
Build Comparator: Integrated Semantic Comparison for Continuous Testing of

Android-based Devices using Sandiff

Carlos E. S. Aguiar, Jose B. V. Filho, Agnaldo O. P. Junior,
Rodrigo J. B. Fernandes, Cı́cero A. L. Pahins, Paulo C. R. Fonseca

Sidia R&D Institute
Manaus, Brazil

Emails: {carlos.aguiar, jose.vilarouca, agnaldo.junior,
rodrigo.fernandes, cicero.pahins, paulo.fonseca}@sidia.com

Abstract—With ever-larger software development systems con-
suming more time to perform testing routines, it is necessary
to think about approaches that accelerate continuous testing of
those systems. This work aims to allow the correlation of semantic
modifications with specific test cases of complex suites, and based
on that correlation, skip time-consuming routines or mount lists of
priority routines (fail-fast) to improve the productivity of mobile
developers and time-sensitive project deliveries and validation. In
order to facilitate continuous testing of large projects, we propose
Sandiff, a solution to efficiently analyze semantic modifications
on files that impact domain-specific testing routines of the official
Android Test Suite. We also propose the Build Comparator, an
integrated tool that leverages the semantic comparison on real-
world use cases. We demonstrate our approach by evaluating
both semantic coverage and scalability on a set of commercially-
available Android images of a large mobile-related company that
comprises both major and minor versions of the system.

Keywords–Testing; Validation; Content Comparison; Continu-
ous Delivery; Tool.

I. INTRODUCTION

As software projects grow up, continuous testing becomes
critical, but at the same time, complicated and time-consuming.
Consider a project with a million files and intermediate arti-
facts. A test suite that offers continuous testing functionalities
must perform without creating bottlenecks or impacting project
deliveries. However, effectively using continuous integration
can be a problem: tests are time-consuming to execute. Con-
sequently, it is impractical to run complete modules of testing
on each build. In these scenarios, it is common that teams lack
time-sensitive feedback about their code and compromise user
experience.

The testing of large software projects is typically bounded
to robust test suites. Moreover, the quality of testing and
evaluation of ubiquitous software can directly impact people’s
life, a company’s perceived image, and the relation with its
clients. Companies inserted in the Global Software Develop-
ment (GSD) environment, i.e., with a vast amount of develop-
ers cooperating across different regions of the world, tend to
design a tedious testing and evaluation process that becomes
highly time-consuming and impacts the productivity of devel-
opers. Moreover, continuous testing is a de facto standard in
the software industry. During the planning of large projects, it
is common to allocate some portion of the development period
to design testing routines. Test-Driven Development (TDD)
is a well-known process that promotes testing before feature

development. Typically, systematic software testing approaches
lead to computing and time-intensive tasks.

Sandiff [1] is a tool that helps to reduce the time spent on
testing of large Android projects by enabling to skip domain-
specific routines based on the comparison of meaningful data
without affecting the functionality of the target software.
For instance, when comparing two Android Open Source
Project (AOSP) builds generated in different moments, but
with the same source code, create the environment and build
instructions, the final result is different in byte level (byte-
to-byte). Still, it can be semantically equivalent based on its
context (meaning). In this case, it is expected that these two
builds perform the same. However, how to guarantee this? Our
solution relies on how to compare and demonstrate that two
AOSP builds are semantically equivalent. Another motivation
is the relevance of Sandiff to the continuous testing area,
where it can be used to reduce the time to execute the official
Android Vendor Test Suite (VTS). As our solution provides a
list of semantically equivalent files, it is possible to skip tests
that show the behavior provided by these files. The Figure 1
shows the execution official Android Test Suite is execute in a
commercially-available build based on AOSP. The execution
of all modules exceeded 4 hours, compromising developer
performance and deliveries on a planned schedule.

By comparison of meaningful data, we mean comparison
of sensitive regions of critical files within large software: dif-
ferent from a byte-to-byte comparison, a semantic comparison
can identify domain-related changes, i.e., it compares sensitive
code paths, or key-value attributes that can be related to the
output of large software. By large, we mean software designed
by a vast number of developers inserted in a distributed
software development environment; after that, automatic test
suits are necessary.

Another motivation of Sandiff is to enable developers to
find bugs faster on complex software. Take as an example a
camera bug in which the component or module is part of a
complex Android subsystem stack covering various architec-
tural levels: application framework, vendor framework, native
code, firmware, and others. With the help of the Sandiff, a de-
veloper can analyze the semantic comparison between different
software releases and narrow the source of the problem.

In summary, we present the key research contributions of
our proposal:

139

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Suite/Plan VTS/VTS
Suite/Build 9.0 R9 / 5512091
Host Info seltest-66 (Linux - 4.15.0-51-generic)
Start Time Tue Jun 25 16:17:23 AMT 2019
End Time Tue Jun 25 20:39:46 AMT 2019
Tests Passed 9486
Tests Failed 633
Modules Done 214
Modules Total 214
Security Patch 2019-06-01
Release (SDK) 9 (28)
ABIs arm64-v8a,armeabi-v7a,armeabi

Figure 1. Summary of the official Android Test Suite – Vendor Test
Suite (VTS) – of a commercially-available AOSP build.

1. An approach to perform semantic comparison and facili-
tate continuous testing of large software projects.

2. An integrated Build Comparator tool that leverages se-
mantic comparison to support Android-based software
releases and DevOps teams.

3. An evaluation of the impact of using Sandiff in real-world
and commercially-available AOSP builds.

Our paper is organized as follows. In Section II, we
provide an overview of binary comparators and their impact on
continuous testing of large projects. In Section III, we describe
Sandiff and its main functionalities: (i) input detection, (ii) con-
tent recognition, and (iii) specialized semantic comparison. In
Section IV, we present the Build Comparator tool and its ar-
chitecture, which enables the integration of Sandiff on systems
of the Android development environment. In Section V, we
present the evaluation of Sandiff in commercially-available
builds based on AOSP and discuss the impact of continuous
testing of those builds. We conclude the paper with avenues
for future work in Section VI.

II. RELATED WORK

To the best of our knowledge, few literature approaches
propose comparison of files with different formats and types.
Most comparison tools focus on the comparison based on diff
(text or, at most, byte position). Araxis [2] is a well-known
commercial tool that performs three types of file comparison:
text files, image files, and binary files. For image files, the
comparison shows the pixels that have been modified. For
binary files, the comparison is performed by identifying the
differences in a byte level. Diff-based tools, such as Gnu
Diff Tools [3] diff and cmp, also perform file comparison
based on byte-to-byte analysis. The main difference between
diff and cmp is the output: while diff reports whether files
are different, cmp shows the offsets, line numbers and all
characters where compared files differs. VBinDiff [4] is another
diff-inspired tool that displays the files in hexadecimal and
ASCII, highlighting the difference between them.

Other approaches to the problem of file comparison, in
a semantic context, typically use the notion of change or edit
distance [5] [6]. Wang et al. [5] proposed X-Diff, an algorithm
that analyses the structure of an XML file by applying standard
tree-to-tree correction techniques that focus on performance.
Pawlik et al. [6] also propose a performance-focused algorithm

based on the edit distance between ordered labeled nodes of an
XML tree. Both approaches can be used by Sandiff to improve
its XML-based semantic comparator. Similarly, with study
applied on music notations, in [7] implemented a solution to
compare files, like XML, based on a tree representation of
music notation combining with sequence and tree distance.
Besides, the authors show a tool to visualize the differences
side-by-side.

In [8], is showed a tool named Diffi, which is a diff
improved build to observe the correlation between file formats.
So, Diffi verifies the heaps of the files’ reflection levels and
discovers which file levels can recognize the delta between two
files correctly.

In [9], the authors explore the use of wavelets for the
division of documents into fragments of various entropy levels,
which made a separation between grouping sections to decide
the similarity of the files, and finally, detect malicious software.
Additionally, with a similar objective in [10] is investigated the
applicability of machine learning techniques for recognizing
criminal evidence in activities into file systems, verifying
possible manipulations caused by different applications.

Different from previous works, the Sandiff also supports
byte-level and semantic comparison simultaneously. However,
the semantic comparison is the main focus of the tool to
facilitate extensive software projects testing since it allows to
discard irrelevant differences in the comparison.

III. SANDIFF

Sandiff aims to compare meaningful data of two artifacts
(e.g., directories or files) and report a compatible semantic
list that indicates modifications that can impact the output of
domain-related on continuous testing setups of large projects.
In the context of software testing, syntactically different (byte-
to-byte) files can be semantically equivalent. Once the charac-
teristics of a context are defined, previously related patterns to
this context can define the compatibility between artifacts from
different builds. By definition, two artifacts are compatible
when the artifact A can replace the artifact B without losing its
functionality or changing their behavior. As each file type has
its own set of attributes and characteristics, Sandiff employs
specialized semantic comparators that are designed to support
nontrivial circumstances of domain-specific tests. Consider
the comparison of AOSP build output directory and its files.
Note that the building process of AOSP in different periods
of time can generate similar outputs (but not byte-to-byte
equivalent). Different byte-to-byte artifacts are called syntac-
tically dissimilar and typically require validation and testing
routines. However, in the context where these files are used, the
position of key-value pairs do not impact testing either software
functionality. We define these files as semantically compatible,
once Sandiff is able to identify them and suggest a list of tests
to skip. Take Figure 3 as example. It shows a difference in
the position of the last two lines. When comparing them byte-
to-byte, this results in syntactically different files. However,
in the execution context where these files are used, this is
irrelevant, and the alternate position of lines does not change
how the functionality works. Thus, the files are semantically
compatible.

Sandiff consists of three main functionalities: (i) input
detection, (ii) content recognition, and (iii) specialized se-
mantic comparison, as shown in Figure 2. During analysis of

140

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 2. Sandiff verifies the semantic compatibility of two files or directories (list of files) and report their differences.

Configuration 1
ro.build.version.preview sdk=0
ro.build.version.codename=REL
ro.build.version.all codenames=REL
ro.build.version.release=8.0.0
ro.build.version.security patch=17-08-05

Configuration 2
ro.build.version.preview sdk=0
ro.build.version.codename=REL
ro.build.version.all codenames=REL
ro.build.version.security patch=17-08-05
ro.build.version.release=8.0.0

Figure 3. Example of AOSP configuration files.

TABLE I. SUMMARY OF CONTENT RECOGNITION ANALYSIS FOR
EACH FILE.

Attribute Meaning
Tag Represents a file type
Action Action to be taken with the file. (COMPARE or IGNORE)
Reason In case of action IGNORE, the reason of ignore
Context Information about context that is used to define the ACTION

directories and files, we can scan image files or archives that
require particular read operations. The first step of Sandiff
is to identify these files to abstract file systems operations
used to access the data. This task is performed by the Input
Recognizer. Then, the Content Recognizers and Comparators
are instantiated. In order to use the correct Comparator, Sandiff
implements recognizers that are responsible to detect supported
file types and indicate if a file should be ignored or not based
on a test context. Once Sandiff detects a valid file, it proceeds
to the semantic comparison. The Comparators are specialized
methods that take into consideration features and characteris-
tics that are able to change the semantic meaning of execution
or testing, ignoring irrelevant syntactical differences. Note
that the correct analysis of semantic differences is both file
type and context-sensitive. Sandiff implements two operation
modes: (i) file and (ii) directory-oriented (walkables). In file-
oriented mode, the input is two valid comparable files, whereas
directory-oriented is the recursive execution of file-oriented
mode in parallel, using a mechanism called Orchestrator.
In the following sections, we describe the functionalities of
Sandiff in detail.

A. Content Recognition
The Sandiff performs the analysis of file contents by

leveraging internal structures, and known patterns to allow
the correct selection of semantic comparators, i.e., artifact
extension, headers, type signatures, and internal rules of AOSP
to then summarize the results into (i) tag, (ii) action, (iii)

reason, and (iv) context attributes, as shown in Table I. Each
attribute helps the semantic comparators to achieve maximum
semantic coverage over file types inside images embedded
on commercially-available devices. The Android-based devices
include several partitions that serve for specific purposes on
boot process and general operation, as defined below:

• system.img: contains the Android operating system
framework.

• vendor.img: contains any manufacturer-specific binary
file that is not available to the AOSP.

• userdata.img: contains user-installed data and appli-
cations, including customization data.

To measure the semantic coverage, we gathered the per-
centage (amount of files) of file types inside vendor.img.
We created a priority list to develop semantic comparators,
as shown in the Table II. For instance, both ELF (32 and 64
bits) files represent about roughly 60% of total files inside
.img files, whereas symbolic link files about 14% and XML
files about 6%. This process enables us to achieve about 90%
of semantic coverage. As the comparison is performed in a
semantic form, it is necessary to know the context in which
the artifact was used to enable the correlation between files
and test cases. Note that a file can impact one or more tests in
a different manner, e.g., performance, security and fuzz tests.
The remaining 10% of files are compared using the byte-to-
byte comparator.

Each recognizer returns a unique tag from a set of available
tags or a tag with no content to indicate that the file could
not be recognized. Recognizers can also decide whether a
file should be ignored based on context by using the action
attribute and indicating a justification in the reason attribute.
Recognizers are evaluated sequentially. The first recognizer
runs and tries to tag the file: if the file cannot be tagged,
the next recognizer in the list is called, repeating this process
until a valid recognizer is found or, in the latter case, the file
is tagged to the default comparator (byte-to-byte). Table III
summarizes the list of AOSP-based recognizers supported by
Sandiff.

B. Semantic Comparators
Sandiff was designed to maximize semantic coverage of

the AOSP by supporting the most relevant intermediate files
used for packing artifacts into .img image files, i.e., the
bootable binaries used to perform a factory reset and restore the
original operating system of AOSP-based devices. To ensure

141

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE II. SUMMARY OF SANDIFF SEMANTIC COVERAGE.

File Type # Files Percentage (%)
ELF-64 320 31.34
ELF-32 298 29.19
Symbolic link 152 14.89
XML document text 63 6.17
RC 34 3.33
.bin 34 3.33
.tlbin 28 2.74
.prop 21 2.06
.conf 10 0.98
ASCII text 8 0.79
Exported SGML 6 0.59
.dat 6 0.59
.hcd 4 0.39
JAR 3 0.29
.txt 3 0.29
.xml 2 0.20
Gzip compressed data 1 0.10
SE Linux 1 0.10
PEM certificate 1 0.10

* Green = Semantic comparison is performed. Red = Semantic comparison not
applicable. Default comparator (checksum) is performed. Orange = Semantic
comparison not supported by Sandiff. Default comparator (checksum) is performed.

TABLE III. LIST OF AOSP-BASED RECOGNIZERS SUPPORTED BY
SANDIFF.

Recognizer Tags Action
IgnoredByContextRecognizer ignored by context Ingore
ContextFileRecognizer zip manifest Compare
MagicRecognizer elf, zip, xml, ttf, sepolicy Compare
AudioEffectsRecognizer audio effects format Compare
SeappContextsRecognizerc seapp contexts Compare
PKCS7Recognizer pkcs7 Compare
PropRecognizer prop Compare
RegexLineRecognizer regex line Compare
SEContextRecognizer secontext Compare

ExtensionRecognizer
Based on file name.
e.g.: file.jpg ? ”jpg”

Compare

the approach assertiveness, we performed an exploratory data
analysis over each file type and use case to define patterns
of the context’s characteristics for each semantic comparator.
The exploratory data analysis over each file type relies on three
steps:

1. file type study;
2. where these files are used;
3. how these files are used (knowledge of its behavior).

The result of this analysis was used to implement each
semantic comparator. The following subsections describe the
main semantic comparators of Sandiff.

1) Default (Fallback) Comparator: Performs byte-to-byte
(checksum) comparison and is the default comparator for
binary files (e.g., .bin, .tlbin, and .dat). Acts as a fallback

TABLE IV. EXAMPLE OF COMPARING TWO SEQUENCES OF BYTES.

Position 0 1 2 3 4 5 6 7 8
Sequence #1 1D E1 2A DD 5F AE F8 5F 19
Sequence #2 1D ED 31 9E 5F 08 F8 5F 2E

alternative, performing comparison for cases where (i) file type
is not recognized or is unsupported and (ii) due to any errors
during the comparison (e.g., corrupted or malformed files).
Sandiff employs the industry standard [11] MD5 checksum
algorithm, as it balances performance and simplicity to verify
data integrity. For security-critical scenarios, Sandiff offers a
set of SHA algorithms with improved robustness and reliability
for collision attacks, i.e., verification of intentional corruption,
despite lower run-time performance. The supported alternatives
are: SHA1 [12], SHA224 [13], SHA256 [14], SHA384 [15],
and SHA512 [16]. To choose the most suitable algorithm,
it is necessary to consider the infrastructure, the application
requirements and the knowledge of the developers. A complete
overview and discussion about SHA algorithms is provided in
[17], [18] reviews.

When comparing two or more sequences of bytes, each
position is represented on hexadecimal format, i.e., positional
format that represents numbers using a base of 16 and uses
symbols 0-9 and A-F, representing each byte by two hex-
adecimal digits. Table IV illustrates how Sandiff performs the
byte-to-byte comparison. Note that in this case, the comparison
verified that positions 1-3, 5 and 8 are different, summarizing
the result as illustrated in Listing 1.

Difference(s):
Differs on range between position 1 and 3
Differs on byte at position 5
Differs on byte at position 8

Listing 1. Example of checksum comparator output.

2) Audio Effects: AOSP represents audio effects and con-
figurations in .conf files that are similar to .xml:

(i) <name>{[sub-elements]}
(ii) <name> <value>

Audio files are analysed by an ordered model detection
algorithm that represents each element (and its sub-elements)
as nodes in a tree alphabetically sorted.

3) Executable and Linking Format (ELF): ELF files are
common containers for binary files in Unix-base systems that
packs object code, shared libraries, and core dumps. This
comparator uses the definition of the ELF format (<elf.h>
library) to analyse (i) the files architecture (32 or 64-bit),
(ii) the object file type, (iii) the number of section entries in
header, (iv) the number of symbols on .symtab and .dynsym
sections, and (v) the mapping of segments to sections by
comparing program headers content.

To correlate sections to test cases, Sandiff detects semantic
differences for AOSP test-sensitive sections (e.g., .bss, .rodata,
.symtab, .dynsym, .text), listing and performing byte-to-byte
comparison on all relevant ELF sections found on target
files. Table VI summarizes irrelevant sections to ignore when
implementing the semantic comparison for ELF files. When
ELF files are Linux loadable kernel modules (.ko extension,

142

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE V. LIST OF LISTCOMPARATOR OPERATIONS MODES AND
FLAGS SUPPORTED BY SANDIFF.

Flag Description

File Order Indicates if there are difference among the item position
in list and the line number of file

Line Type
Indicates if file lines has only one key ONLY KEY) or are
(composed by more elements (MORE THAN KEY), with
a value associated to the key

Displacement Indicates if the result refers to differences semantically
relevant (true), or differences semantically irrelevant (false)

TABLE VI. LIST OF IRRELEVANT SECTIONS FOR SEMANTIC
COMPARISON OF ELF FILES.

Section Reason
.debug * holds information for symbolic debugging
.comment version control information

.gnu debugdata
allows adding a subset of full debugging info to a special
section of the resulting file so the stack traces can be more
easily ”symbolicated”

.gnu debuglink contains a file name and a CRC checksum of a separated
debug file

.gnu hash allow fast lookup up of symbols to speed up linking

.ident where GCC puts its stamp on the object file, identifying the
GCC version which compiled the code

.shstrtab section names

.got.* provides direct access to the absolute address of a symbol
without compromising position-independence and sharebility

.note.gnu.build-id unique identification 160-bit SHA-1 string

kernel object), the comparator checks if the module signature is
present to compare its size and values. Signature differences
are not considered relevant to semantic comparison. In case
of any ELF file is corrupted or malformed, the fallback
comparison is performed.

4) ListComparator: Base comparator for files structured
as item lists, reporting (i) items that exist only in one of the
compared files, (ii) line displacements (i.e., lines in different
positions), (iii) comments and empty lines, and (iv) duplicated
lines. To facilitate the correlation between files and test cases,
Sandiff implements specific list-based semantic comparators
for Prop, Regex Line and SELinux files, as they contain
properties and settings that are specific to a particular AOSP-
based device or vendor. To support such variety of files, the
list-based comparators offers a list of operation modes to
tackle specific scenarios, e.g., when the file has empty lines or
comments semantically irrelevant, as summarized in Table V.
The following paragraphs describe the list-based comparators
of Sandiff.

a) Prop: Supports files with .prop extensions and
formatted as <key> = <value> patterns. Prior to analysis,
each line of a .prop file is categorized in import, include or
property, as defined below:

1. import: lines with format import <key>, i.e., lines
containing the word ”import”, followed by one key.

2. include: lines with format include <key>, i.e., lines
containing the word ”include”, followed by one key.

3. property: lines with format <key> = [<value>], i.e.,
lines containing a pair composed by a key and an asso-
ciated value (optional) - separated by ”=” symbol.

After categorization, each line is parsed and added to its
respective list, i.e., import, include, and property lists. Each
of the three lists is individually compared with the others,
generating disjoint results that are later jointed for reporting.

TABLE VII. LIST OF SEMANTIC IRRELEVANT PROPERTIES OF
ANDROID BUILDS.

Property Description
BD Found in system/sepolicy version
ro.bootimage.build.* Build property set by android/build/make/core/Makefile

ro.build.* Build property set by android/build/make/tools/buildinfo.sh
at each new build

ro.expect.recovery id Build property set by android/build/make/core/Makefile
ro.factory.build id Build property set by android/build/make/core/main.mk
ro.ss.bid Build property set by android/build/make/core/main.mk
ro.vendor.build.* Build property set by android/build/make/core/Makefile

The PropComparator also provides a list of properties to be
discarded (considered irrelevant) on the semantic comparison,
as summarized in Table VII. A line can be ignored if is empty
or commented.

b) RegexLine: Performs the comparison of files in
which all lines match a user-defined regex pattern, e.g.,
’/system/.’ or ’.so’, offering the flexibility to perform
semantic comparison of unusual files.

c) SELinux: Security-Enhanced Linux, or SELinux, is a
mechanism that implements Mandatory Access Control (MAC)
in Linux kernel to control the permissions a subject context
has over a target object, representing an important security
feature for modern Linux-based systems. Sandiff supports
semantic comparison of SELinux specification files that are
relevant to security test cases of the VTS suite, i.e., Seapp
contexts, SELinux context, and SELinux Policy, summarizing
(i) components, (ii) type enforcement rules, (iii) RBAC rules,
(iv) MLS rules, (v) constraints, and (vi) labeling statements.

5) RC: The Android Init System is responsible for the
AOSP bootup sequence, init and init resources, components
that are typically customized for specific AOSP-based devices
and vendors. The initialization of modern systems consists of
several phases that can impact a myriad number of test cases
(e.g., kernel, performance, fuzz, security). Sandiff supports the
semantic comparison of .rc files that contain instructions used
by the init system:

• imports: analyses the importing calls of the invoking
mechanism.

• actions: compares the sequence of commands to test if
logical conditions are met, since commands in different
order may lead to different results.

• services: tackles operation modes by analysing options
(e.g., oneshot, onrestart, etc.) and characteristics (e.g.,
critical, priority, etc.) of the init-related services.

6) Symbolic Link: The semantic comparison of symbolic
links is an important feature of Sandiff that allows correlation
between test cases and absolute or relative paths that can
be differently stored across specific AOSP-based devices or
vendors, but result in the same output or execution. The
algorithm is defined as follows: first it checks if the file status
is a symbolic link, and if so, reads where it points to. With
this content it verifies if two compared symbolic links points
to same path. The library used to check the file status depends
on the input type and is abstracted by Input Recognizers. The
libraries are:

File System→ <sys/stat.h>

Image File→ <ext2/ext2fs.h>

ZIP→ <zip.h>

143

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



7) True Type Font: Sandiff uses the Freetype library [19]
to extract data from TrueType fonts, which are modeled in
terms of faces and tables properties. For each property field, the
comparator tags the semantically irrelevant sections to ignore
during semantic comparison. This is a crucial feature of Sandiff
since is common that vendors design different customization
on top of the default AOSP user interface and experience.

8) XML: XML is the de facto standard format for web
publishing and data transportation, being used across all
modules of AOSP. To support the semantic comparison of
XML files, Sandiff uses the well-known Xerces library [20]
by parsing the Document Object Model (DOM), ensuring
robustness to complex hierarchies. The algorithm compares
nodes and checks if they have (i) different attributes length,
(ii) different values, (iii) attributes are only in one of the inputs,
and (iv) different child nodes (added or removed).

9) Zip and Zip Manifest: During the building pro-
cess of AOSP images, zip-based files may contain Java
Archives (.jar), Android Packages (.apk) or ZIP files
itself (.zip). As these files follow the ZIP structure, they
are analysed by the same semantic comparator. Note that, due
to the archive nature of ZIP format, Sandiff covers different
cases:

1. In-place: there is no need to extract files.
2. Ignore Metadata: ignore metadata that is related to the

ZIP specification, e.g., archive creation time and archive
modification time.

3. Recursive: files inside ZIP are individually processed by
Sandiff, so they can be handled by the proper semantic
comparator. The results are summarized to represent the
analysis of the zip archive.

Another important class of files of the AOSP building
process are the ZIP manifests. Manifest files can contain
properties that are time-dependent, impacting naive byte-to-
byte comparators. Sandiff supports the semantic comparison
of manifests by ignoring header keys entries (e.g., String:
”Created-By”, Regex: ”(.+)-Digest”) and files keys
entries (e.g., SEC-INF/buildinfo.xml).

Each APK – the package file format used by Android – has
a set of manifest information and other metadata that are part
of the signature process. The most relevant for semantic com-
parison are META-INF/CERT.SF and MANIFEST.MF files,
since it contains integrity checks for files which are included
in the distribution, as shown in Listings 2 and 3. As both files
share the same structure, it is possible to analyse them with
the same semantic comparator. The ZipManifestComparator
parses both files and compares headers and digests by ignoring
irrelevant header and files entries.

Manifest-Version: 1.0
Created-By: singlejar
Name: AndroidManifest.xml
SHA-256-Digest: cEnjm4r95tb8NSMCP6B2Nn+P1G8sIpeXpPtsmuvSnfM=
Name: META-INF/services/

com.google.protobuf.GeneratedExtensionRegistryLoader
SHA-256-Digest: AT7RUk9qflHB8mVVceY0Zi7UuRK2bIPMewdxqL2zIBY=
Name: android-support-multidex.version.txt
SHA-256-Digest: OuJR1NnX1srJFP8Td2Bv9F5nMX3O5iAgxf15egCfa+Q=

Listing 2. The MANIFEST.MF file contains metadata used by the java
run-time when executing the APK.

Build Comparator

Comparator Service WEB Interface
12

Sandiff

Orchestrator
Manage Parallel Jobs

Recognizers
Recognize File Types

Semantic Comparators
Semantic Comparison

Input Adapters
Recognize and Read Input Files

Output
Semantic Compatible List 

Android
Build System

4 5 6

73

Figure 4. Build Comparator architecture and its relation with Sandiff’s
semantic comparison features.

Signature-Version: 1.0
Created-By: 1.0 (Android SignApk)
SHA-256-Digest-Manifest: rk0ZXezaawnGF65RmyYEmpqL+

gFdHzRTNb3kr/NeNNQ=
X-Android-APK-Signed: 2, 3
Name: AndroidManifest.xml
SHA-256-Digest: ZgWkXiulhWzT7qwbAVYgepd5tyGt6D+RQNAeT+AJw1Y=
Name: META-INF/services/

com.google.protobuf.GeneratedExtensionRegistryLoader
SHA-256-Digest: ASo5NB1Aa4gclvZke+olzjfErZMzxn/hthDK7Ann56w=
Name: android-support-multidex.version.txt
SHA-256-Digest: 6/lnFOH7mFVER94rAWcUmubglFFrHR7nf8+7zqQOgQs=

Listing 3. The CERT.SF file contains the whole-file digest of the
MANIFEST.MF and its sections.

10) PKCS7: Public Key Cryptography Standards, or
PKCS, are a group of public-key cryptography standards that
is used by AOSP to sign and encrypt messages under a Public
Key Infrastructure (PKI) structured as ASN.1 protocols. To
maximize semantic coverage, Sandiff ignores signatures and
compares only valid ASN.1 elements.

C. Orchestrator
The Orchestrator mechanism is responsible to share the

resources of Sandiff among a variable number of competing
comparison jobs to accelerate the analysis of large software
projects. Consider the building process of AOSP. We noticed
that, for regular builds, around 384K intermediate files are
generated during compilation. In this scenario, running all
routines of the official Android Test Suite, known as Vendor
Test Suite (VTS), can represent a time consuming process that
impacts productivity of mobile developers. To mitigate that,
the Orchestrator uses the well-known concept of workers and
jobs that are managed by a priority queue. A worker is a thread
that executes both recognition and comparison tasks over a
pair of files, consuming the top-ranked files in the queue. To
accelerate the analysis of large projects, Sandiff adopts the
notion of a fail greedy sorting metric, i.e., routines with higher
probability of failing are prioritized. The definition of failing
priority is context-sensitive, but usually tends to emphasize
critical and time-consuming routines. After the processing of
all files, the results are aggregated into a structured report
with the following semantic sections: (i) addition, (ii) removal,
(iii) syntactically equality, and (iv) semantic equality.

IV. INTEGRATED BUILD COMPARATOR TOOL

To provide semantic comparison benefits on supporting
software releases and DevOps operations, we propose Build
Comparator, an integrated tool that abstracts configuration,
image management, test execution, and report visualization to

144

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 5. (A) Main Build Comparator interface. (B) List of jobs with unique
identifier (ID), status, user, and job begin time. (C) Creation of comparison

jobs based on (i) build systems, (ii) remote or (iii) local images.

facilitate Android-based development pipelines and processes.
The Build Comparator can be integrated with systems that
are commonly used for compilation jobs and managing the
configuration and execution of Android’s platform scripts, as
shown in Figure 4. The proposed integration covers all main
steps from user input to report visualization, as follows:

1. The user interacts with the tool through the Web Inter-
face, which is responsible for providing communication
between the user and service.

2. The Comparator Service provides a REST-based service
that is responsible for managing the whole life-cycle of
scheduled jobs (i.e., creation, management and running)
using Sandiff as back-end. The service is also integrated
with the systems responsible for compilation jobs, per-
forming the user credential and image downloads.

3. On Sandiff side, the Input Adapters provide the ability
to R/W different input files, abstracting the methods used
to access the data.

4. The Orchestrator is responsible for managing the paral-
lel jobs when Sandiff is filled with directories analysis,
tracking file additions, removals, and type changes.

5. The Recognizers are responsible for determining the
correct Semantic Comparator by analysing the (i) file
type, (ii) header, and (iii) general structure.

6. In the last step, Sandiff generates the semantic compatible
list, making it available to the Comparator Service and
Web Interface.

In Figures 5 and 6, we summarize the main Build Com-
parator interfaces. We use a client-server architecture for the
current implementation. The browser-based client is written
in JavaScript, HTML5, and Angular. The server is a C++11
template-based implementation that exposes its API for queries
via HTTP, enabling the comparison of Android builds accord-
ing with the source of the artifacts. The architecture supports
the most common integration methods with continuous testing
tools or development pipelines:

• Build Systems: the artifacts are located in continuous
integration and deployment servers, e.g., QuickBuild [21].

• Remote: the artifacts are located in an HTTP server or
the cloud.

• Local: the artifacts are located in the user’s personal
computer.

Figure 6. Interface that summarizes the semantic comparison results.
(A) General statistics of the analysed pair of Android images. (B) List of
semantic relevant artifacts that are supported by Sandiff. (C) Type of each

semantic modification (add, remove, edit, type edit).

V. EXPERIMENTS

A. Semantic Coverage
To verify the comparison performance of Sandiff, we

did experiments between different branches of commercially-
available images of AOSP. The AOSP contains numerous
types of files (text, audio, video, symbolic links, binary files,
among others) that can be compared semantically. The exper-
iments consist of comparing the following image pairs:

- Experiment #1: Analysing two major AOSP with minor
revisions: 8.1.0 r64 x 8.1.0 r65.

- Experiment #2: Analysing the last revision of AOSP Oreo
and initial release of AOSP Pie: 8.1.0 r65 x 9.0.0 r1.

- Experiment #3: Analysing the last revision of AOSP Pie
and its initial release: 9.0.0 r1 x 9.0.0 r45.

- Experiment #4: Analysing two major releases of AOSP
Oreo and AOSP 10: 8.1.0 r77 x 10.0.0 r39.

- Experiment #5: Analysing two major releases of AOSP Pie
and AOSP 10: 9.0.0 r57 x 10.0.0 r39.

These pairs were compared using both semantic (Sandiff)
and byte-to-byte (checksum) comparison methods. To demon-
strate the robustness of each method, we analysed the files con-
tained in system.img, userdata.img and vendor.img
images, which are mounted in the EXT2 file system under a
UNIX system. Note that, differently from Sandiff, the byte-
to-byte comparison cannot read empty files and symbolic link
targets. These files are listed as errors, as shown in Table VIII.

Based on the experiments of Table VIII, we can note that
Sandiff was able to analyze large software projects like the
AOSP. First, the semantic comparison was able to determine

145

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE VIII. OVERALL SUMMARY OF THE IMPACT OF USING SANDIFF IN REAL-WORLD COMMERCIALLY-AVAILABLE AOSP BUILDS.

Comparison
Add Remove Edit Type Edit Equal Error Ignored

Semantic Binary Semantic Binary Semantic Binary Semantic Binary Semantic Binary Semantic Binary Semantic Binary
Experiment #1 0 0 0 0 11 12 0 0 2185 2165 0 19 0 0
Experiment #2 13 13 27 27 0 0 3 3 0 0 0 0 0 0
Experiment #3 23 23 18 18 527 606 0 0 1929 1805 0 45 0 0
Experiment #4 179 179 41 41 98 97 5 5 153 154 0 0 0 0
Experiment #5 439 439 240 240 839 844 11 11 785 780 0 0 0 0

* Add = file is present on the second input. Remove = file is present in the first input. Edit = file is present in both inputs, but the comparison returned differences. Type Edit = file
is present in both inputs, but there were changes in its metadata (e.g., permissions). Equal = file is present in both inputs, and the comparison returns an equal status. Error = file is
present in both inputs, but the comparison returns an error status. Ignored = file is present in both inputs, but is not semantically relevant, so it was ignored.

the file type and compare the file contents and its metadata. In
contrast, a byte-to-byte comparison was unable to compare the
symbolic link’s targets and broken links. Second, the semantic
comparison was able to discard irrelevant differences (e.g.,
the build time in build.prop) which are no differences in
functionality.

Note that, during experiment #2, Sandiff is unable to
perform a full analysis between these trees because there were
structural changes. For instance, in AOSP Oreo, the /bin is a
directory containing many files. In contrast, in AOSP Pie, the
/bin is now a symbolic link to another directory path (that
can be another image). As a result, Sandiff detects this case
as a Type Edit and does not traverse /bin since it is only a
directory in AOSP Oreo.

The experiment #3 is similar to experiment #1, except that
the number of edited files is significantly more extensive since
the code has changed due to the different revisions. We notice
that errors occur in symbolic links, as expected for byte-to-
byte comparison. Some files only changed in terms of data,
but not in semantic meaning, making this the optimal scenario
for Sandiff over the traditional checksum.

Both experiments #4 and #5 evaluate at which point the
semantic comparison becomes irrelevant, i.e., they exploit
Sandiff performance when analyzing significantly different
AOSP releases. As expected for these scenarios, the results
of both semantic and byte-to-byte comparisons are similar.
In summary, the semantic comparison is inaccurate when
analyzing files that are not recognized by the rules in the
current implementation of Sandiff, making the byte-to-byte
more appropriate in these cases. Nevertheless, Sandiff is able
to support both semantic and non-semantic tasks, despite run-
time performance disadvantages when compared with naive
solutions.

B. Scalability
To study the behavior of Sandiff when dealing with multi-

threaded AOSP build systems, we performed a scalability
evaluation that measures the run-time performance on different
(i) execution modes, (ii) number of concurrent comparison
jobs, and (iii) AOSP builds. In this experiment, we used a
workstation-based setup with an Intel Core i7-2600 at 3.40GHz
with 16GB of memory, hereafter called Machine #1, and a data
center server with an Intel Xeon E5-2697 at 2.30GHz with
125GB of memory, hereafter called Machine #2.

The execution modes are responsible for defining the
parallel and recursive operations of Sandiff’s Orchestrator, as
defined in Section III. In summary, it manages the strategies

for resource sharing and how comparison results are collected.
Below we list the evaluated modes:

• Walk First: leverages multi-threading by sequentially
analyzing the directories, distributing its files across the
comparison jobs. It is the default mode of the Sandiff.

• Parallel Walk: performs concurrent directory analysis up
to the number of comparison jobs. It is the recommended
mode for analyzing directories with a large number of
files.

• Mixed: iterates in both files and directories.
• Slice: lists all files before processing, then distributes

them in similar batches across the maximum number of
comparison jobs.

To minimize the variance between runs, we repeated each
experiment four times, as shown in Figures 7 and 8. Note that,
despite different scenarios, Sandiff achieved its best run-time
performance when running with four parallel comparison jobs.
Due to AOSP nature, Sandiff cannot successfully parallelize
the jobs since the tasks are interdependent. In general, Walk
First, Parallel Walk, and Mixed modes tend to attain similar
scalability.

To cope with the variance, we repeated each experiment
four times, as shown in Figures 7 and 8. Note that, despite
different scenarios, run-time performance increases quickly as
the number of jobs grows. Due to the small amount of data in
pure AOSP images - not more than 1900 files and 800MB - the
orchestration process among multiple jobs creates an overhead
that is not compensated by the parallelization after four parallel
jobs. This limitation is overcome when larger images are used.
To illustrate the scenario where more data is compared, we
run a comparison between two commercially-available builds
based on AOSP having 4847 files and a total size of 4GB. As
can be seen in Figure 9, parallel comparison stands up when a
higher amount of data is compared. Execution time decreases
as the number of jobs gets closer to the number of physical
cores available on the machine.

In general, Walk First, Parallel Walk, and Mixed modes
tend to attain similar scalability, but Slice mode provided
better performance, relatively and absolutely, when the number
of jobs coincides with the number of available cores of
the machine. This occurs due to the decreased number of
context changes provided by the Slice mode combined with
the maximum usage of available cores.

VI. CONCLUSION

In this paper, we presented Build Comparator, an integrated
tool for supporting software releases and DevOps operations

146

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Build 8.1.0r64 vs. Build 8.1.0r65 Build 9.0.0r1 vs. Build 9.0.0r45

2 4 6 8 2 4 6 8

9

12

15

Number of Parallel Comparison Jobs

E
xe

cu
tio

n 
T

im
e 

(in
 s

ec
)

Execution Modes Mixed Parallel Walk Slice Walk First
Workstation Setup

Figure 7. Scalability performance when analysing AOSP builds on
workstation-based setups.

Build 8.1.0r64 vs. Build 8.1.0r65 Build 9.0.0r1 vs. Build 9.0.0r45

0 20 40 60 80 0 20 40 60 80

7.5

10.0

12.5

15.0

Number of Parallel Comparison Jobs

E
xe

cu
tio

n 
T

im
e 

(in
 s

ec
)

Execution Modes Mixed Parallel Walk Slice Walk First
Data Center Server

Figure 8. Scalability performance when analysing AOSP builds on data
center servers, i.e., dedicated environments for experimenting.

on Android development pipelines by leveraging Sandiff, a
semantic comparator designed to facilitate continuous test-
ing of large software projects, specifically those related to
AOSP. To the best of our knowledge, Sandiff is the first to
allow correlation of test routines of the official Android Test
Suite (VTS) with semantic modifications in intermediate files
of AOSP building process. When used to skip time-consuming
test cases or to mount a list of priority tests (fail-fast), Sandiff
can lead to higher productivity of mobile developers. We
showed that semantic comparison is more robust to analyze
large projects than binary comparison since the latter cannot
discard irrelevant modifications to the target software’s output
or execution. As we refine the semantic comparators of Sandiff,
more AOSP specific rules will apply, and consequently, more
items can be classified as ”Equal” in Sandiff’s comparison
reports.

With Build Comparator, we presented and analyzed an
architecture that enables the integration of semantic compari-
son with systems that are commonly used in the development
of AOSP software, exploiting real-world use cases. In the
context of making Sandiff domain agnostic, another avenue
for future work is to explore machine learning techniques

100

150

200

0 20 40 60 80
Number of Parallel Comparison Jobs

E
xe

cu
tio

n 
T

im
e 

(in
 s

ec
)

Execution Modes Mixed Parallel Walk Slice Walk First
Commercial AOSP

Figure 9. Scalability performance when analysing a large commercial AOSP
build on a data center server.

to detect how tests are related to different files and formats.
We also plan to extend Build Comparator’s reporting features
by proposing visualizations that highlight relevant semantic
differences between pairs of files and integrate Sandiff to the
official Android Test Suite (VTS) to validate our intermediate
results.

ACKNOWLEDGMENTS

We thank both Rafael Melo da Silva and Nick Diego
Yamane Pinto for their valuable help during the development
of the project. This work was partially supported by Samsung
Eletrônica da Amazônia Ltda., under the auspice of the infor-
matics law no 8.387/91.

REFERENCES
[1] C. E. D. S. Aguiar, J. I. B. V. Filho, A. O. P. Junior, R. J. B.

Fernandes, and C. A. D. L. Pahins, “Sandiff: Semantic file comparator
for continuous testing of android builds,” VALID 2019 : The Eleventh
International Conference on Advances in System Testing and Validation
Lifecycle, Nov. 2019, pp. 51–55.

[2] Araxis Ltd. Araxis: Software. [Online]. Available: https://www.araxis.
com/ [retrieved: November, 2020]

[3] Free Software Foundation, Inc. Diffutils. [Online]. Available: https:
//www.gnu.org/software/diffutils/ [retrieved: October, 2020]

[4] C. J. Madsen. Vbindiff - visual binary diff. [Online]. Available:
https://www.cjmweb.net/ [retrieved: October, 2020]

[5] Y. Wang, D. J. DeWitt, and J. Cai, “X-diff: an effective change detec-
tion algorithm for xml documents,” in Proceedings 19th International
Conference on Data Engineering, March 2003, pp. 519–530.

[6] M. Pawlik and N. Augsten, “Efficient computation of the tree edit
distance,” ACM Transactions on Database Systems, vol. 40, 2015, pp.
3:1–3:40.

[7] F. Foscarin, F. Jacquemard, and R. Fournier-S’niehotta, “A diff
procedure for music score files,” in 6th International Conference
on Digital Libraries for Musicology, ser. DLfM ’19. New York,
NY, USA: Association for Computing Machinery, 2019, pp. 58–64.
[Online]. Available: https://doi.org/10.1145/3358664.3358671

147

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[8] G. Barabucci, “Diffi: Diff improved; a preview,” in Proceedings of the
ACM Symposium on Document Engineering 2018, ser. DocEng ’18.
New York, NY, USA: Association for Computing Machinery, 2018.
[Online]. Available: https://doi.org/10.1145/3209280.3229084

[9] I. Sorokin, “Comparing files using structural entropy,” Journal
in Computer Virology, vol. 7, 2011. [Online]. Available: https:
//doi.org/10.1007/s11416-011-0153-9

[10] R. M. A. Mohammad and M. Alqahtani, “A comparison of machine
learning techniques for file system forensics analysis,” Journal of
Information Security and Applications, vol. 46, 2019, pp. 53 –
61. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S2214212618307579

[11] D. Rachmawati, J. T. Tarigan, and A. B. C. Ginting, “A comparative
study of message digest 5(MD5) and SHA256 algorithm,” Journal of
Physics: Conference Series, vol. 978, 2018, pp. 1–6.

[12] G. Leurent and T. Peyrin, “From collisions to chosen-prefix collisions
application to full sha-1,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2019,
pp. 527–555.

[13] R. Martino and A. Cilardo, “Sha-2 acceleration meeting the needs of
emerging applications: A comparative survey,” IEEE Access, vol. 8,
2020, pp. 28 415–28 436.

[14] D. M. A. Cortez, A. M. Sison, and R. P. Medina, “Cryptographic

randomness test of the modified hashing function of sha256 to address
length extension attack,” in Proceedings of the 2020 8th International
Conference on Communications and Broadband Networking, 2020, pp.
24–28.

[15] P. M. Simanullang, S. Sinurat, and I. Saputra, “Analisa metode sha384
untuk mendeteksi orisinalitas citra digital,” KOMIK (Konferensi Na-
sional Teknologi Informasi dan Komputer), vol. 3, no. 1, 2019.

[16] A. Jose and K. Subramaniam, “Dna based sha512-ecc cryptography
and cm-csa based steganography for data security,” Materials Today:
Proceedings, 2020.

[17] S. Long, “A comparative analysis of the application of hashing encryp-
tion algorithms for MD5, SHA-1, and SHA-512,” Journal of Physics:
Conference Series, vol. 1314, Oct. 2019, p. 012210.

[18] G. Shaheen, “A robust review of sha: Featuring coherent characteris-
tics,” International Journal of Computer Science and Mobile Computing,
vol. 9, 2020, p. 111–116.

[19] FreeType Project. Freetype. [Online]. Available: https://www.freetype.
org/freetype2/ [retrieved: November, 2020]

[20] Apache Software Foundation. C xml parser. [Online]. Available:
https://xerces.apache.org/xerces-c/ [retrieved: October, 2020]

[21] PMEase. Quickbuild. [Online]. Available: https://www.pmease.com/
[retrieved: October, 2020]

148

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


