model is actually
more accurate than random estimation.

Lavazza and Morasca [14] proposed to use a “constant
model,” where the estimate of the size of an application is
given by the mean size of the other applications.

With our dataset, the MAR of the constant model is 3864
UFP, while the 5% quantile of absolute residuals for random
estimates is 4566 UFP. The MARs of estimates are given in
Table IV, together with MdAR (the median of absolute errors)
and MMRE (the mean of relative absolute errors).

TABLE IV. ACCURACY INDICATORS FOR ESTIMATION METHODS.

Method MAR MdAR MMRE
NESMA Estimated 315 73 0.102
NESMA Indic. (not norm.) 2135 435 0.629
NESMA Indic. (norm.) 1931 425 0.523
EQFP (likely weights) 299 79 0.103
Tichenor 2363 638 0.648
ISBSG distribution est. 2045 451 0.589
ISBSG average weights 298 82 0.103
Simplified FP 411 112 0.141

According to Table IV, all the evaluated methods satisfy the
necessary conditions for being considered acceptable estima-
tion methods.

Concerning the accuracy of estimates, in Figure 9 the
distribution of absolute errors (excluding the biggest ones,

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

E g °
s 8
E N o]
g =
E g
<
= o
W
L
=
T 1
0 20000 60000
UFP
5
o
[a]
< 2 7
g o |
5
=
e 2
[
o
=
T |
0 20000 60000

UFP
Figure 5. Standard IFPUG UFP measures vs.

5000 —
4000 — i
5 3000 -
© ‘ T
c 2000 — - i
S ! : |
T 1000 — ' -
s = m] -
8 04 = E ; : R i
-1000 | Pl b
L o4
I | | I 1 | I I
£ E E £ 8 8 5 u«
E 2 S ¢ 8 & ¢ &
g 8 s 2 % 3 3 3
< S B @ 2 T § E
= 8 £ x F B 5 @
W 'g << = b=l =
i} = = o [0 ©
= <C w L %)) (U]
= L e} oM (7))
5] =2 i} %) oM
w 7]
=

Figure 6. Boxplots of estimation errors (no outliers shown).

to keep the figure readable) is given. The blue diamond is
the mean, i.e., the MAR of the estimates. Figure 9 confirms
the observation already reported in Section IV-B, i.e., even
not considering the biggest errors, it appears that NESMA
Indicative, Tichenor and ISBSG distribution methods feature
many fairly inaccurate estimates.

As a result of the previously described findings, it seems

NESMA indic. (norm.)

ISBSG distribution est.

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

188
] [5)
]
g —
[Tyl
— o
]
=
N o
(=]
T T
0 20000 80000
UFP
] o
S
g -y
w2 =
21 ®°
= oo 0{38
N C o o
= [a]
T T T 1
0 20000 60000
UFP

estimates provided by less accurate methods.

400 { T —
\ - —_ i
@ 200 - : ! :
IS e
<7} -
g : ’
5 B | |
£ 200 s | i :
b7 - - !
@ 400 '
.
.
600 -
I I I I
b= w 0 o
[+ —
g g 5 =
£ T g ko
m =z £
@ - [+}] Q
< T & E
= = g @
w = >
y g o
o] @
w o
@

Figure 7. Boxplots of selected methods’ estimation errors (no outliers
shown).

that NESMA Estimated, EQFP, ISBSG average weights and
Simplified FP methods qualify as the best candidates for size
estimation, therefore these methods deserve most attention.
Specifically, we should evaluate whether these methods are
acceptable for functional size estimation. To this end, in
Figure 10 the boxplot of the absolute errors of the esti-
mates obtained via these methods are illustrated. Note that
in Figure 10—unlike in Figure 9—all the absolute errors are

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

150 —

100 —

50 —+

F
[]
P
I

2 £ %53 ECE¢L 3

o 2 T 5 6 T =

ag%égceg

imggégﬁg

5 2 £ £ T — E 8

2 £ 5 = £ ¢ 5 F
s & 5 8 2
[a —
T 0o 9 z @& <
C © m =
W m w 2 o»
%) L
pa

Figure 8. How many times every method yielded the best estimate.

—
@ !
£ 4000 i
@ T—r— [
5 o b
£ 3000 b P
E Lo ¢+ |
—]
@ 2000 ¢ . +
@ ! .
=
N == = =] na
] I | I I I I]
£ EEE § 8§ g «
E 2 2 3 &8 5 ¢ B
2 3 5 = & 1 = E
£ 5 >528 8% ¢
S g £ 2F 5§ G
n T < = T =
w = = o ¢ ©
Z < O L » O
= W o [“a)]
» =z W »
w)
=

Figure 9. Boxplots of absolute errors (outliers not shown).

represented.

Figure 10 shows quite clearly that while the considered
methods feature a fairly small absolute error, all methods are
characterized by some quite big errors. To evaluate whether
these errors are acceptable, we can consider that in general,
relatively large estimation errors are deemed acceptable in very
large projects.

To help practitioners appreciate the “importance” of errors
with respect to the size of the estimated project, in Figure 11
we give the boxplots representing the distributions of relative

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

189
o
@
[e]
= 8000 o o
@ o o o
= o
k=]] o o
2 6000 o o 8
E o
B 4000 | o
@
o) 8 [«] 2
5
© 2000
W
0
= 0
| T T 1
gl W 2 o
QO —
s 5 5 3
E g ¢
w = =
@ > % CE)-
= @ @ =
= =] &
4 & &
[
S ?
w 0
<]

Figure 10. Boxplots of all absolute errors for selected methods.

errors (the relative error of an estimate is the estimation error
divided by the actual size). To keep Figure 11 readable, the
biggest errors are not shown.

1,0_ - -- - -
: 5 &
[s]
£ 05
@ - - ' —_ -
5 o0 - == SHELI=SEE
2 AT ¢ | — ¥
£ = e N
z %7 T i
) ' ' !
3—1,0— i i i
S 45 ! 4
E |
20 - —
T T T T T T 1
T T T o = v o
£ EE £ 8 8 g
g ¢ ¢ ® 5 c 2%
E 2 =9 8 5 ¢ ¢
®w B . 2 @ 1§ =
¢ 25 >62 8 ¢2
S s £ 2 F 8 €5
n T < = Tz 2
w £ = g ®©
= < w LL WD (U]
= W o [Sa)]
w £ W W @
L - @
z

Figure 11. Boxplots of relative errors (no outliers).

Figure 11 shows that the estimation errors caused by the
NESMA Indicative, Tichenor and ISBSG distribution methods
are quite large also in relative terms. Specifically, these meth-
ods feature several relatively large underestimations: all the
three mentioned methods underestimate no less that 25% of
the projects by 50% or more. Even though the acceptability of
estimates is largely subjective, we have strong doubts that any

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

practitioner would find these levels of accuracy acceptable.

0.4 —
@ g 8 e —
o | ! —_ |
= | ! | H
@ 0.2 | | ! I
[| | | H
=] : ! i
= . !
E 00 - ’ .

W | r

@ : : :
S 02 i | ! ;
@ i ! !
T il : .
c o, T 0§ :
04 o —
T T T T
k] - J% o
§ £ 5 &
E g T ¢
W = =
@@ - g [=%
< T & E
= 2 S ®

-

L (U]

o w

| is]

[£2]

Figure 12. Boxplots of all relative errors for selected methods.

Considering the other methods, Figure 12 shows the box-
plots of all the relative estimation errors. Figure 12 indicates
that all the selected methods perform well. For all methods, the
great majority of errors is in the [-20%, +20%] range, which is
generally considered acceptable, especially when the estimate
is performed in the earliest phases of the software lifecycle,
when user requirements have not yet been fully analyzed.

V. CONSIDERATIONS ON THE OUTCOMES OF THE
EMPIRICAL STUDY

The results obtained via the empirical study support a few
considerations, which we illustrate in the following sections.

A. Methods based on the knowledge of data functions

The NESMA Indicative, Tichenor and ISBSG distribution
estimation methods are all based on the knowledge of the
number of data functions only. The NESMA Indicative method
also requires that logical data files are classified as ILF or
EIF, which is usually quite easy, since one has just to check
whether the application being measured maintains (i.e., creates,
modifies or deletes) the considered data files or not. On the
contrary, the other methods considered in this paper base their
estimates on the knowledge or transactional functions as well.

Since the NESMA Indicative, Tichenor and ISBSG distribu-
tion estimation methods use the knowledge of the number of
data functions only, it is not surprising that they provide a level
of accuracy that is definitely lower with respect to methods that
account also for transactions.

So, the question is now whether it is reasonable to use
estimates that are based exclusively on the knowledge of

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

190

logical data files. First of all, we can observe that the question
makes sense, since in many cases requirements analysis starts
with domain analysis, which provides reliable indications
concerning the data the software application will have to deal
with. In such conditions, no method appears to yield acceptably
accurate estimates.

B. Methods based on the knowledge of data and transaction
functions

In order to estimate size using the NESMA Estimated,
EQFP, ISBSG average weights or Simplified FP methods, you
have to know both the number of data functions (and how they
are classified into ILF and EIF) and the number of transactions
(and how they are classified in EI, EO and EQ). If you have
this knowledge of functional requirements, you can get size
estimates whose error is in the [-20%, +20%] range, except in
a minority of cases.

Given this, our results show that the Early & Quick FP
and the ISBSG average methods are probably preferable, since
they avoid both underestimation (which affects the NESMA
Estimated method) and overestimation (which affects the Sim-
plified FP method). In addition, the Early & Quick FP and
the ISBSG average methods a slightly smaller MAR than the
NESMA estimated method (see Table 1V).

Actually, both the NESMA Estimated method and the
Simplified FP method are based on assumptions that have
never been verified. The former method assumes that data
functions are all of low complexity and all transactions are
of average complexity; the latter method assumes that all
functions are of average complexity. Our study shows that
none of these assumptions appear totally correct: in fact, the
NESMA Estimated method tends to underestimate and the
Simplified FP method tends to overestimate (note that, by
definition, for a given application, the Simplified FP estimate
will always be greater than the NESMA Estimated estimate).

The remaining methods, i.e., the EQFP and the ISBSG
average weights methods are based on statistical analysis of
large datasets. They propose for each function type the average
weight observed. As a consequence, the definition of the two
methods are very similar, and the estimates they provide are
usually very close. This makes quite hard to choose one of
the two methods. To this end, an interesting observation is
that the EQFP method provides not only ‘likely’ weights for
function types, but also low and high values (see Table II).
By sizing all functions with the low weights and with the high
weights gives a sort of confidence interval that could cope with
the inherent uncertainty of the estimation due to the lack of
details concerning functional requirements.

As a final consideration, the fact that both the EQFP and
the ISBSG average weights methods performs well shows that
organizations that have large enough collections of historical
data could build their own estimation method following the
same process as the EQFP and the ISBSG average weights
methods: compute the average weight of each function type
from the historical dataset and use such weights to estimate
the size of new developments.

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. THREATS TO VALIDITY

Given the type of study we presented, there are two main
threats to validity that need attention.

First, we should consider the correctness of the given data.
In fact, the data in the analyzed dataset were derived from
the analysis and measurement of functional requirements: both
analysis and measurement could be affected by error, which
would end up in the dataset. Concerning this threat, we are
reasonably sure that the used data are of good quality, since
they were collected by professionals in industrial contexts
where functional size measures are quite important, hence great
attention is posed in the measurement activities.

Second, we need to consider external validity, i.e., whether
we can generalize the results of our study outside the scope
and context that characterize the considered software projects.
On the one hand, our dataset is much larger than the datasets
usually involved in software engineering empirical studies;
besides, our dataset includes data from fairly large projects
(e.g., over 20000 FP). In this sense, our dataset represents
a large and varied enough sample. On the other hand, all
the considered projects are from the economic, financial and
banking domain, hence we cannot be sure that the results
of our study apply equally well in other domains. In this
respect, readers are reminded that previous studies show some
difference in accuracy when estimates concern other types of
software applications, e.g., real-time applications [11].

VII. RELATED WORK

Meli and Santillo were among the first to recognize the need
for comparing the various functional size methods proposed
in the literature [15]. To this end, they also provided a
benchmarking model.

Popovi¢ and Boji¢ compared different functional size
measures—including NESMA Indicative and Estimated—by
evaluating their accuracy in effort estimation in various phases
of the development lifecycle [16]. Not surprisingly, they found
that the NESMA Indicative method provided the best accuracy
at the beginning of the project. With respect to Popovi¢ and
Boji¢, we made two quite different choices: the accuracy of
the method is evaluated against the actual size of the software
product and—consistently—all the information needed to per-
form measurement is available to all processes.

Santillo suggested probabilistic approaches, where the mea-
surer can indicate the minimum, medium and maximum weight
of each BFC, together with the expected probability that the
weight is actually minimum, medium or maximum [17]. This
leads to estimate not only the size, but also the probability that
the actual size is equal to the estimate.

NESMA defined the application of FPA in the early phases
of the application life cycle, and recognizes three function
point analysis methods: Detailed function point analysis (cur-
rently corresponding to IFPUG measurement), Estimated func-
tion point analysis, and Indicative function point analysis.
Using a database of over 100 developed and implemented
applications, NESMA empirically evaluated the accuracy of

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

191

the Estimated and Indicative FPA approximation methods [18].
The results showed that size measures of the high-level func-
tion point analysis and the detailed function point analysis are
very close. Moreover, Indicative function point analysis gives
a surprisingly good estimate of the size of several applications.

van Heeringen described the size accuracy—as well as the
difference in measurement effort—of the NESMA Estimated
and NESMA Indicative methods, by measuring 42 projects [4].
The results show that the estimation error of NESMA Es-
timated was in the [-6%, +15%] range, with average 1.5%;
the estimation error of NESMA Indicative was in the [-15%,
+50%] range with average 16.3%. In both cases the estimation
error was evaluated with respect to detailed measurement.

Wilkie et al. [19] used five commercial projects to evaluate
the cost-benefit trade-off of size measurement with respect
to size estimation; they concluded that whilst the NESMA
Indicative method was insufficiently accurate for the involved
commercial organization, the NESMA Estimated approach was
definitely viable.

IFPUG adopted NESMA methods for early “high-level” size
estimation [10]. IFPUG suggested that 1) The High Level FPA
method can be used to size an application early in the software
development life cycle; 2) The High Level FPA method can
also be applied as an alternative to standard FPA estimate (the
outcome is not significantly different, while the estimation time
is considerably shorter); 3) The indicative FPA method may
be used to get a very fast, rough indication of the size of an
application, but it is not suited for contractual commitments.

Lavazza et Liu [11] used 7 real-time applications and 6
non real-time applications to evaluate the accuracy of the
EQFP [5] and NESMA methods with respect to full-fledged
Function Point Analysis. The results showed that the NESMA
Indicative method yields the greatest errors. On the contrary,
the NESMA Estimated method yields size estimates that are
close to the actual size. The NESMA Indicative method is
generally outperformed by the other methods. The NESMA
Estimated method proved fairly good in estimating both Real-
Time and non Real-Time applications.

Morrow et al. used a dataset of 11 projects to evaluate the
quality of sizing estimates provided by NESMA methods [20].
They also adapted NESMA methods’ general principles to
enhance their accuracy and extent of relevance, and empirically
validated such an adapted approach using commercial software
projects.

The main limitations of the mentioned research are that most
studies used small datasets containing data concerning little
projects of not industrial nature. In our paper, we evaluate
measurement accuracy of the NESMA method with respect to
FPA method over a dataset containing data from 479 industrial
projects, of which several are above 10000 FP.

Ochodek proposed a method to approximate IFPUG FPA
functional size in an automatic way, based on given UML use-
case diagrams or a list of use-case names [21].

Meli proposed Simple Function Points (SiFP), as an alter-
native to standard IFPUG FP [22]. SiFP have been evaluated

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

via empirical studies [23], [24] that showed that they appear
suitable replacements of standard FP.

VIII. CONCLUSIONS

In this paper we addressed the evaluation of the accuracy
of functional size estimates that can be achieved via several
Function Points estimation methods. To this end, we compared
functional size measures obtained via the standard IFPUG
Function Point Analysis process with estimates obtained via
the considered estimated methods. Both measures and esti-
mates were computed for a dataset containing data from 479
software projects. Based on the results of the analysis, we can
draw a few relevant conclusions:

— The methods that use knowledge of both data and
transaction functions provide estimates that are much
more accurate than those provided by methods that use
only knowledge of data functions.

— The methods that use knowledge of both data and
transaction functions, namely the NESMA Estimated,
Early & Quick FP, ISBSG average weights and the
Simplified FP methods, provide estimates that are mostly
in the [-20%, -20%] error range, hence their estimates
are likely accurate enough in most cases.

— The NESMA Estimated method tends to underestimate.
This can be dangerous, since at the initial stages of
development one could be induced to believe that the
development process will be shorter and cheaper than
actually required.

— The Simplified FP method tends to overestimate.

— With the Early & Quick FP and the ISBSG average
weights methods, the probabilities of getting underes-
timates and overestimates appear approximately equal.

Future work includes experimenting with new estimation
methods that can be derived from the available dataset, and
investigating whether and how estimation accuracy can be
improved.

ACKNOWLEDGMENT

Parts of this work have been supported by the “Fondo
di ricerca d’Ateneo” funded by the Universita degli Studi
dell’Insubria, by Zhejiang Provincial Science Foundation of
China under grant no. LY19F020046, and by the Chinese
Scholarship Council under grant no. 201708330399.

REFERENCES

[1] L. Lavazza and G. Liu, “An Empirical Evaluation of the Accuracy of
NESMA Function Points Estimates,” in International Conference on
Software Engineering Advances (ICSEA 2019), 2019.

[2] A. J. Albrecht, “Measuring application development productivity,” in
Proceedings of the joint SHARE/GUIDE/IBM application development
symposium, vol. 10, 1979, pp. 83-92.

[3] International Function Point Users Group (IFPUG), “Function point
counting practices manual, release 4.3.1,” 2010.

(4]

(5]

(6]

(71

(8]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22])

[23]

[24]

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

192

H. van Heeringen, E. van Gorp, and T. Prins, “Functional size
measurement-accuracy versus costs-is it really worth it?” in Software
Measurement European Forum (SMEF 2009), 2009.

L. Santillo, M. Conte, and R. Meli, “Early & Quick function point:
sizing more with less,” in 11th IEEE International Software Metrics
Symposium (METRICS’05). IEEE, 2005, pp. 41-41.

DPO, “Early & Quick Function Points for IFPUG methods v.3.1
Reference Manual 1.1,” DPO srl, 2012.

C. Tichenor, “The IRS Development and Application of the Internal
Logical File Model to Estimate Function Point Counts,” in IFPUG Fall
Conference of Use (ESCOM-ENCRESS 1998). IFPUG, 1998.

L. Bernstein and C. M. Yuhas, Trustworthy Systems Through Quanti-
tative Software Engineering. John Wiley & Sons, 2005.

International Software Benchmarking Standards Group, “Worldwide
Software Development: The Benchmark, release 11,” ISBSG, 2009.

A. Timp, “uTip — Early Function Point Analysis and Consistent Cost
Estimating,” 2015, uTip # 03 (version # 1.0 2015/07/01).

L. Lavazza and G. Liu, “An empirical evaluation of simplified function
point measurement processes,” International Journal on Advances in
Software, vol. 6, no. 1& 2, 2013.

International Standardization Organization (ISO), “ISO/IEC 20926:
2003, Software engineering IFPUG 4.1 Unadjusted functional size
measurement method Counting Practices Manual,” 2003.

M. Shepperd and S. MacDonell, “Evaluating prediction systems in
software project estimation,” Information and Software Technology,
vol. 54, no. 8, 2012, pp. 820-827.

L. Lavazza and S. Morasca, “On the evaluation of effort estimation
models,” in Proceedings of the 21st International Conference on Eval-
uation and Assessment in Software Engineering. = ACM, 2017, pp.
41-50.

R. Meli and L. Santillo, “Function point estimation methods: a compar-
ative overview,” in Software Measurement European Forum (FESMA
1999), 1999.

J. Popovi¢ and D. Boji¢, “A comparative evaluation of effort estimation
methods in the software life cycle,” Computer Science and Information
Systems, vol. 9, 2012.

L. Santillo, “Easy Function Points — ‘Smart’ Approximation Technique
for the IFPUG and COSMIC Methods,” in Joint Conf. of the 22nd Int.
Workshop on Software Measurement and the 7th Int. Conf. on Software
Process and Product Measurement, 2012.

nesma, “Early Function Point Analysis”” [Online]. Avail-
able: https://nesma.org/themes/sizing/function-point-analysis/early-
function-point-counting/ accessed on November 8, 2020

F. G. Wilkie, I. R. McChesney, P. Morrow, C. Tuxworth, and N. Lester,
“The value of software sizing,” Information and Software Technology,
vol. 53, no. 11, 2011, pp. 1236-1249.

P. Morrow, F. G. Wilkie, and I. McChesney, “Function point analysis
using nesma: simplifying the sizing without simplifying the size,”
Software Quality Journal, vol. 22, no. 4, 2014, pp. 611-660.

M. Ochodek, “Functional size approximation based on use-case names,”
Information and Software Technology, vol. 80, 2016, pp. 73-88.

R. Meli, “Simple Function Point: a new functional size measurement
method fully compliant with ifpug 4. Xx,” in Software Measurement
European Forum, 2011.

L. Lavazza and R. Meli, “An evaluation of Simple Function Point as a
replacement of IFPUG function point,” in 2014 joint conference of the
international workshop on software measurement and the international
conference on software process and product measurement. IEEE, 2014,
pp- 196-206.

F. Ferrucci, C. Gravino, and L. Lavazza, “Simple function points for
effort estimation: a further assessment,” in Proceedings of the 31st
Annual ACM Symposium on Applied Computing, 2016, pp. 1428—
1433.

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

APPENDIX s 4
. . . g g
Figures 13 and 14 illustrate estimates vs. actual values, 5 &
concerning projects in the [50, 20000] UFP range. =
g
£ g
E - — [=] E" | [=] g ‘g_
2 =} = =) o P w
£ & g 8- cgooo%%’% 2 e
g 3 A o
= =
= =
2 8 & 8- g
= b g o]
m 2
=] = -
| I I | I | - 8
0 5000 15000 0 5000 15000 2 =
UFP UFP E 2
« o o E 2
2 -
® o
= 3 & 8 o
g 3 °
5 E
3 E
o g @ 8
2 B 2
] Figure
- (=] (=]
1 1
0 5000 15000 0 5000 15000
UFP UFP
Figure 13. Standard IFPUG UFP measures vs. estimates (no smallest and

biggest projects).

193
o © — _ o ©
i ° | g °
g 8 o
= &’
g | o o o o
2 8
< S
7]
w
=
(=]
0 5000 15000
UFP
ke .
g 5 7 o
g g
=
p=
5 2
o 3
@ =
M
2]
=
0 5000 15000 0 5000 15000
UFP UFP

14. Standard IFPUG UFP measures vs. estimates (no smallest and
biggest projects).

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

