
The Matching Lego(R)-Like Bricks Problem:

A Metaheuristic Approach

Martin Zinner∗, Rui Song†, Kim Feldhoff∗, André Gellrich†, Wolfgang E. Nagel∗
∗ Center for Information Services and High Performance Computing (ZIH)

Technische Universität Dresden
Dresden, Germany

E-mail: {martin.zinner1, kim.feldhoff, wolfgang.nagel}@tu-dresden.de
† Technical Information Systems
Technische Universität Dresden

Dresden, Germany
E-mail: {rui.song@tu-dresden.de, andre.gellrich@gmail.com}

Abstract—We formulate and transform a real-world combina-
torial problem into a constraint satisfaction problem: choose
a restricted set of containers from a warehouse, such that the
elements contained in the containers satisfy some restrictions and
compatibility criteria. We set up a formal, mathematical model,
describe the combinatorial problem and define a (nonlinear)
system of equations, which describes the equivalent constraint
satisfaction problem. Next, we use the framework provided
by the Apache Commons Mathematics Library in order to
implement a solution based on genetic algorithms. We carry out
performance tests and show that a general approach, having
business logic solely in the definition of the fitness function,
can deliver satisfactory results for a real-world use case in the
manufacturing industry. To conclude, we use the possibilities
offered by the jMetal framework to extend the use case to
multi-objective optimization and and compare different heuristic
algorithms predefined in jMetal applied to our use case.

Keywords–Constraint satisfaction problem; Combinatorial prob-
lem; Genetic algorithm; Crossover; Mutation; Multi-objective opti-
mization; Apache Commons Math.; jMetal.

I. INTRODUCTION

We formulate a new real-world combinatorial problem,
the motivation for our study [1]. Initially, we describe suc-
cinctly the real-world problem as it has been identified at a
semiconductor company and present the general strategy to
solve it. In addition to the Single-Objective Optimization [1]
using Genetic Algorithms based on the Apache Framework, we
present a Multi-Objective Optimization strategy using Genetic
Algorithms based on the jMetal Framework and compare the
results. In order to avoid the technical difficulties related to
the industrial application, we present the equivalent problem
based on LEGO R© bricks.

A. Motivation

Some time ago we were facing a strategic problem at a
big semiconductor company. The company produces Integrated
Circuits (ICs), also termed chips, assembles them to modules
on a circuit board according to guidelines and specifications,
and ships the modules as the final product to the customer.
The ICs are stored in bins before the last technological process
(cleaning) is performed.

The difficulties arise due to technical limitations of the
tool that assembles the ICs to modules. The tool can handle

at most five bins at once. This means in particular, that the
ICs required to fulfill an order from the customer have to be
in not more than five bins. Once the bins have been identified,
the modules are assembled and shipped to the customer. If
it is not possible to identify five bins in connection with a
customer order, then either cost-intensive methods (rearranging
the content of some bins) or time-intensive methods (waiting
some days till the production process delivers new ICs) have
to be applied. Hence, identifying the bins necessary to fulfill
an order is crucial for the economic success of the company.

B. Current State and Challenge

There has been a selection algorithm in place, based
primarily on heuristics and inside knowledge regarding the
patterns of the specifications of the modules. Although the
existing selection algorithm delivered satisfactory results in
most of the cases, it runs for days in some cases and is not
flexible enough, in particular, it cannot handle slight deviations
from the existing specification patterns.

To circumvent the above inconvenient, the main aim of
our study is to determine alternative selection methods, which
always deliver satisfactory results within an acceptable time
frame, and which are easy adaptable to meet future require-
ments. Our main objective is to identify and formalize the
industrial problem as a mathematical model and to transform
the occurring Combinatorial Problem (CP) into a Constrained
Satisfaction Problem (CSP). The exact method using MAT-
LAB did not deliver results within a satisfactory time frame.
A suitable heuristic method – including Simulated Annealing
(SA), Ant Colony Optimization (ACO), Genetic Algorithms
(GA), etc. – to solve the CSP within the requirements had to
be identified and appropriate algorithms had to be developed,
which satisfy both the accuracy and performance demands.

If the general task is to find optimal solution to a set of
constraints, we speak about Constrained Optimization Problem
(COP). The primarily purpose of the industrial problem is to
find a satisfactory solution, since from the technical perspective
undercutting the requirements of the specifications does not
lead to better quality. However, a straightforward extensions
of the CSP towards COP is mentioned later.

160

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Problem Description

The following example is artificial, it does not occur in real
life in this manner, although it is very close to it. It is used to
best describe the problem without burden the reader with the
technical details of a concrete “real life” example. Later on,
we will present a “real life” example from the industry and
specify the respective mappings between the two models.

Figure 1: Illustration how two bricks, one of them a corner brick,
can be pooled together.

We describe the problem succinctly by using an analogy
of building structures out of LEGO R©-like pieces (bricks).
LEGO R©-like pieces (also termed blocks or bricks) can be
assembled to build sophisticated structures (in the following
termed objects) like buildings, etc. Figure 1 shows how two
bricks can be pooled together. The manufacturer of the bricks
wants to facilitate and simplify the assembling of the bricks
to the final objects as well as to cut manufacturing costs and
establishes a two phases strategy when designing the layout
plans of the final objects. The final object is parsed into com-
ponents (termed modules or assemblies) in a straightforward
way, such that these modules can also be reused to assemble
other objects. This strategy of representing the final object as
a composition of modules is very similar to the construction
of buildings out of prefabricated structural components, i.e.,
modules. This way, by using a modular approach, the descrip-
tion and the design plans of quite sophisticated objects can be
kept relatively simple and manageable and the complexity and
the difficulty of building the final object is delegated to the
assembly of the modules. Hence, the building specification of
the final object is split into two guidelines, one regarding how
to assemble the required modules, one regarding how to put
together the modules to form the final object.

Each brick has numerical and non-numerical character-
istics. A non-numerical attribute is, for example, a unique
ID which characterizes the bricks like shape, approximate
dimensions, number and the arrangement of the inner tubes,
etc. Another non-numerical attribute is the color of the bricks,
etc. There are very tight requirements in order to be able
to assemble two or more bricks. In order to cut costs the
technological process to manufacture the bricks is kept simple
and cost-effective to the detriment of interchangeability. Thus,
the pieces are measured after the production process and the
measurement values are persisted in adequate storage systems.

In order to be able to assemble the bricks, they have to
fit together, i.e., some measurement values (see Figure 2 for
an example) have to fulfill some constraints. The respective
measurement values must match in order that the bricks
can be assembled. For example, putting four bricks together,
side by side and on top of each other, strict restrictions
concerning perpendicularity and planarity tolerance, have to be
satisfied, such that for example, the overall maximum planarity

error is 0.05 mm and the maximum perpendicularity error
is 0.1 angular degree. Unfortunately, these restrictions can
only be evaluated when all the measurement values of the
bricks chosen to build the module are at the builder’s disposal.
Corresponding calculation prescription are available.

Figure 2: Exemplification of the measurements of a brick.

Once, the modules have been assembled, the object can
be put together out of the pre-assembled modules with no
limitations. Furthermore, all the modules are interchangeable
with similar ones.

The manufacturing of the bricks is continuous, the bricks
are packed into bins after the measuring process occurred and
stowed in a warehouse. The ID, the non-numerical attributes
and the numerical measurement values are stored in a database
and associated to the bin ID. This way, the manufacturer
knows exactly the content of each bin. In order to keep the
manufacturing costs low, the bins are never repacked, after a
bin is full and in the warehouse.

Figure 3: A frame with window as an example for a module.

The assembly plan for a particular structure (for example
as in Figure 3) is not univocal, i.e., the number and the type of
the bricks to build the envisaged structure is not unequivocally
specified, the assembly plan contains more alternatives. Since
the manufacturer provides detail information in digital form
regarding each brick contained in the bins offered for sale, a
computer program could easily verify that a house as given
in Figure 4 could be built up from a particular set of bins.
Unfortunately, identifying the set of bins necessary to build an
object (for example the house as in Figure 4) turns out to be
a very hard task to accomplish. In order to keep costs down,
the number of the bins to be purchased, has to be limited to
the necessary ones.

Let us suppose that the order can be assembled out of
5 bins, and the manufacturer offers 1000 bins for sale on his
home page. Regrettably, the computer program can only verify
if a particular set of five bins contains the bricks necessary to
build the house. The brute force method to verify each set
of 5 bins out of 1000 does not deliver a practical solution as
elementary combinatorics show. Thus, other methods have to
be applied.

161

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4: House as exemplification of an order composed of
modules.

D. Outline

The remainder of the paper is structured as follows: Sec-
tion II gives an overview about existing work related to the
described problem. Section III introduces the mathematical
model and describes how the combinatorial problem can be
transformed into a constrained satisfaction problem. Section IV
applies the proposed selection algorithm based on genetic algo-
rithms to an industrial use case and shows the performance of
an implemented solution which is based on genetic algorithms.
A short investigation regarding multi objective optimization is
considered in Section V, these investigations are extended by
considering the porting and extension of the use case to the
jMetal framework in Section VI. Additionally, the possibility
offered by jMetal to compare different heuristic algorithms is
taken advantage of, whereas Section VII concludes this paper
and sketches the future work.

II. RELATED WORK

Generally speaking, combinatorial optimization problems
are considered as being difficult [2] [3], which stimulated
the development of effective approximate methods for their
solutions. Combinatorial optimization problems appear in a
multitude of real world applications, such as routing, as-
signment, scheduling, cutting and packing, network design,
protein alignment, and in many fields of utmost economic,
industrial, and scientific importance. The techniques for solv-
ing combinatorial optimization problems can be exact and
heuristics. Exact algorithms guarantee optimal solutions, but
the execution time often increases dramatically with the size of
the underlying data, such that only small size of instances can
be exactly solved. For all other cases, optimality is sacrificed
for solvability in a limited amount of time [4].

The concept of a constraint satisfaction problem has also
been formulated in the nineteen seventies by researchers in
the artificial intelligence. Characteristic CSPs are the n queens
problem, the zebra puzzle, the full adder circuit, the crossword
puzzle, qualitative temporal reasoning, etc. Typical examples
of constrained optimization problems are the knapsack prob-
lem and the coins problem [5]. Further examples of combinato-
rial optimization problems [6] are: bin packing, the traveling
salesman problem, job scheduling, network routing, vehicle
routing problem, multiprocessor scheduling, etc.

For the last decades, the development of theory and
methods of computational intelligence regarding problems of
combinatorial optimization was of interest of researchers.
Nowadays, a class of evolutionary methods [7]–[10] is of

particular interest, like simulated annealing, ant colony opti-
mization, taboo search, particle swarm optimization, to which
genetic algorithms belong [11]–[14]. Recent publications in
this direction [15]–[21] prove the efficacy of applying genetic
and other evolutionary algorithms in solving combinatorial
optimization problems.

A genetic algorithm is an adaptive search technique based
on the principles and mechanism of natural selection and of the
survival of the fittest from the natural evolution. The genetic
algorithms evolved from Holland’s study [22] of adaptation in
artificial and natural systems [6].

Typical examples of using evolutionary algorithms are the
genetic algorithm approach to solve the hospital physician
scheduling problem and an ant colony optimization based ap-
proach to solve the split delivery vehicle routing problem [23].

The report [24] offers an approach to use genetic algo-
rithms to solve combinatorial optimization problems on a
set of euclidean combinatorial configuration. The euclidean
combinatorial configuration is a mapping of a finite abstract set
into the euclidean space using the euclidean metric. The class
of handled problems includes a problem of balancing masses
of rotating parts, occurred in turbine construction, power plant
engineering, etc.

III. THE FORMAL MODEL

In the following, we will formalize the description of the
combinatorial problem by introducing a mathematical model.
This way, we use the advantages of the rigor of a formal
approach over the inaccuracy and the incompleteness of natural
languages. First, we introduce and tighten our notation, then
we present the formal definition of the constraints which are
considered in our formal model and which are the major
components in the definition of the fitness function used
to control and steer the genetic algorithm. Concluding, the
combinatorial problem is defined as a constraint satisfaction
problem.

A. Notation

In the following, we will formalize the description by in-
troducing a mathematical model in order to use the advantages
of the rigor of a formal approach over the inaccuracy and the
incompleteness of natural languages.

Let V be an arbitrary set. We notate by P(V) the power
set of V, i.e., the set of all subsets of V, including the empty
set and V itself. We notate by card(V) the cardinality of V.
We use a calligraphic font to denote index sets, such that the
index set of V is notated by I V .

The finite sets of bricks, bins, (non-numerical type of)
attributes, (numerical type of) and measurements are denoted
as follows:

S := {si | i ∈ I S and si is a brick (stone)},

B := {bi | i ∈ I B and bi is a bin (carton)},

A := {Ai | i ∈ I A and Ai is an attribute},

M := {M i | i ∈ I M and M i is a measurement}.

Let i ∈ I A , j ∈ I M , and k ∈ I S . We denote by ai
k the value

of the attribute Ai of the brick sk and by mj
k the value of

162

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the measurement M j at the brick sk. We denote the list of
assembly units (modules) by

U := {U i | i ∈ I U and U i is an assembly unit (module)}.

The construction (guideline) plan for a module U ∈ U
contains

a) the (three dimensional) design plan description, i.e., the
position of each brick within the module,

b) the non-numerical attribute values for each brick and

c) prescriptions regarding the measurement values.

Analogously, we denote by

O := {Oi | i ∈ I O and Oi is an object}

the list of objects for which there exists construction plans.

The non-numerical attributes values of the selected bricks
have to match the corresponding values in the guideline plan.

We denote by

R := {Ri | i ∈ I R and Ri is a requirement (specification)}

the list of the requirements (specifications) of the objects.

B. Transformation of the CP into a CSP

Let O ∈ O an order. Then, according to the specifications,
there exists (proxy) modules M̂ l1 , M̂ l2 , . . . , M̂ lk , such that O
is an ordered list of modules, i.e., O = (M̂ l1 , M̂ l2 , . . . , M̂ lk).
The term proxy is used to denote an abstract entity according
to the specifications. Analogously, each module M̂ i with i ∈
{l1, l2, . . . , lk} is an ordered list of proxy bricks (stones),
i.e., M̂ i = (ŝi1 , ŝi2 , . . . , ŝim). Hence, each module can be
represented by an ordered list of proxy bricks, i.e., O =
(ŝk1 , ŝk2 , . . . , ŝkn). This representation will be used later to
define the individuals within the context of the genetic algo-
rithms. Furthermore, we set as card(O) the number of proxy
bricks associated to the order O, i.e., card(O) = n.

Let O = (ŝk1 , ŝk2 , . . . , ŝkn
) be an order. We say that

the ordered list (sk1 , sk2 , . . . , skn
) with si ∈ S ∀i ∈

{k1, k2, . . . , kn} is an assignment (embodiment) of O. This
means especially that the abstract unit of the specification is
materialized within the production process. We set

E := {Ei | i ∈ I E and Ei is an assignment (embodiment)}.

Let R ∈ R be a requirement (specification) of a specific
module U ∈ U and let {ŝ1, ŝ2, . . . , ŝn} be the proxy bricks of
the specification. The design plan of the specification provides
the three-dimensional assembly plan of the proxy bricks.
Additionally, the specifications provide information regarding
the restriction the bricks have to fulfill in order to be eligible.
For each j ∈ {1, 2, . . . , n} the specifications contain the values
{âi

j | i ∈ I A} of the attributes A := {Ai | i ∈ I A} at the
proxy brick ŝj . We use the symbol âi

j to denote the value of
the attribute ai of the proxy (placeholder) brick ŝj .

This means especially, that the brick sj can substitute the
proxy brick ŝj if the values of the corresponding attributes
coincide, i.e., ai

j = âi
j for all i ∈ I A .

More formally, the attributes must satisfy certain con-
straints:

CA : A×S→ {yes , no},

{si
j | i ∈ I A , j ∈ I S} 7→ CA(ai

j).

CA(ai
j) = yes if the attribute constraint is satisfied for the

brick sj i.e., ai
j = âi

j , else CA(ai
j) = no.

On the other side, the (numerical) measurement values
must also satisfy certain constraints (restrictions). For example,
the standard deviation of the respective measurement values
for some bricks of a specific module should not surpass some
given limits. Formally, CM can be represented as:

CM :M× U→ {yes , no},

{mi
j | i ∈ I M , j ∈ I U} 7→ CM (mi

j).

CM (mi
j) = yes if the constraint is satisfied for the bricks

belonging to the module U j , else CM (mi
j) = no.

In order to be able to reduce the constraints to brick level,
i.e., to be able to decide whether the constraint is satisfied
for a specific brick or not, we use the restriction CS

M of CM

namely CS
M := CM

S
such that CS

M (si
j) = yes if sj ∈ U j and

CM (mi
j) = yes ; else CS

M (mi
j) = no. Let U ∈ U be a module.

The above means especially, that the measurement constraint
on brick level is satisfied for s ∈ U if the measurement
constraint is satisfied (on module level) for U .

Since the measurement values do not really characterize
the modules (they must only fulfill the requirements regarding
the constraints), we introduce equivalence classes on the set
of modules. Two modules belong to the same class if

a) they have both the same design plan,

b) the component bricks fulfill the same (non-numerical)
attributes and

c) the prescriptions regarding the measurement values are
satisfied for both modules.

Accordingly, two modules belonging to the same equiva-
lence class are interchangeable.

Hence, all the bricks needed for a module must be selected
in order to be able to finally decide if the constraints are
satisfied or not.

As already mentioned, each object O ∈ O should be
assembled out of bricks contained in a reduced number of
bins. We set MaxBO for the maximum number of bins as
mentioned above.

Let i ∈ I B , j ∈ I O , let {si1 , si2 , . . . , sik
} be the content of

the bin bi and let {sj1 , sj2 , . . . , sjl
} be an assignment of Oj ∈

O. We set b
j

i := 1 if {si1 , si2 , . . . , sik
}∩{sj1 , sj2 , . . . , sjl

} 6= ∅
else 0. This means especially, that b

j

i := 1 if the bin contains
bricks belonging to the respective assignment of Oj .

Analogously, the constraints regarding the bins (cartons)
can be regarded formally as:

CB : P(B) ×O→ {yes , no},

{B ∈ P(B), Oj ∈ O} 7→ CB(B, Oj).

163

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Let I an index set, such that B = {bi|i ∈ I}. Then
CB(B, Oj) = yes if

∑

i∈I

b
j

i ≤ MaxBOj

, (1)

i.e., the bricks of the order Oj are contained in no more than
MaxBOj

bins. Additionally, CB(B, Oj) = no if the above
condition is not satisfied.

Similar to the measurement constraint CM , we reduce CB

to brick level. Let S := {si1 , si2 , . . . , sik
} be an assignment

of Oi. Let B = {bl1 , bl2 , . . . , bln} be a set of bins, such that
each bin contains at least one s ∈ S and there is no brick
s ∈ S which is not contained in one of the bins of the set B.
In this sense, B is minimal regarding the assignment S. Then,
for the restriction CS

B on S of CM we have CS
B(s) = yes if

CB(B, Oi) = yes , i.e., all the bricks of the assignment S are
stored in no more than MaxBOj

bins. Additionally, CS,U
B (s) =

no if CB(B, Oi) is not satisfied.

Until now, we considered the constraints related to the
architecture of the object, i.e., related to the attributes of a par-
ticular brick, the measurement values of the bricks belonging to
a module, and the restrictions regarding the bins which contain
the bricks. We can condense the constraints mentioned above,
such that they relate only to bricks. This means especially, that
the measurement constraint are satisfied for a brick, if there
is a group of bricks (module, or order), such that the given
measurement constraint is satisfied as described above.

We set accordingly:

C := {Ci | i ∈ I C and Ci is a distinct constraint}

the list of distinct constraints.

The constraints can be considered as a function. Please
recall that I S is the index set of S.

C : S× I C → {yes , no},

{si
k | i ∈ I C , k ∈ I S} 7→ C(si

k).

Please consider, that the above representation can be mis-
interpreted, such that the constraint is exclusively a property
of the respected brick. This is not the case, for example
the measurement constraints fulfilled or not for the bricks
assigned to a module. Hence, if one brick is changed, then
the constraints of all the bricks belonging to a module can be
invalidated.

We define now formally the weights, (i.e., w is a weight
if w > 0) which are necessary to be able to model the
importance of the constraints within the genetic algorithm. We
set

W := {wi | i ∈ I C and wi is a weight}

the list of weights. This means especially, that each constraint
has an associated weight.

The fitness function [25] characterizes the quality of an
assignment of an order, such that a value closer to 1 means
a better quality. It plays an important role in the decision,
whether an assignment fulfills the specifications or not.

The purpose of the following function inv is purely tech-
nical, it is used to switch the values of the boolean values
1 and 0 to be used in the definition of an example of the
fitness function, i.e., inv : {yes , no} → {0, 1} such that
inv(yes) = 0 and inv(no) = 1.

Please find below an example for the fitness function. Let
I S ⊂ I S and let wi ∈W for all i ∈ I C . Then:

F : E× I C → (0, 1],

{si
k | i ∈ I C , k ∈ I S} 7→

1

1 +
∑

i∈I C ,k∈I S

wi ∙ inv(C(si
k))

. (2)

Problem formulation (Combinatorial problem)
Let O ∈ O a given object and let n ∈ N.

Choose n bins from the warehouse, such that the
object can be assembled out of the bricks contained
in these bins according to the existing construction
plans.

The construction plan for an object O ∈ O specifies the
lists of (non equivocally determined) modules, including the
design plan, such that the object can be build out of these
modules. Hence, it can be unambiguously decided, whether
the n cartons contain the necessary bricks to assemble them
to modules, which can be put together to form the required
object. Let us suppose that n � card(C), i.e., the number
of bins in the warehouse exceeds the number of bins to be
chosen by orders of magnitude. The difficulties of solving the
problem in a straightforward way lie in the very large number
of possibilities to combine n bins out of card(B). Therefore,
other strategies have to be used.

To summarize: the specification of an object (for example
a house composed of bricks), contains very strict requirements
regarding the components. The assembly plan specifies the
strict order in which the bricks have to be assembled. Hence,
the bricks must satisfy some attributes (like shape, type, color,
etc., in order to satisfy the requirements of the construction
plans. Moreover, some bricks have to fit together (for example
the window frame) so they can be assembled in the order
given by the construction plans. If the above requirements
are satisfied for all the units (modules), the object can be
assembled. Furthermore, the selected bricks have to be selected
from a restricted number of bins (cartons). The latter makes
the task so difficult.

From a formal point of view, the associated constraint
satisfaction problem of the combinatorial problem can now
be formulated:

Problem formulation (Constraint satisfaction problem)
Let O ∈ O be an order with the representation
O = (ŝ1, ŝ2, . . . , ŝk). Set wi = 1 for all i ∈ I C .

Find an index set {l1, l2, . . . , lk} ⊂ I S such that
(sl1 , sl2 , . . . , slk) is an assignment of O, having
F ((sl1 , sl2 , . . . , slk)) = 1.

C. Formulation as a System of Equations

In the following, we will formulate the problem as a System
of Equations. For readability reasons, we will refresh the some

164

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of the notations already introduced. Let S ⊂ S a subset of the
bricks. We denote – as we have done before – by I S the index
set of S. We recall that I S is the index set of S, i.e., I S ⊂ I S

and I C is the index set of the distinct constraints C. Moreover,
we recall that CB are the bin constraints and correspondingly,
I CB is the index set of the bin constraints.

Let Oj = (ŝk1 , ŝk2 , . . . , ŝkn
), j ∈ I O be an order.

Then card(Oj) is equal to the number of proxy bricks, i.e.,
card(Oj) = n. Let i ∈ I B . Please recall that b

j

i := 1 if the
bin bi contains bricks belonging to the respective assignment
of Oj .

Problem reformulation (Constraint satisfaction problem)
Find an assignment S ⊂ S of Oj such that all
constraints are satisfied:

∑

i∈I C , k∈I S

inv(C(si
k)) = 0. (3)

Requiring that the sum of chosen bins is minimal, one can
formulate the problem as an Optimization Problem (OP)

Problem formulation (Optimization problem)
Find an assignment S ⊂ S of Oj such that:

1) all but the bin constraints are satisfied:
∑

i∈(I C\I CB), k∈I S

inv(C(si
k)) = 0 (4)

2) and the number of bins is minimal:

minimize
∑

i∈I

b
j

i (5)

Please recall that according to the description of the assign-
ment, the equality

card(S) = card(Oj) (6)

holds, i.e., the number of the bricks we seek is determined
through the specification of the order Oj .

Equation (3) means especially that all constraints – includ-
ing the bin constraint (i.e., relation (1)) – have to be satisfied.
In contrast to the above, the optimization strategy does not
require that the bin constraint is satisfied (Equation (4)), but
the minimal number of bins (see condition (5)) is seeked.

There are either no solution to CSP / OP or one / multiple
solutions. The multiple solutions are equivalent, i.e., two
solutions which satisfy the constraint are regarded as of the
same quality. Accordingly, only one assignment is seeked.

Let A be an integer matrix; b and c vectors, an Integer
Linear Program (ILP) is expressed as [26]

max
x∈Zn

{cT x | Ax ≤ b, x ≥ 0}. (7)

Unfortunately, the measurement constraints do not apply on the
brick level, moreover it has to be decided for a module (i.e., a
bunch of bricks) if the measurements values are satisfied. This
means especially, that the measurement constraints are satisfied
for all of the bricks of the module or for none of them. This

means that the reformulated CSP cannot be represented in a
direct way as an ILP.

However, in order to linearize the relation (4) the OP can be
formally transformed by considering modules instead of bricks.
Accordingly, a module M satisfies a specific constraint if all
the bricks composing the module M satisfy the constraint.
Hence, the module is contained in a nonempty set of bins and
not anymore in a single bin. Unfortunately, this strategy can
be applied only on very small data set, since the measurement
constraints must verified for all modules which can be build
out of the existing bricks.

To summarize, it does not seem that the relation (4) can
be meaningfully linearized – due to the constraints which act
on a bunch of bricks – in such a way that the reformulated
CSP can be transformed into a ILP, thus benefiting from the
advantages of the research in this area.

D. Reformulation as a Nonlinear System of Equations

In the following, we will reformulate the problem as a
nonlinear system of equations. Therefore, firstly we recall and
strengthen the relating definitions and correlations between
them in order to ease the reading of the following section.

• I B is the index set of the set of bins (cartons); obviously
card(I B) = card(B), where B is the set of bins
(cartons),

• I (S i) is the index set of the bricks (stones) contained in
bin bi for all i ∈ I B ,

• Si := {si,k | i ∈ I B , k ∈ I (S i) and sk,i is a brick
(stone) contained in bin bi} ⊆ S, i.e., Si is the set
of bricks contained in bin bi, for all i ∈ I B , It follows
from the definition that card(I (S i)) = card(Si)

• Clearly, card(S) =
∑

i∈I B

card(I (S i)), the total number

of bricks (stones) is obtained by summing up the bricks
contained in the cartons.

As mentioned, we denote by si,k the brick located at bin bi

having the local index k and introduce the following set of
boolean variables:

si,k :=

{
1 if brick si,k has been selected,

0 otherwise

for all i ∈ I B , k ∈ I (S i).

Please recall that U is the set of all assembly units (modules),
i.e., U := {U i | i ∈ I U}; such that I U is the index set of U.
We denote:

sUj

i,k :=

{
1 if si,k = 1 and brick si,k ∈ U j ,

0 otherwise

for all i ∈ I B , k ∈ I (S i), j ∈ I U .

and

si :=

{
1 if ∃k ∈ I (S i) such that si,k = 1,

0 otherwise

for all i ∈ I B .

165

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As already defined, I A be the index set of the set of the non-
numerical attributes A. The matching of the non-numerical
attributes is modeled by introducing a new set of boolean
variables:

d
g

i,k :=

{
1 if fg

i,k = f̂g
i,k,

0 otherwise

for all g ∈ I A , i ∈ I B , k ∈ I (S i).

Unfortunately, the measurement constraints are assembly
unit (module) related, i.e., the measurement values of the
bricks belonging to a specific assembly unit as a whole satisfy
or not the constraints requirements. For example, the standard
deviation of a specific measurement may not surpass a given
threshold value for the bricks belonging considered assembly
unit. Accordingly, all bricks belonging to a module have to
be selected before measurement satisfaction decisions can be
validated.

Let U ∈ U a particular assembly unit (module). The
fulfilling of the constraints is modeled by introducing a new
set of boolean variables:

eh,U
i,k :=

{
1 if ∀si,k ∈ U : si,k fulfills constraint Eh,

0 otherwise

for all h ∈ I M , i ∈ I B , k ∈ I (S i).

This means in particular, that opposite to the non-numerical
attributes, the measurement constraints do depend on the
specifications of each module.

Let O ∈ O an order. Then, according to the definition
of the order, there exists (proxy) modules {Û i | i ∈ I UO},
such that O is a ordered list of those modules. Let I UO the
index set of the set of modules and let MaxBO the maximal
number of bins where the bricks may be located. For the sake
of simplifying the notations, we set p := card(O) as the
number of the bricks we seek to determine. By defining a
vector t ∈ {0, 1}card(I B)×card(I (Si)) with elements ti,k := si,k

∀i ∈ I B , k ∈ I (S i), the problem can be reformulated as a
system of equations:

Problem reformulation (Non-linear system of equations)
Given all quantities listed above except for si,k,

i ∈ I B , k ∈ I (S i), find t ∈ {0, 1}card(I B)×card(I (Si))

such that

1) p bricks from all cartons are chosen:
∑

i∈I B

∑

k∈I (Si)

si,k = p, (8)

2) maximal MaxBO bins are chosen:
∑

i∈I B

si ≤ MaxBO, (9)

3) the non-numerical features are matched:
∑

i∈I B

∑

k∈I (Si)

dg
i,k ∙ si,k ≥ p for all g ∈ I A ,

(10)

4) the measurement constraints are fulfilled:
∑

i∈I B

∑

k∈I (Si)

eh
i,k ∙ sUj

i,k ≥ p for all h ∈ I M , j ∈ I U ,

(11)

The inequations (10) result as follows: The attributes have to
match for at least p bricks, thus, the product dg

i,k ∙si,k of at least
p terms has to be one. Each of the remaining terms will be
either one or zero due to the boolean variables. Therefore, the
total sum will be also greater than or equal to p. The inequa-
tions (11) have been determined analogously. In total, there
are one equation from (8), one inequation from (9), card(I A)
inequations from (10), and card(I M) ∙ card(I U) inequations
from (11) compared to

∑

i∈I B

card(I (S i)) := card(I S) unknown

variables.

All equations are linear. Please note that the variables si,k

are boolean ones and thus, have to be integer. We only have
to find one solution of the system. However, if we want to
maximize the number of objects which can be assembled from
the given set of cartons, then we can formulate an optimization
problem based on the linear system defined above. It has to
be examined if this optimization problem leads to an integer
linear program (ILP). In case this is possible, then rewriting the
ILP in standard form will be the basis for solving the problem.

There exists a lot of methods for solving ILPs. Branch-and-
bound and branch-and-cut algorithms are two of them. They
work in a heuristic way.

IV. USE CASE: AN EXCERPT

In the following, we present a real-life use case [27] we
came across at an international semiconductor company. We
describe the problem by using the specific terminology in
the semiconductor industry, utilizing them with care and only
when it is inevitable and undeniable necessary. We describe the
fundamentals of the genetic algorithms and show the way it is
used to solve our problem. Finally, we conclude by presenting
some performance tests.

A. Problem Description

The company manufactures integrated circuits (ICs, also
termed chips), which are subsequently assembled on circuits
boards to salable entities, termed modules. In order to keep
production cost low, the specification of the ICs do not impose
very tight constraints on the attributes of the ICs, such that
the same IC can be used for different types of modules. On
the contrary, the specification regarding the modules are very
stringent, in order that the module should be fully functional
at the customer side. As soon as the ICs are manufactured, a
good dozen of electrical properties are measured and persisted
in a data repository. Figure 5 shows a symbolic representation
of an IC.

Usually, four to six ICs are assembled on the module. The
specification of the modules contains the design (i.e., number
and positioning) of the ICs on the integrated circuit board,
the type of the IC (article, number of pins, etc.), and several
constrains regarding the interaction of the ICs of the module.
Figure 6 shows a symbolic representation of a module with

166

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

5 ICs. In order for the module to be fully functional, the
corresponding measurement values of the ICs have to be in
a narrow range. For example, for a specific measurement, the
values of the voltage of the ICs have to be between 2.1 volt and
2.5 volt in order that the IC is not scrapped and can be used
for further processing. Unfortunately, not all the ICs having
the corresponding measurement value in the range as described
above, can be assembled to a module. The values differ too
much from each other, and the module will not work properly
at the customer side. To circumvent this impediment further
constraints are needed. These constraints apply on all ICs of
the module or just on a subset of it. For example, an often used
constraint is limiting the standard deviation of the voltage to
0.1 within one module.

Figure 5: Symbolic representation of an IC.

Figure 6: Symbolic representation of a module with 5 ICs.

The ordering unit (termed work order) contains the de-
scription of the modules, the customer expects to be shipped
together at once. There are no additional constraints on the
ICs regarding the work order. As soon as the manufacturing
process of the ICs has been finished, the ICs are packed in
boxes. That way the cleaning of the ICs can be performed
and the ICs can be assembled to modules. The boxes are
then transferred to the warehouse. Figure 7 shows a symbolic
representation of the bins in the warehouse.

ICs Set

···

Bin 1（21 ICs） Bin 2（18 ICs） Bin n（27 ICs）

Figure 7: Symbolic representation of the Warehouse containing the
bins and the bins containing the ICs.

The difficulties of the semiconductor company to honor
each the order in general are also due to technological restric-
tions, since the tool that assembles the ICs can handle at most
five boxes, i.e., all the ICs necessary to fulfill a work order
should be located in five boxes. Due to the fact that the work
orders always contain the same number of ICs, independent of

the specification of the modules, the minimal number of boxes
which are needed to meet the requirement of the work order
is four with 9 percent surplus of ICs.

If we rephrase the above in a more concise form, the
challenge is: Find five boxes in the warehouse, such that it
contains the ICs needed to fulfill the requirements for a work
order.

B. Used Methods

Simple combinatorics show that the brute force method,
i.e., go through all the possibilities and check if the selected
boxes fulfill the requirements, is not implementable for prac-
tical systems. Fortunately, there is an implementation in place
for the selection strategy, based on heuristics, local optimum,
and inside knowledge of the pattern of the modules. This way,
we have a very good way to compare the results of the genetic
algorithm with alternative solutions. Regretfully, our attempt
to deliver exact solutions on the problem using MATLAB were
not crowned by success due to the large amount of data and to
the restricted computing power of the machines we used. The
disadvantages of the already existing solution for the selection
strategy were partly also the issues that made it possible to set
up such a solution:

a) the unpredictability that the selection strategy delivers
a solution within the expected time frame;

b) the inflexibility to even minor changes in the design and
specifications of the modules, thus, the unpredictability
that the software can be used in the future;

c) heavy maintenance efforts due to the sophisticated and
architecture and implementation;

d) lack of the proprietary knowledge and documentation
of the implementation on the low level side;

e) impossibility to reuse the existing code with reasonable
efforts for further development and enhancements.

Start

Generate initial
population

Is Stop
Condition met?

Output result

Create next
generation

End

No

Yes

Figure 8: Overview of the genetic algorithm.

The concepts of the genetic methods are straightforward
and easy to understand. The main idea is that we start with an
initial population of individuals, and as time goes by, the genes
of the descendants are improved, such that at least one indi-
vidual satisfies the expectations. The individual incorporates

167

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the requirements of the problem. The expectation in the end
is that these requirements are finally satisfied. Each individual
owns genes, part of it is inherited by his descendants.

The principle of the genetic algorithm is straightforward,
see Figure 8 for a basic representation. First, the initial
population is randomly generated, then subsequent generations
are created as long as the stopping condition is satisfied. The
individuals with the highest quality characteristics constitute
the main part of the output.

We define the individuals as an abstraction of the work or-
der, such that each gene of the individual is the abstraction for
an IC of the warehouse. Accordingly, the individual satisfies
the requirements if the ICs can be assembled to modules, such
that the corresponding work order is fulfilled.

Figure 9 is a symbolic representation of an individual (also
termed chromosome) containing three modules. According to
the specifications, each module contains six ICs. The slots of
the modules – i.e., the plug-in location where the ICs are
inserted – are numbered consecutively, from 1 to 18 (upper
row of the table). Generally speaking, the specific slots – each
of them corresponds to the specification of the components of
the respective module – represent formally the requirements
regarding the ICs composing the modules, hence the structure
of the consecutive modules (Module 1 till Module 3) also
determines the layout of the individual. Accordingly, the ICs
assigned to the slots are the genes of the individual. The middle
row of the table in Figure 9 shows an assignment of the slots
with ICs, for example, the IC with the unique identifier (Id)
263 has been assigned to slot No. 1, etc. The bottom row
illustrates the storage of the ICs in the bins, for example the IC
with the Id 263 is stored in the bin No. 6. This latter allocation
cannot be changed during the selection process, i.e., it is not
possible to rearrange the content of the bins before or during
the selection process.

ICs Set

Module 1 Module 2 Module 3
654321 121110987 181716151413

62144788251759457235577928437229752417204755246179263

832145792137 453721837979 798383452183

Bin 79(21 ICs) Bin 83(18 ICs) Bin 21(9 ICs) Bin 45(11 ICs)Bin 37(19 ICs)

Figure 9: Symbolic representation of the module based structure of
an individual (chromosome) containing the respective ICs (genes).

The initial population is randomly generated out of the
ICs in the warehouse. The criterion, which determines to what
degree the individual fulfills the requirement of the associated
work order, is the fitness function. The fitness function takes
values between 0 and 1, a greater value means that the
individual is more close to fulfill the specification of the work

order. To achieve a value of 1 is the ultimate goal. It means
that the corresponding individual satisfies the requirements to
fulfill the associated work order. Hence, the definition of the
fitness function is one of the most sensible parts of the genetic
algorithms and the setup of this function should be considered
very carefully.

Actually, the strategy of the genetic algorithm resembles
very much to the evolution of the mankind. People marry,
have children by passing their genes to them, divorce and
remarry again, have children, and so on and so forth. The
expectation is that the descendants have more “advantageous
genes”, regardless of how the term “advantageous genes” is
defined.

Establishing the fitness function is one of the most im-
portant strategical decision to be taken when setting up the
genetic algorithm. In our case, there are a few constraints
(more than one) which affect the quality of the individuals.
Implementations which try to find a Pareto optimal state [28],
[29] (i.e., a state from which it is impossible to make an
individual better, without making at least one individual worse)
use strategies as tournament selection [30] or the improved
Pareto domination tournament [29].

As already mentioned, the starting population is selected
aleatorically. Once, the first generation is constituted, the
preparations to generate the next generation are met. Unfor-
tunately, the Apache Commons Mathematics Library does not
support multi-objective optimization problems, hence our al-
gorithms cannot use the strategy of the Niched Pareto Genetic
Algorithm (NPGA) [29].

Instead, for each individual, the fitness function is calcu-
lated such that the suitability to fulfill the expectations, is
evaluated for each individual. The higher the computed value
is, the better fitted are the individuals. Let us suppose, that the
initial population is composed of 500 individuals. We use some
of the concepts provided by Apache Commons Mathematics
Library in our implementation, among others the elitism rate,
which specifies the percentage of the individuals with the
highest fitness value to be taken over / cloned to the new
generation. We use an elitism rate of 10 percent, i.e., the 50
best individuals will be taken without any changes of the genes
to the new generation.

The population of each generation remains constant in
time. In order to choose the remaining 450 individuals (par-
ents) to generate the next generation, we use the tournament
selection [30] including the implementation of the Apache
Commons Mathematics Library. The tournament strategy can
be configured by the arity of the tournament strategy, which
specifies the number of individuals who take part in the
tournament. For our purpose, five individuals in the tourna-
ment proved to be efficient. Accordingly, five individuals are
selected randomly out of the total population of 500 individuals
to take part in the tournament. Out of the individuals taking
part in the tournament, the fittest individual is selected as
a parent for the new generation. This way, 500 parents are
selected out of a population of 500 individuals. These parents
are paired aleatorically and they always have two descendants.
This way, the next generation is created. Accordingly, the size
of each generation remains constant.

We use two major strategies in order to improve the quality

168

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of the genes of the descendants, the crossover strategy de-
scribed in [31] and the mutation strategy. Generally speaking,
during the crossover phase, the two descendants receive the
partly interchanged genes of their parents. Additionally, some
particular genes can suffer mutations, i.e., the values of those
particular genes are modified. The mutation policy can be
configured, such that it allows or rejects the inclusion of new
bins to the descendants. This way, the bin constraints can be
reinforced, or the flexibility to mutate to any gene ensured.
The general strategy to generate the descendants is based with
some restrictions on random decisions.

BinningGeneticAlgorithm

ICSet

IC

WorkOrder

Module
Specification

IC
Specification

Bin Constraint

Restriction
Measurement
Constraints

Non-Numerical
Constraints

1

1

1

1..*

1

1

1

1 1

1..6

1

1 *

*1

Figure 10: UML class diagram of algorithm and its parameters.

As shown in Figure 10, the genetic algorithm relies on
the work order and the set of ICs as its principal input
parameter. The ICs set holds the primary production result
and the work order identifies the specification of the final
product – i.e. set of modules –, which are delivered as the final
product to the customer. The specification of the work order
include the constraints of the IC, module and work order level.
The constraints on the IC level were termed non-numerical
constraints and relate to each particular IC, the constraints on
module level were termed measurement constraints and they
relate to the restriction the ICs that form the module have to
satisfy as a group. Similar considerations apply for the bin
constraints.

Start

Add a random individual
into the arena

Is arena
full?

Choose the fittest
individual from the arena

End

No

Yes

Figure 11: Tournament selection.

As mentioned above, according to the percentage given by
the elitism rate, a subset of individuals of the current generation
having promising genes are taken over unmodified to the new
generation. In order to select the next pair of individuals during
the process of establishing the new generation, see Figure 12,

two groups of randomly chosen individuals are formed, the size
of the group is configurable and given by the arity value. Then,
the best individual from each arena is selected, circumventing
the disadvantage of random selection. This method is depicted
in Figure 11.

We describe in brief the creation strategy of the new
generation. Some parameters are freely configurable, in order
to assure best performance. Thus, the crossover rate, i.e., the
threshold of the probability that a crossover is performed, has
to be set in advance. Then, a crossover is performed if a
randomly generated number is less than the crossover rate.
Same is true regarding the mutation rate.

Start

Initialization of the new generation
according to the elitism rate

R < mutation rate

Select a pair of individuals from the
current generation;

Choose a random number R ∈ [0,1)

R < crossover rate

Cross the pair of
individuals

Mutate the pair
of individuals

Add pair of individuals
to the new generation

Is new generation full?

End

Yes

No

Yes

No

Yes

No

Figure 12: Example of the creation of a new generation.

The crossover policy is quite straightforward. The position
and length of the genes to be crossed over are randomly
generated and the two descendants have receive the inter-
changed genes of their parents. In our case, this policy has
been improved, such that by in the end, the number of the bins
of at least one descendant is using, is lower than (or if this is
not possible equal to) the number of the bins of their parents.
This way, the reduction of the number of bins an individual is
using, is enforced by the crossover policy itself.

The mutation policy is also very intuitive. In addition to
the mutation rate, which defines in the end, whether mutation
is applied after the crossover phase or not, the exchange rate

169

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

indicates whether a slot (IC) is to be renewed. Analogously,
the mutation policy can be configured such that the number
of bins the descendant is using is reduced or in worst case,
kept constant, i.e., using the Bin Reduction Mutation (BRM)
policy.

A simplified flowchart regarding the constitution of a new
generation based on the current one is shown in Figure 12.
First, based on the elitism rate, the best individuals of the
current generation are cloned into the next generation. This
way, the genes of the most promising individuals are saved for
the next generation, this way, initializing the new generation.
Next, either randomly or by tournament selection a new pair of
individuals is selected from the current generation. According
to a randomly generated number, crossover and mutation is
performed on the pair of the individuals or on the single
individuals, respectively. The pair of individuals generated
this way is added to the set of individuals forming the new
generation. The process of filling up the set of the new
generation with new pairs is continued until the size of the
new generation equals the size of the current generation.

654321 121110987

654321 121110987

654321 121110987

654321 121110987

599119161151159163 315307295241516550

511111 332255

241505509119115101

255111

612630417407263295

664422

599119417407505509

514455

315307295241516550

332255

241159163119115101

211111

612630161151263295

661122

Figure 13: Example of bin reduction crossover policy.

Next, we illustrate based on a representative example in
Figure 13, the Bin Reduction Crossover (BRC) policy. The
BRC policy enhances the classical crossover policy, such that
it uses the inside knowledge regarding the allocation of the ICs
to the respective bins. As already mentioned, this allocation
is fixed, it cannot be changed during the selection process.
The general strategy of the BRC algorithm is to get rid of
bins sparsely represented in exchange of ICs from much better
represented bins. The two candidates dispose of ICs stored in
some common bins, depicted in blue tones and and of unshared
boxes, depicted in red tones. Some ICs can be found in both
individuals, for example those with ID = 119, 241, 295. The
basic idea is to move ICs from the common bins from one
individual to another and in return to try to reduce the number
of bins by returning ICs from sparsely bins. In our example,
the ICs with ID = 136, 159, 151, 161 are moved from the
first individual to the second, and the ICs with ID = 509,
505, 407, 417 are returned in order to balance the content
of the individuals. This way, after the crossover is fulfilled,
the second individual has genes from three boxes, which is

a substantial reduction of bins used by the second individual.
The overall number of bins composing the two individuals
have been reduced this way by one, which corresponds to the
envisaged objective.

An overview of establishing a new generation is depicted
in Figure 14, which uses UML sequence for his flow chart. It
uses implementation-related presentation and gives a glimpse
of the Java code.

C. Performance Results

The benchmarks were performed on a Intel R© CoreTM

i5-6500 CPU (quad core CPU 3.2 GHz, 16 GB RAM)
running on Windows 10 and Eclipse 3.7.0 using Java SE
Runtime Environment 1.6.0_22. The genetic algorithm was
implemented using the Apache Common Library, version 3.0.
The test data is a subset of the production environment and
contained 5518 ICs in 261 boxes, having 28 measurements on
average. The restricted test data is a subset of the production
environment and contained 27,590 ICs in 1,305 boxes. Due
to the incomplete set of production data, only the two most
critical modules are considered for selection. After taking into
account the attributes corresponding to the specifications of
the two modules regarding the ICs (article, number of pins,
etc.) only eleven boxes contain ICs to be considered for the
selection process. We term pre-selection the method to restrict
the number of boxes by excluding those boxes which do not
contain selectable elements. In this way, the search area can be
drastically reduced and thus, the performance of the selection
algorithm can be substantially improved.

We use a generation size of 500 individuals, an elitism
rate of 10 percent and an arity value of 5. The number of
generation is limited to 1000 and the runtime of the selection
algorithm is limited to 300 seconds. The other parameters
like the crossover rate and the mutation rate are configured
on a case by case basis. Regarding the fitness function, the
following configuration parameters have proved themselves as
good choice: attribute weight = 1; measurement weight = 2;
bin weight = 5. This means especially, that fulfilling the bin
constraints is the most difficult one. In summary, we use the
configuration parameters given in Table I for the performance
tests.

TABLE I: SETTINGS OF CONFIGURATION PARAMETERS.

Configuration parameter Value

Population size 500 individuals
Generation limit 1000 generations
Crossover policy Bin reduction
Crossover rate 78 %
Mutation rate 13 %
Runtime limit 300 seconds
Elitism rate 10 %
Arity 5

The prediction of the results of the selection algorithm is
hardly possible, since we use random strategies to generate the
initial population, to select the parents for the next generation,
to determine the crossover and mutation policy. Moreover,
parameters like the elitism rate and the arity have to be
configured. Hence, the interaction between many factors that

170

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

GeneticAlgorithm
Population

Generation n
Population

Generation n+1
SelectionPolicy

Tournament selection
CrossoverPolicy

Bin reduction crossover
MutationPolicy

Bin reduction mutation

nextGeneration
initialize the
 new generation

Loop

[elite area
incomplete]

add individual

select an individual pair

select and choose fittest individual

[should do the crossover] crossover

[should do the mutation] mutate

add individual

[generation incomplete]
add individual

Loop

[generation n+1
 not full]

Figure 14: UML sequence diagram of a new generation.

can influence the success and performance of the selection
algorithm is not obvious.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

25,000

50,000

75,000

100,000

125,000

150,000

175,000

200,000

225,000

250,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Success rate

Ti
m

e
us

ed
 (m

s)

Number of modules
With preselection, Time used Without preselection, Time used
With preselection, Success rate Without preselection, Success rate

Figure 15: Apache: Success rate and time used depending on the
number of modules with and without pre-selection.

It is not the aim of this study to deliver the possible best
solution in an acceptable time frame and to improve the per-
formance of the algorithm. Instead, our objective is to deliver
an acceptable solution, i.e., a solution that fulfills the required
constraints, for the industry to a crucial problem regarding their
production problems. For example, there is no technological
benefit of tightening the measurement constraints; the bin
constraint was set up in such a way that seeking a lower value
is not possible due to the fixed number of ICs of a work order
and to the maximal capacity of the bins. Hence, the acceptable
solution is also the best possible solution.

Nevertheless, we tried to improve the selection algorithm
by testing the influence of the parameters, we find out to be
decisive. This was also the case for the parameters of the fitness
function as described above.

As already mentioned, we have an algorithm in place,
which can find

a) a suboptimal solution in a heuristic way,

b) determine exactly whether the group of bins contain
ICs which satisfies the specification of a particular work
order.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Success rate

Ti
m

e
us

ed
 (m

s)

Number of modules
Bin reduction, Time used Random recombination, Time used
Bin reduction, Success rate Random recombination, Success rate

Figure 16: Apache: Success rate and time used when selecting the
random recombination crossover policy or the bins reduction policy.

Figure 15 shows that the selection algorithm using pre-
selection delivers the expected results, finding individuals

171

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

having 19 modules. The success rate, i.e., the probability
that the selection algorithm reaches with an individual the
given number of modules, is over 60 percent and thus, high
enough for practical systems. The pre-selection strategy is
very straightforward and easy to implement. Thus, no practical
system would renounce to it. Nevertheless, when neglecting the
benefit of reducing the search space by using pre-selection, the
results of the genetic algorithm are not always as promising as
with pre-selection. In order to evaluate worst-case scenarios,
we used work that posed a lot of difficulties to select with the
heuristic algorithm in place. As illustrated in Figure 15, the
success rate to select 19 modules as in the previous case, is at
60 percent. This means especially, that the successful run of
the genetic algorithm heavily depends on the random numbers
that were generated.

1
%

1
1
%

0
2.500
5.000
7.500
10.000
12.500
15.000
17.500
20.000
22.500
25.000

2
5
%3
0
%3
5
%4
0
%4
5
%5
0
%5
5
%

6
0
%

6
5
%

7
0
%

7
5
%

8
0
%

Mutation rate

Tim
e

 u
se

d
 (m

s)

Crossover rate

0-2.500 2.500-5.000 5.000-7.500 7.500-10.000

10.000-12.500 12.500-15.000 15.000-17.500 17.500-20.000

Figure 17: Apache: Time used depending on the crossover rate and
the mutation rate.

1
1
%

2
1
%

0%
6%
12%
18%
24%
30%
36%
42%
48%
54%
60%

2
0
%

2
5
%

3
0
%

3
5
%

4
0
%

4
5
%

5
0
%

5
5
%

6
0
%

6
5
%

7
0
%

7
5
%

Mutation rate

Su
cce

ss rate

Crossover rate

0%-6% 6%-12% 12%-18% 18%-24% 24%-30%

30%-36% 36%-42% 42%-48% 48%-54% 54%-60%

Figure 18: Apache: Success rate depending on the crossover rate
and the mutation rate.

Figure 16 shows the difference between the random recom-
bination crossover policy and the bins reduction policy. The
boxes reduction crossover policy tries to reduce the number
of boxes of the new individuals by focusing on the common
bins of the parents. As a conclusion, using business logic over
general approach, the general approach is as expected slower

and has a lower success rate. This is the price to pay for using
a more general solution over a customized one.

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 10 20 30 40 50 60 70 80 90 100

Lg
(f
it
n
e
ss
)

Generation

Figure 19: Logarithmic representation of the values of the fitness
function depending on the number of generations (50 attempts).

Figures 17 and 18 show the influence of the crossover
rate and the mutation rate to the success rate and the wall
clock time. As not obvious at first glance, a smaller crossover
rate and a higher mutation rate gives better values for the
success rate. Keeping the crossover rate and the mutation
rate low, better run time performance is achieved. Generally
speaking, high mutation rate can destroy the structure of good
chromosomes, if used randomly [32]. The above remark does
not hold in our case, since we do not exchange ICs randomly,
but according to our strategy to minimize the number of bins.
We use for the three-dimensional graphics in this paper the
best performing strategy, i.e. the bin reduction policy and pre-
selection.

The tendency of the convergence of the fitness function
is visualized in Figure 19. The graph shows that in the end
all 50 threads converge after some generations, but only a
subset to the envisaged value. Each dot indicates the best
fitness value of a individual within one thread corresponding
to a specific generation. Recall that the maximum value of
the fitness function is per definition equal to 1, the higher
the value of the fitness function, the better the solution. The
values of the fitness functions are discrete, {1, 1

2 , 1
3 , 1

4 , 1
5 , ...}.

We use a decimal logarithmic representation, as a consequence
the value 0 of lg(fitness) indicates that a solution has been
found. The best thread found a solution within 43 generations
and the slowest thread - which is not represented in the graphic
- found a solution after 228 generations. There are 8 threads in
total which found a solution, the rest - although they converge
- were not successful.

V. RESUMING ON MULTI-OBJECTIVE OPTIMIZATION

Our preferred implementation framework is Apache Com-
mons Mathematics Library, version 3.0 [33]. However, a
very similar combinatorial grouping problem, the Bin Packing
Problem (BPP) is investigated [34], by using the off the shelf
jMetal framework [35]. The (one-dimensional) BPP [36] is
defined as follows: given an unlimited number of bins with an
integer capacity c > 0 each, a set of n items, N = {1, 2, ..., n},

172

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and an integer weight wi, 0 < wi ≤ c for each item i ∈ N
assign each item to one bin, such that the total weight of the
items in each bin does not exceed c and the number of bins
used is minimized.

Luo et al. [34] extend the base implementation of jMetal
to problems with dynamic variables. This was necessary, since
the number of the genes in chromosomes is fixed in the base
implementation of jMetal. However, the number of the genes
in the specific implementation of the chromosomes for BPP
– termed group based representation – is fluctuating; they
vary in length depending on how many bins are used in
every solution. Accordingly, the adopted implementation of
BPP includes specific adaptations and enhancements of the
basic primitives of jMetal, including those for chromosomes,
crossover and mutation. The need for dynamic variables is
justified by difficulties to use other solutions due to the fitness
function.

In order to evaluate the performance of their algorithms
– termed GABP –, Luo et al. [34] use public bench data
as well as self-created big data sets. The performance of
GABP does not differ very much from some of the known
implementation of BPP. The main benefit of GABP is the
implementation in a generic framework. However, the problem
described in this article, the Matching Lego(R)-Like Bricks
Problem (MLBP) is new to our knowledge, we are now aware
of any implementation of a similar problem. The nearest
problem to the MLBP seems to be BPP.

It seems that Luo et al. [34] used the fitness function as
given below (termed cost function) [37] for their group-based
encoding scheme:

fBPP =
1

Nu
∙

Nu∑

i=1

(fill i
c

)k
(12)

with Nu being the number of bins used, fill i the sum of sizes of
the objects in the bin i, c the bin capacity, and k a constant, k >
1. In other words, the cost function to maximize is the average
over all bins used, of the k-th power of the bin’s utilization
of it’s capacity. The authors state that experiments show that
k = 2 gives good results. As Falkenauer and Delchambre [37]
point out that one of the major purpose of the fitness function
is to guide the algorithm in the search.

Although, both BPP and MLBP yield a reduction of the
number of bins, the fitness function of the algorithms are
different. The strategy at BPP is to pack the bins as full as
possible, i.e., a bad use of the capacity of the bins leads to
the necessity of supplementary bins [37]. On the contrary, the
suggestion for the fitness function for MLBP is given by the
need to fulfill the constraints.

By comparing the formula (2) for the fitness function of
MLBP with the formula (12) as above, it is obvious that both
formulas are very similar, both are expected to be maximized,
contain summation over parameters of the respective prob-
lems and the possibility to optimize the execution time of
the respective algorithms through clever setting of constants.
In this respect, both MLBP and BPP substantially benefit
from an ingeniously designed fitness function to ensure fast
convergence towards the optimization goals [37].

Although, in concept MLBP is merely a constraint satisfac-
tion problem, the implementation as described in this article,
can be easily adapted to simulate an optimization problem.
Within the current algorithm, the number of required bins
is fixed. This assumption is perfectly reasonable from an
industrial perspective, since the number of the objects in the
bins is more or less the same and as the number of objects
needed for a work order is known, the minimal number of
bins necessary to fulfill the work order is thus determined.
Besides, the maximum number of bins that can be accessed
by a machine is fixed, less beans means just a vacant working
place. However, by setting the bin constraints to a lower value,
– while keeping the other constraints unchanged – and by
modifying the exit criteria accordingly, the algorithm will loop
– delivering better solutions according to the guidelines of the
fitness function – until the new exit criteria are met. Thus, a
local extremum relating to the fitness function is found. The
local extremum is not automatically a solution to the constraint
satisfaction problem, this has to be validated. The exit criteria
only ensure that the best local value of the fitness function and
corresponding physical entities are found. In this respect, the
MLBP and BPP are closely related problems.

There are other systems, which provide frameworks of evo-
lutionary algorithms, such as EvA2, OPT4j, ECJ, MOEAT, for
a discussion and bibliography see [37]. Moreover, a remarkable
attempt to obtain a deeper understanding of the structure of the
BPP by using Principal Component Analysis and repercussions
on the performance of the heuristic approaches to solve them,
was undertaken [38].

The aim of jMetal was to set up a Java-based framework
in order to develop meta heuristics for solving Multi-Objective
Optimization Problems (MOOP). jMetal provides a rich set
of Java classes as base components, which can be reused
for the implementation of generic operators, thus making a
comparison of different meta heuristics possible [39] [40].

Unfortunately, the Apache Commons Mathematics Library
deployed in our use case, does not support multi-objective
optimization mechanisms. This means especially, that multi-
objective optimization have to be simulated by single-objective
optimization. For example, optimization criteria for MLBP
are a) reducing the number of bins, b) fulfillment of the
measurement constraints, c) fulfillment of the attribute con-
straints. These criteria are independent of each other and
ideally within the multi-objective optimization they can be op-
timized independently, such that an improvement of a criterion
does not lead to a degradation of another one. For practical
purposes, the fitness function, see formula (2), can be used for
simulating multi-objective optimization by choosing adequate
weight function. Thus, by choosing the values w = 5 for the
criterion (a), w = 2 for criterion (b) and w = 1 for criterion (c)
we achieve fast convergence and hence reduced execution time,
but for example by improving criterion (a) we cannot avoid the
degradation of criterion (b) or (c). By using frameworks which
support multi-objective mechanism, better convergence of the
genetic algorithm is expected.

The jMetal project was started in 2006 [39] and since then
it underwent significant improvements and major releases [41],
such that the redesigned jMetal should be useful to researchers
of the multi-objective optimization community, such as evo-
lutionary algorithm, evolution strategies, scatter search, par-

173

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ticle swarm optimization, ant colony optimization, etc., [42].
Improvements regarding a new package for automatic tuning
of algorithm parameter settings have been introduced [43] in
order to facilitate accurate Pareto front approximations.

In addition, jMetal in conjunction with Spark – which is
becoming a dominant technology in the Big Data context –
have been used to solve Big Data Optimization problems by
setting up a software platform. Accordingly, a dynamic bi-
objective instance of the Traveling Salesman Problem based
on near real-time traffic data from New York City has been
solved [44] [45].

VI. PURSUING CONSIDERATIONS ON METAHEURISTICS:
AN EXCERPT

This section is a logical continuation of the last two
preceding sections, it extents the approach of the use case
in Section IV by considering the jMetal framework presented
in Section V as the natural and fruitful terrain for further
enhancement and advanced development.

A. General Considerations

We definitely do not intend to analyze in depth the Apache
framework versus the jMetal framework; we restrict our anal-
ysis to the algorithm used in Section IV, which is ported to the
jMetal framework. The comparison and test results should be
interpreted accordingly, i.e., some other use case could lead to
different conclusions. Moreover, the Apache and the jMetal
frameworks are templates, which the developers can freely
modify according to their needs, hence minor modifications in
the templates could lead to unexpected major improvements.

1 // gGA.java
2 //
3 // Author:
4 // Antonio J. Nebro <antonio@lcc.uma.es>
5 // Juan J. Durillo <durillo@lcc.uma.es>
6 //
7 // Copyright (c) 2011 Antonio J. Nebro, Juan J. Durillo
8 ...
9 package jmetal.metaheuristics.singleObjective.

geneticAlgorithm;
10 ...
11 while (evaluations < maxEvaluations) {
12 ...
13 // Copy the best two individuals to the offspring

population
14 offspringPopulation.add(new Solution(population.get

(0))) ;
15 offspringPopulation.add(new Solution(population.get

(1))) ;
16 // Reproductive cycle
17 ...
18 // Crossover; Mutation; Evaluation of the new

individuals; Replacement: the two new
individuals are inserted in the offspring
population

19 ...
20 // The offspring population becomes the new current

population
21 ...
22 } // while
23 ...

Listing 1: Copy only the two best individuals to the offspring
population.

The main objectives of this section are:

a) compare the multi bjective, jMetal framework based
genetic algorithm versus the single-objective genetic,

Apache framework based algorithm presented in Sec-
tion IV,

b) compare the jMetal framework based genetic algorithm
with other heuristic algorithms,

c) record the performance behavior of the investigated
algorithms,

d) determine pros and cons of the Apache framework
versus the jMetal framework and the different heuristic
algorithms.

Unfortunately, the Apache framework does not support
multi-objective optimization, hence in order to get around it,
we switch to the jMetal framework, which has been delib-
erately developed to allow such comparisons. The best way
to get directly familiar with jMetal or Apache in addition to
studying the scientific literature [34] [35], [39]–[45] , is to
read coding [46] [47].

Validation is the methodology to investigate whether in-
dividual bricks (ICs) or set of bricks satisfy the specified
constraints. The validation fields – i.e., the structure that holds
the information necessary to perform the decision regarding
the creation of the next generation – is used both in the
Apache and the jMetal framework based implementation of the
genetic algorithm. The validation results are calculated during
the validation process, i.e., during the process where it is
checked whether the individual bricks or set of bricks fulfill the
given constraints. This way, the overall quality of an individual
during the reproduction process can be very well determined.
As soon as the validation fields are fully filled, the information
in this structure can be used to calculate the fitness value of
the individuals and subsequently, it can be used to determine
the unsuitable bricks and exchange them during the crossover
and mutation process. As already presented, the fitness value
contains the final score of an individual during the validation
process, in other words, it represents the degree to which the
individual is more closely to fulfill the specification of the work
order. For example, if a brick breaks one of the constraints
regarding the attribute values, it has to be removed during the
mutation process, since the attributes are specific properties of
each brick and unlike the measurement constraints, they are
not influenced by the other bricks assigned to an individual.

1 // GeneticAlgorithm.java
2 // Licensed to the Apache Software Foundation (ASF) under

one or more contributor license agreements.
3 ...
4 package org.apache.commons.math3.genetics;
5 ...
6 //Implementation of a genetic algorithm. All factors that

govern the operation of the algorithm can be cond for
a specific problem.

7 ...
8 public class GeneticAlgorithm {
9 ...

10 //Evolve the given population. Evolution stops when the
stopping condition is satisfied.

11 ...
12 while (!condition.isSatisfied(current)) {
13 current = nextGeneration(current);
14 generationsEvolved++;
15 }
16 ...
17 }

Listing 2: Apache Commons Math. Stopping Condition

174

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Summing up, the validation results of an individual con-
tain in addition to the information regarding the final score,
also details regarding the genes (bricks) which violate the
constraints. This latter kind of information is necessary for
further processing. Normally, the validation results of the
parents should be determined before the mutation step is
performed. In the Apache framework a pair of two individuals
is provided and the crossover and mutation operations are
performed directly on them. Unfortunately, this is not the case
for the jMetal framework, it does not provides pairing, just
individuals. As a consequence, since the validation fields are
not part of the original framework, the validation results are
not properly calculated and some – but not necessary all –
of the mutations cannot be performed and are skipped. In
order to overcome this anomaly, we modified the original
implementation of the mutation procedure used in the Apache
context, by adding an additional validation in order ensure
that before mutation is performed, the parents dispose of the
appropriate validation results.

Unfortunately, jMetal has only one predefined stopping
condition, i.e., the algorithm can stop only if the number
of evaluations, i.e., in our case the number of generations
surpasses some threshold – i.e., maxEvaluations – compare
Listing 1, line 11. In contrast, the Apache framework allows
additional to the condition above, multiple and flexible stop-
ping conditions:

a) exit after some predefined time,

b) exit if the envisaged result has been found, etc., see
Listing 2, line 12 for an example,

c) exit according to any user defined conditions, due to
the flexibility of the Apache environment.

1 // ElitisticListPopulation.java
2 // Licensed to the Apache Software Foundation (ASF) under

one or more contributor license agreements.
3 ...
4 package org.apache.commons.math3.genetics;
5 ...
6 //Population of chromosomes which uses elitism (certain

percentage of the best chromosomes is directly copied
to the next generation).

7 ...
8 public class ElitisticListPopulation extends

ListPopulation {
9 // percentage of chromosomes copied to the next

generation
10 private double elitismRate =10.0;
11 ...
12 // Creates a new ElitisticListPopulation instance.
13 ...
14 // Start the population for the next generation.
15 ...
16 public Population nextGeneration() {
17 // initialize a new generation with the same

parameters
18 ...
19 // index of the last "not good enough" chromosome
20 for (int i=boundIndex; i<oldChromosomes.size(); i

++) {
21 nextGeneration.addChromosome(oldChromosomes.

get(i));
22 }
23 ...
24 }

Listing 3: Apache Commons Math. Elitism Rate

The jMetal framework also uses a predefined type of
population, characterized by the elitism rate, which specifies

the percentage of individuals with the highest fitness value to
be taken over unmodified to the new generation. This way, the
genetic algorithm will put directly some of his best solutions
unmodified to the next generation. This strategy has been suc-
cessfully used with the Apache framework to optimize the run
time of the genetic algorithm. Unfortunately, the elitism rate is
hard coded and cannot be configured in the jMetal framework.
Only the two best solutions are forwarded unmodified to the
next generation, compare Listing 1, line 17,18. This means by
considering our population size of 500 individuals, an elitism
rate of 0.4%. We obtained best performance results within the
Apache framework with this rate set to 10 in the benchmarks of
Section IV, see Listing 3. In contrast to the jMetal framework,
where it is not possible to create or define a new population
type, the Apache framework can use a lot of other population
types apart from the class ElitisticListPopulation, for example
population types based on random selection of the individuals
or based on keeping diversity selection. These new population
types can be set up either by the user itself, or the development
team of the Apache framework. Of course, random selection
can be a promising approach, since some of the best genes
can be hidden in bad individuals and those individuals might
evolve later. The strategy to diversify means especially, that
no similar individuals will be directly selected for the next
generation. Obviously, the concept of similarity has to be
specified accordingly, for example, by trying to have as much
bins involved in the generation of the initial population, we
avoid to have a restricted set of bins in the initial population
that has no solution at all.

As mentioned above, the jMetal framework is less flexible
than the Apache framework, i.e., the possibility to configure
the jMetal framework is less pronounced. Hence, we cannot
compare the performance of those frameworks directly, instead
we are obliged to switch to those less efficient configuration
parameters that work for both frameworks in order to be
able to compare similar runs. We intend to do performance
benchmarks as follows:

a) Apache versus jMetal (Apache and jMetal best per-
forming configuration);

b) Apache versus jMetal (Apache and jMetal same con-
figuration);

c) jMetal single objective genetic algorithm versus jMetal
multi-objective genetic algorithm;

d) jMetal genetic algorithm versus jMetal other heuristic
algorithms.

B. Used Methods and Strategies

Evolutionary algorithms such as the Non-dominated Sort-
ing Genetic Algorithm-II (NSGA-II) [28], [43], [48] and
Strength Pareto Evolutionary Algorithm 2 (SPEA-2) [49], [50]
have become standard approaches, although some approaches
based on Particle Swarm Optimization (PSO) [51], simulated
annealing, and Scatter Search (SS) [52] are best known.
Durillo [39] gives a very good overview of jMetal, describ-
ing some of the evolutionary algorithms implemented, for
example NSGA-II, SPEA-2, Pareto Archived Evolution Strat-
egy (PAES), Optimal multi-objective Optimization based on
Particle Swarm Optimization (OMOPSO) [53], Archive based

175

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

hYbrid Scatter Search (AbYSS), etc. The PSO algorithm has
been used successfully not only for continuous optimization
problems, but also to a combinatorial optimization of a real
university course timetabling problem [54], see [55] for a more
recent study regarding non-continuous search spaces.

Besides jMetal there are further frameworks for meta-
heuristic optimization, for example Opt4J [56]. This frame-
work is modular, i.e., it supports the optimization of complex
optimization tasks by allowing its decomposition into subtasks
that may be designed and developed separately. Additional
optimization frameworks, java-based and non-java-based are
listed on the SourceForge site [57], where also the latest
release can be found. Additionally, a framework that works
as a top-level layer over generic optimization frameworks that
implement a high number of metaheuristics proposed in the
technical literature, such as jMetal and Opt4J is presented
in [58]. JECoLi, another novel Java-based library for the
implementation of metaheuristic optimization algorithms with
a focus on Genetic and Evolutionary Computation based
methods is introduced [59].

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Su
cc

e
ss

 r
at

e

Number of modules

ER0 ER0.4% ER1% ER2% ER3% ER4% ER5% ER6% ER7%

Figure 20: Success rate depending on the elitism rate.

0
%

6
%

1
2
%

68%
71%
74%
77%
80%
83%
86%
89%
92%
95%
98%

2
0
%

2
5
%

3
0
%

3
5
%

4
0
%

4
5
%

5
0
%

5
5
%

6
0
%

6
5
%

7
0
%

7
5
%

Mutation rate

Su
cce

ss rate

Crossover rate

68%-71% 71%-74% 74%-77% 77%-80% 80%-83%

83%-86% 86%-89% 89%-92% 92%-95% 95%-98%

Figure 21: jMetal single-objective optimization: Success rate
depending on the crossover rate and the elitism rate.

C. Performance Results

This subsection is aligned with Subsection IV-C as far
as the testing strategy is concerned, such that performance

and accuracy comparison are possible. Accordingly, the test
scenarios in this subsection are similar to those in Figure 15,
Figure 16, Figure 17, Figure 18 as done for the Apache
Framework. The configuration parameter for the test settings
are as in Table I.

1) jMetal Single-Objective Genetic Algorithm: Actually,
the naive expectation regarding the similitude between the
performance behavior of the Apache Framework and the
single-objective optimization part of the jMetal Framework
has not been met. Furthermore, for the Apache Framework,
the elitism rate is not so sensitive regarding the fluctuation of
the success rate, whereas for the jMetal Framework this is true
for the mutation rate.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

20.000

40.000

60.000

80.000

100.000

120.000

140.000

160.000

180.000

200.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Su
cce

ss rate

Ti
m

e
 u

se
d

 (
m

s)

Number of module
With preselection, Time used Without preselection, Time used

With preselection, Success rate Without preselection, Success rate

Figure 22: jMetal single-objective optimization: Success rate and
time used depending on the number of modules with and without

pre-selection.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

3.500

7.000

10.500

14.000

17.500

21.000

24.500

28.000

31.500

35.000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Su
cce

ss rate

Ti
m

e
 u

se
d

 (
m

s)

Number of modules
Bin reduction, Time used Random recombination, Time used

Bin reduction, Success rate Random recombination, Success rate

Figure 23: jMetal single-objective optimization: Success rate and
time used when selecting the random recombination crossover

policy or the bins reduction policy.

Figure 22 corresponds to Figure 15 and Figure 23 cor-
responds to Figure 16 respectively, generated for genetic
algorithm using the Apache Framework. For a detailed back-
ground description see the corresponding explanation in Sub-
section IV-C. Figure 24 corresponds to Figure 17 and Figure 25
corresponds to Figure 18 respectively, generated for genetic
algorithm using the Apache Framework.

176

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1
%

1
1
%

6.000
10.000
14.000
18.000
22.000
26.000
30.000
34.000
38.000
42.000
46.000

2
5
%3
0
%3
5
%4
0
%4
5
%5
0
%5
5
%

6
0
%

6
5
%

7
0
%

7
5
%

8
0
%

Mutation rate

Tim
e

 u
se

d
 (m

s)

Crossover rate

6.000-10.000 10.000-14.000 14.000-18.000 18.000-22.000

22.000-26.000 26.000-30.000 30.000-34.000 34.000-38.000

Figure 24: jMetal single-objective optimization: Time used
depending on the crossover rate and the mutation rate.

1
1
%

2
1
%

2%
7%
12%
17%
22%
27%
32%
37%
42%
47%
52%

2
0
%

2
5
%

3
0
%

3
5
%

4
0
%

4
5
%

5
0
%

5
5
%

6
0
%

6
5
%

7
0
%

7
5
%

Mutation rate

Su
cce

ss rate

Crossover rate

2%-7% 7%-12% 12%-17% 17%-22% 22%-27%

27%-32% 32%-37% 37%-42% 42%-47% 47%-52%

Figure 25: jMetal single-objective optimization: Success rate
depending on the crossover rate and the mutation rate.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

27,000

54,000

81,000

108,000

135,000

162,000

189,000

216,000

243,000

270,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Success rate

Ti
m

e
us

ed
 (m

s)

Number of modules
With preselection, Time used Without preselection, Time used
With preselection, Succsee rate Without preselection, Succsee rate

Figure 26: jMetal multi-objective optimization using NSGA-II :
Success rate and time used depending on the number of modules

with and without pre-selection.

Unexpectedly, the elitism rate has a major influence on
the success rate, even for lower values, see Figure 20 for

a test scenario with the elitism rate ∈ [0%, 7%]. The other
configuration parameters for the performance tests are given
in Table I. The optimal value for the elitism rate is around %7,
unfortunately the elitism rate is not configurable in the official
release of jMetal. As already mentioned, to circumvent this
shortcoming, we have adapted the original open source code
accordingly. As is Figure 21, increasing the elitism rate does
not improve the success rate, moreover an appropriate tuple of
crossover rate and elitism rate seems to be the most effective.

For a detailed description of the corresponding perfor-
mance results, see the explanation in Subsection IV-C. A low
crossover rate and low elitism rate gives the success rate at over
95%. Increased crossover rates and increase elitism rates also
deliver success rates at over 90%. Unfortunately, high success
rates also deteriorates considerably its run time aspects.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

1,500

3,000

4,500

6,000

7,500

9,000

10,500

12,000

13,500

15,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Success rate

Ti
m

e
us

ed
 (m

s)

Number of modules
Bin reduction, Time used Random recombination, Time used
Bin reduction, Success rate Random recombination, Success rate

Figure 27: jMetal multi-objective optimization using NSGA-II :
Success rate and time used when selecting the random

recombination crossover policy or the bins reduction policy.

1
%

1
1
%

0
4.000
8.000
12.000
16.000
20.000
24.000
28.000
32.000
36.000
40.000

2
5
%3
0
%3
5
%4
0
%4
5
%5
0
%5
5
%

6
0
%

6
5
%

7
0
%

7
5
%

8
0
%

Mutation rate

Tim
e

 u
se

d
 (m

s)

Crossover rate

0-4.000 4.000-8.000 8.000-12.000 12.000-16.000

16.000-20.000 20.000-24.000 24.000-28.000 28.000-32.000

Figure 28: jMetal multi-objective optimization using NSGA-II :
Time used depending on the crossover rate and the mutation rate.

2) jMetal multi-objective Genetic Algorithm: Unfortu-
nately, NSGA-II does not use the concept of elitism rate to
select offsprings, it uses Pareto front and distance instead.
Hence we cannot compare directly the similar tests for single-
objective optimization based on crossover rate and elitism rate,
see Figure

177

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1
1
%

2
1
%

0%
3%
6%
10%
13%
16%
19%
22%
26%
29%
32%

2
0
%

2
5
%

3
0
%

3
5
%

4
0
%

4
5
%

5
0
%

5
5
%

6
0
%

6
5
%

7
0
%

7
5
%

Mutation rate

Su
cce

ss rate

Crossover rate

0%-3% 3%-6% 6%-10% 10%-13% 13%-16%

16%-19% 19%-22% 22%-26% 26%-29% 29%-32%

Figure 29: jMetal multi-objective optimization using NSGA-II :
Success rate depending on the crossover rate and the mutation rate.

Figure 26 corresponds to Figure 15 and Figure 27 cor-
responds to Figure 16 respectively, generated for genetic
algorithm using the Apache Framework. For a detailed back-
ground description see the corresponding explanation in Sub-
section IV-C. Figure 28 corresponds to the Figure 17 and
Figure 29 corresponds to Figure 18 respectively, generated for
the genetic algorithm using the Apache Framework.

3) Other evolutionary algorithms: To conclude, we exam-
ine the scatter search template adapted to a hybrid - single
objective optimization to the multi-objective domain - called
Archive-Based hYbrid Scatter Search (AbYSS) [60]–[63].
AbYSS follows the scatter search structure, but uses muta-
tion and crossover operators from evolutionary algorithms. It
incorporates typical concepts from the multi-objective field,
such as Pareto dominance, etc.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

25,000

50,000

75,000

100,000

125,000

150,000

175,000

200,000

225,000

250,000

275,000

300,000

325,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Su
cce

ss rate

Ti
m

e
 u

se
d

 (
m

s)

Number of modules
Bin reduction, Time used Random recombination, Time used

Bin reduction, Success rate Random recombination, Success rate

Figure 30: jMetal AbYSS hybrid optimization : Success rate and
time used when selecting the random recombination crossover

policy or the bins reduction policy.

We generate appropriate tests – as represented in Figure 30,
see Figure 16 for the Apache counterpart – concerning the
success rate and time used by using the random recombination

crossover policy and the bins reduction policy respectively.
According to [61] the results of their tests show that AbYSS
not only reaches very accurate solutions, but also it scales well
with increasingly sized instances. Unfortunately, the perfor-
mance and accuracy of our tests is lower than expected, such
that the AbYSS algorithm finds no more than 15 modules,
whereas the number of possible solution is 17, see Figure 30
for the Apache Framework genetic algorithm counterpart. We
cease further testing.

4) Final conclusions: Summing up, low crossover and
low elitism rates or high crossover and high elitism rates
deliver good results for the success rate. On the contrary,
high success rates are always achieved with high timed used
rates. The success rate is not very sensitive regarding the
mutation rates as long as they are low or moderate. Satisfactory
results have been achieved with elitism rates exceeding 3%.
It seems that the higher success rate in the single-objective
optimization case is due to a very well balanced fitness
function, whereas if no time for performance improvement
tests, the multi-objective path delivers satisfactory results with
lower implementation effort. The run time performance of our
application implemented using the Apache Framework genetic
algorithm is order of magnitudes better than the corresponding
implementation based on the jMetal Framework.

VII. CONCLUSION AND FUTURE WORK

The main challenge, which led to the results of this paper,
was to investigate whether a real-life combinatorial problem,
which popped up at a semiconductor company, can be solved
within a reasonable time. Moreover, the solution should be
flexible, such that the solution is not restricted to the existing
specification of the modules.

We established an abstract formal model, such that the
implementation of the use case is fully functional within the
boundaries of this model. In this sense, new constraints can
be added to the existing ones, no inside knowledge regarding
the structure of the module is needed, as it is the case for the
heuristic algorithm in place.

We set up a genetic algorithmic approach based on the
Apache Commons Mathematics Library, implemented it and
validated the results. Some decisive policies like the crossover
and mutation policy have been additionally implemented and
new optimizations like the bin reduction crossover policy
have been set up to improve the convergence of the genetic
algorithm. The performance results were satisfactory for an
industrial application.

The current implementation does not combine good genes
(taking into account all the constraints, like measurement,
etc.) of the parents. Instead, the crossover strategy is based
on random decisions. Additional research is necessary in this
direction to find a good balance between a more general
suitability (random decisions) and good convergence (adjusted
crossover policy). For the time being, only the fitness func-
tion contains proprietary information regarding the production
process, any other decision is aleatoric.

However, improvements such as the bin reduction crossover
policy and improvement of the bin preserving mutation policy
based on internal knowledge have in most cases advanta-
geous effects on the selection algorithm. Unfortunately, the

178

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

advantages of these improvements, like run time reduction and
improved accuracy, are achieved by less flexibility. Whenever
the external circumstances change, the corresponding policies
have to be adapted accordingly.

The implemented basic framework is very flexible, it has
many configuration possibilities like the elitism rate and the
arity. As a consequence of the random variables, many conver-
gence tests with various configuration assignment have to be
performed, in order to ensure satisfying results. Furthermore,
of crucial importance for the successful completion of the
algorithm is the design of the fitness function, especially the
values of the weights.

The convergence tests show that not every execution will
succeed to find the best solution delivered, this is due to
the random numbers used through out the genetic algorithm.
This is exemplified by the success rate. Thus, the selection
algorithm based on genetic strategies always delivers local
maxima, which may substantially differ from the global one.
Our attempt to find the optimal solution using MATLAB for
a reduced set of ICs failed due to the long execution time.

As already mentioned, the fitness function plays an out-
standing role during the selection of the best candidates for
the next generation. This means especially, that two candidates
having the same value or fitness function are considered of
the same quality. This assertion is not accurate enough, due to
the use of three different weights, whose interdependence can
hardly be anticipated. Each weight represents the significance
of one aspect of the quality of a candidate. To circumvent
this dilemma, Pareto optimality [29] can be used to solve the
challenge of the multi-objective function. In this case, a new
framework [39] is needed, since Apache Commons Mathe-
matics Library does not support multi-objective mechanism.
Genetic algorithms, if configured properly, can be used to solve
our constraint satisfaction problem. The delivered solution may
substantially differ from the optimal one.

The current problem is not defined as an optimization
problem, the constraints of a work order are either satisfied
or not. Accordingly, two different solutions of the same work
order, which satisfy the constraints, are of the same quality.
However, the genetic algorithm is based internally on an
optimization process – the higher the value of the fitness
function, the better the solution. The constraints are used
as exit criterion for the genetic algorithm. In this way, the
optimization is stopped arbitrarily, considering that a better
solution is out of scope.

Moreover, during the production process multiple work
orders have to be honored simultaneously. The current strategy
at the semiconductor company adopted a sequential one. We
can reformulate the problem as an optimization problem: Given
a list of work orders, find the maximum number of work orders
that can be satisfied simultaneously.

The elapsed time till the genetic algorithm of MLBP
converges is in range of seconds, by all means satisfactory
for the investigated industrial application. As expected, not all
the execution threads converge to the same solution, and not all
the threads find an optimal solution, as shown in some cases
less than 60 percent. Therefore, starting a bunch of threads
within the genetic algorithm increases the chance towards
better solutions.

To summarize, regarding the configuration possibilities, the
jMetal framework is less flexible than the Apache framework,
i.e., the Apache framework allows much more alternatives for
settings, in contrast in order to achieve greater adjustability
in the jMetal framework, the source code has to be adapted
accordingly. The jMetal framework predefines a lot of heuristic
algorithms, but they have to be refined and improved in order
to reach the profoundness of the Apache framework.

ACKNOWLEDGMENT

We acknowledge the assistance and helpful comments of
the anonymous referees.

REFERENCES

[1] M. Zinner, K. Feldhoff, R. Song, A. Gellrich, and W. E. Nagel, “The
Matching Lego(R)-Like Bricks Problem: Including a Use Case Study in
the Manufacturing Industry,” ICSEA 2019, The Fourteenth International
Conference on Software Engineering Advances, 2019, pp. 130–140,
Retrieved: December 2020. [Online]. Available: http://www.thinkmind.
org/index.php?view=article&articleid=icsea_2019_6_10_10107

[2] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algo-
rithms, ser. Algorithms and Combinatorics. Springer Berlin Heidelberg,
2018.

[3] P. M. Pardalos, D.-Z. Du, and R. L. Graham, Handbook of Combina-
torial Optimization. Springer, 2013.

[4] J. Puchinger and G. Raidl, “Combining Metaheuristics and Exact Al-
gorithms in Combinatorial Optimization: A Survey and Classification,”
Lecture Notes in Computer Science, vol. 3562, 06 2005, pp. 41–53,
doi: 10.1007/11499305_5.

[5] Krzysztof Apt, Principles of Constraint Programming. Cambridge
University Press, 2003, Retrieved: December 2020. [Online]. Available:
https://doi.org/10.1017/CBO9780511615320

[6] A. L. Corcoran, Using LibGA to Develop Genetic Algorithms for
Solving Combinatorial Optimization Problems. The Application
Handbook of Genetic Algorithms, Volume I, Lance Chambers, editor,
pages 143-172 CRC Press, 1995.

[7] E. Andrés-Pérez et al., Evolutionary and Deterministic Methods for
Design Optimization and Control With Applications to Industrial and
Societal Problems. Springer, 2018, vol. 49.

[8] D. Greiner et al., Advances in Evolutionary and Deterministic Methods
for Design, Optimization and Control in Engineering and Sciences.
Springer, 2015, vol. 1, no. 1.

[9] D. Simon, Evolutionary Optimization Algorithms. John Wiley & Sons,
2013.

[10] A. Pétrowski and S. Ben-Hamida, Evolutionary Algorithms. John
Wiley & Sons, 2017.

[11] O. Kramer, Genetic Algorithm Essentials. Springer, 2017, vol. 679.

[12] T. Bäck, D. B. Fogel, and Z. Michalewicz, Evolutionary Computation
1: Basic Algorithms and Operators. CRC press, 2018.

[13] R. K. Belew, Adaptive Individuals in Evolving Populations: Models and
Algorithms. Routledge, 2018.

[14] T. Bäck, D. B. Fogel, and Z. Michalewicz, Evolutionary Computation
2 : Advanced Algorithms and Operators. CRC Press, 2000, Textbook
- 308 Pages.

[15] K. Hussain, M. N. M. Salleh, S. Cheng, and Y. Shi, “Metaheuristic
Research: a Comprehensive Survey,” Artificial Intelligence Review,
2018, pp. 1–43.

[16] T. Jiang and C. Zhang, “Application of Grey Wolf Optimization for
Solving Combinatorial Problems: Job Shop and Flexible Job Shop
Scheduling Cases,” IEEE Access, vol. 6, 2018, pp. 26 231–26 240.

[17] H. Zhang, Y. Liu, and J. Zhou, “Balanced-Evolution Genetic Algorithm
for Combinatorial Optimization Problems: the General Outline and Im-
plementation of Balanced-Evolution Strategy Based on Linear Diversity
Index,” Natural Computing, vol. 17, no. 3, 2018, pp. 611–639.

179

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[18] X. Li, L. Gao, Q. Pan, L. Wan, and K.-M. Chao, “An Effective Hybrid
Genetic Algorithm and Variable Neighborhood Search for Integrated
Process Planning and Scheduling in a Packaging Machine Workshop,”
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018.

[19] I. Jackson, J. Tolujevs, and T. Reggelin, “The Combination of Discrete-
Event Simulation and Genetic Algorithm for Solving the Stochas-
tic Multi-Product Inventory Optimization Problem,” Transport and
Telecommunication Journal, vol. 19, no. 3, 2018, pp. 233–243.

[20] J. C. Bansal, P. K. Singh, and N. R. Pal, Evolutionary and Swarm
Intelligence Algorithms. Springer, 2019.

[21] G. Raidl, J. Puchinger, and C. Blum, “Metaheuristic hybrids,” Hand-
book of Metaheuristics, Vol. 146 of International Series in Opera-
tions Research and Management Science, 09 2010, pp. 469–496, doi:
10.1007/978-1-4419-1665-5_16.

[22] J. Holland, Adaptation in Natural and Artificial Systems. University
of Michigan Press, Ann Arbor. 2nd Edition, MIT Press, 1992.

[23] G. P. Rajappa, “Solving Combinatorial Optimization Problems Using
Genetic Algorithms and Ant Colony Optimization,” 2012, PhD
diss., University of Tennessee, Retrieved: December 2020. [Online].
Available: https://trace.tennessee.edu/utk_graddiss/1478

[24] S. Yakovlev, O. Kartashov, and O. Pichugina, “Optimization on Com-
binatorial Configurations Using Genetic Algorithms,” in CMIS, 2019,
pp. 28–40.

[25] T. Weise, “Global Optimization Algorithms – Theory and Application,”
2009, Retrieved: December 2020. [Online]. Available: http://www.it-
weise.de/projects/book.pdf

[26] H. P. Christos and K. Steiglitz, “Combinatorial Optimization: Algo-
rithms and Complexity,” Prentice Hall Inc., 1982.

[27] Rui Song, “Substrate Binning for Semiconductor Manufacturing,” Mas-
ter’s thesis, Dresden University of Technology, Faculty of Computer
Science, Institute of Applied Computer Science, Chair of Technical
Information Systems, 2013.

[28] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA-II,” IEEE transactions on
evolutionary computation, vol. 6, no. 2, 2002, pp. 182–197.

[29] J. rey Horn, N. Nafpliotis, and D. E. Goldberg, “A Niched Pareto
Genetic Algorithm for Multiobjective Optimization,” in Proceedings of
the first IEEE conference on evolutionary computation, IEEE world
congress on computational intelligence, vol. 1. Citeseer, 1994, pp.
82–87.

[30] B. L. Miller, D. E. Goldberg et al., “Genetic Algorithms, Tournament
Selection, and the Effects of Noise,” Complex systems, vol. 9, no. 3,
Champaign, IL, USA: Complex Systems Publications, Inc., 1995, pp.
193–212.

[31] R. Poli and W. B. Langdon, “A New Schema Theorem for Genetic
Programming with One-Point Crossover and Point Mutation,” Cognitive
Science Research Papers-University of Birmingham CSRP, 1997.

[32] F.-T. Lin, “Evolutionary Computation Part 2: Genetic Algorithms and
Their Three Applications,” Journal of Taiwan Intelligent Technologies
and Applied Statistics, vol. 3, no. 1, 2005, pp. 29–56.

[33] M. Andersen et al., “Commons Math: The Apache Commons Mathe-
matics Library,” URL http://commons. apache. org/math/, online, 2011,
Retrieved: December 2020.

[34] F. Luo, I. D. Scherson, and J. Fuentes, “A Novel Genetic Algorithm for
Bin Packing Problem in jMetal,” in 2017 IEEE International Conference
on Cognitive Computing (ICCC). IEEE, 2017, pp. 17–23.

[35] J. J. Durillo and A. J. Nebro, “jMetal: A Java Framework for Multi-
Objective Optimization,” Advances in Engineering Software, vol. 42,
no. 10, Elsevier, 2011, pp. 760–771.

[36] K. Fleszar and C. Charalambous, “Average-Weight-Controlled Bin-
Oriented Heuristics for the One-Dimensional Bin-Packing Problem,”
European Journal of Operational Research, vol. 210, no. 2, Elsevier,
2011, pp. 176–184.

[37] E. Falkenauer and A. Delchambre, “A Genetic Algorithm for Bin
Packing and Line Balancing,” in Proceedings 1992 IEEE International
Conference on Robotics and Automation. IEEE, 1992, pp. 1186–1192.

[38] E. López-Camacho, H. Terashima-Marín, G. Ochoa, and S. E. Conant-
Pablos, “Understanding the Structure of Bin Packing Problems Through
Principal Component Analysis,” International Journal of Production
Economics, vol. 145, no. 2, Elsevier, 2013, pp. 488–499.

[39] J. J. Durillo, A. J. Nebro, F. Luna, B. Dorronsoro, and E. Alba, “jMetal:
A Java Framework for Developing Multi-Objective Optimization Meta-
heuristics,” Departamento de Lenguajes y Ciencias de la Computación,
University of Málaga, ETSI Informática, Campus de Teatinos, Tech.
Rep. ITI-2006-10, 2006.

[40] A. J. Nebro and J. J. Durillo, “jMetal 4.4 User Manual,”
Available from Computer Science Department of the University
of Malaga, 2013, Retrieved: December 2020. [Online]. Available:
http://jmetal.sourceforge.net/resources/jMetalUserManual44.pdf

[41] A. J. Nebro, J. J. Durillo, and M. Vergne, “Redesigning the jMetal
Multi-Objective Optimization Framework,” in Proceedings of the Com-
panion Publication of the 2015 Annual Conference on Genetic and
Evolutionary Computation. ACM, 2015, pp. 1093–1100.

[42] J. J. Durillo, A. J. Nebro, and E. Alba, “The jMetal Framework
for Multi-Objective Optimization: Design and Architecture,” in IEEE
Congress on Evolutionary Computation. IEEE, 2010, pp. 1–8.

[43] A. J. Nebro-Urbaneja et al., “Automatic Configuration of NSGA-II with
jMetal and irace,” ACM, 2019.

[44] J. A. Cordero et al., “Dynamic Multi-Objective Optimization with
jMetal and Spark: a Case Study,” in International Workshop on Machine
Learning, Optimization, and Big Data. Springer, 2016, pp. 106–117.

[45] C. Barba-González, J. García-Nieto, A. J. Nebro, and J. F. A. Montes,
“Multi-objective Big Data Optimization with jMetal and Spark,” in
EMO, 2017.

[46] Apache Commons Math, “Genetic algorithms,” 2016, Home Page,
Retrieved: December 2020. [Online]. Available: https://commons.
apache.org/proper/commons-math/userguide/genetics.html

[47] SOURCEFORGE, “jmetal,” 2017, Home Page, Retrieved: December
2020. [Online]. Available: https://sourceforge.net/projects/jmetal/

[48] A. J. Nebro, J. J. Durillo, C. A. C. Coello, F. Luna, and E. Alba,
“A Study of Convergence Speed in Multi-Objective Metaheuristics,”
in International Conference on Parallel Problem Solving from Nature.
Springer, 2008, pp. 763–772.

[49] Z. Jalali, E. Noorzai, and S. Heidari, “Design and Optimization of Form
and Façade of an Office Building Using the Genetic Algorithm,” Science
and Technology for the Built Environment, vol. 26, no. 2, 2020, pp.
128–140.

[50] I. Miri, M. H. Fotros, and A. Miri, “Comparison of Portfolio Optimiza-
tion for Investors at Different Levels of Investors’ Risk Aversion in
Tehran Stock Exchange with Meta-Heuristic Algorithms,” Advances in
Mathematical Finance and Applications, vol. 5, no. 1, 2020, pp. 1–12.

[51] T. Hendtlass, “The Particle Swarm Algorithm,” in Computational Intel-
ligence: A Compendium. Springer, 2008, pp. 1029–1062.

[52] R. Ba C. Gil, J. Reca, and J. Martz, “Implementation of Scatter Search
for Multi-Objective Optimization: A Comparative Study,” Computa-
tional Optimization and Applications, vol. 42, 04 2009, pp. 421–441.

[53] M. R. Sierra and C. A. C. Coello, “Improving PSO-based Multi-
Objective Optimization Using Crowding, Mutation and?-Dominance,”
in International conference on evolutionary multi-criterion optimization.
Springer, 2005, pp. 505–519.

[54] O. Brodersen and M. Schumann, “Einsatz der Particle Swarm Optimiza-
tion zur Optimierung universitärer Stundenpläne,” Techn. Rep, vol. 5,
2007.

[55] V. Santucci, M. Baioletti, and A. Milani, “Tackling Permutation-Based
Optimization Problems with an Algebraic Particle Swarm Optimization
Algorithm,” Fundamenta Informaticae, vol. 167, no. 1-2, 2019, pp. 133–
158.

[56] Lukasiewycz, Martin and Glaß, Michael and Reimann, Felix and Teich,
Jürgen, “Opt4J: A Modular Framework for Meta-Heuristic Optimiza-
tion,” in Proceedings of the 13th annual conference on Genetic and
evolutionary computation, 2011, pp. 1723–1730.

[57] SOURCEFORGE, “Opt4j,” 2017, Home Page, Retrieved: December
2020. [Online]. Available: http://opt4j.sourceforge.net/

[58] A. D. S. Grande, R. D. F. Rodrigues, and A. C. Dias-Neto, “A
Framework to Support the Selection of Software Technologies by
Search-Based Strategy,” in 2014 IEEE 26th International Conference
on Tools with Artificial Intelligence. IEEE, 2014, pp. 979–983.

[59] P. Evangelista, P. Maia, and M. Rocha, “Implementing Metaheuristic
Optimization Algorithms with JECoLi,” in 2009 Ninth International

180

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Conference on Intelligent Systems Design and Applications, 2009, pp.
505–510.

[60] A. J. Nebro et al., “AbYSS: Adapting Scatter Search to Multiobjec-
tive Optimization,” IEEE Transactions on Evolutionary Computation,
vol. 12, no. 4, 2008, pp. 439–457.

[61] F. Luna, J. J. Durillo, A. J. Nebro, and E. Alba, “A Scatter Search
Approach for Solving the Automatic Cell Planning Problem,” in Large-
Scale Scientific Computing, I. Lirkov, S. Margenov, and J. Waśniewski,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 334–
342.

[62] A. J. Nebro, “package org.uma.jmetal.algorithm.multiobjective.abyss,”
GitHub, Retrieved: December 2020. [Online]. Available:
https://github.com/jMetal/jMetal/blob/master/jmetal-algorithm/src/
main/java/org/uma/jmetal/algorithm/multiobjective/abyss/ABYSS.java

[63] F. Bourennani, Leadership-Based Multi-Objective Optimization
with Applications in Energy Systems. University of Ontario
Institute of Technology (Canada), 2013, Retrieved: December 2020.
[Online]. Available: https://ir.library.dc-uoit.ca/bitstream/10155/396/1/
Bourennani_Farid.pdf

181

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

