
Requirements Traceability using SysML Diagrams and BPMN

Corina Abdelahad and Daniel Riesco

Departamento de informática

Universidad Nacional de San Luis

San Luis, Argentina

e-mail: cabdelah@unsl.edu.ar, driesco@unsl.edu.ar

Carlos Kavka

Research and Development Department

ESTECO SPA

Trieste, Italy

e-mail: kavka@esteco.com

Abstract— An important activity in systems development is

ensuring that all system requirements are met. Model-Based

Systems Engineering is a methodology that benefits the

documentation of the requirements and decisions that are

made during the design process. On the other hand, visualizing

different perspectives that focus on different aspects of the

system permits to capture all the details of the design while

refining the level of detail of the models. SysML is a Systems

Modeling Language, which is defined as an extension of the

well-known Unified Modeling Language standard. It is based

on four pillars, which give the possibility to view a system from

four different perspectives, supporting requirements

traceability. Requirements traceability refers to the ability to

describe and follow the life of a requirement in both a forward

and backward direction. This traceability has an important

role in Model-Based Systems Engineering. The central aim of

this paper is to present a traceability approach that supports

decision-making requirements. To carry out this traceability

we propose to combine SysML and Business Process Model

and Notation and Decision Model and Notation. SysML is used

to model some aspects of system, and processes and decision-

making activities are defined in terms of BPMN and DMN

standards, respectively. This proposal seeks to help engineers

to improve their design and enhance traceability starting from

requirements, integrating and covering the different views.

Our contribution is illustrated by means of a case study.

Keywords-SysML; BPMN; DMN; requirements traceability.

I. INTRODUCTION

Abstraction is a technique used by engineers to deal with
complexity, permitting them to focus only on the information
that is considered significant or relevant. To improve the
design of requirements, to understand and cover their
different views improving maintenance and verification
activities, it is necessary to carry out requirements
traceability [1]. International Council on Systems
Engineering (INCOSE) [2] indicates that “requirements
traceability refers to the ability to describe and follow the life
of a requirement in both a forward and backward direction
along the design stages”. Traceability plays an important role
as part of any Model-Based Systems Engineering (MBSE)
methodology. MBSE is a successful methodology for the
design of complex systems, which emphasizes the use of
models when performing systems engineering activities [3].
These models, which can be executable or not, are used to
describe the structure and the behavior of the systems.

With the evolution of systems engineering, the need for a
consistent standard modeling language arose. INCOSE

together with the Object Management Group (OMG) [4]
defined SysML, a general-purpose modeling language based
on UML, which can be used for specifying, analyzing,
designing, and verifying complex systems, including
hardware, software, information, personnel, procedures, and
facilities [5]. SysML is based on four pillars, which give the
possibility to view a system from four different perspectives:
Requirements, Structure, Behavior and Parametrics, each one
of them defined in terms of diagrams [6]. Requirements
modeling [7] is implemented in terms of the requirement
diagram, which allows for capturing, analyzing and
maintaining traceability of requirements in the modeled
system. Structure modeling has a block definition diagram as
the main diagram, representing structural elements (blocks)
with their properties, relationships, and composition.
Behavior modeling has different kinds of behavior diagrams
like activities diagram, state machine, and sequence diagram.
Parametric modeling has a parametric diagram that can be
used to identify the system constraints [5]. In SysML,
requirements can be related to other requirements, as well as
to other model elements via one or more relationships,
making possible the traceability of requirements.
Furthermore, SysML can be integrated into other tools
including spreadsheets and design and simulation software,
such as Matlab or Modelica [8], enabling requirements
verification.

The specification of business processes also followed the
same path requiring standards for its definition. In particular,
the Business Process Management Initiative (BPMI) together
with the OMG developed the widely used BPMN notation
for modeling business processes [9]. BPMN defines an
abstract representation for the specification of business
processes, which can include human intervention or not.
BPMN couples an expressive graphical representation with a
rigorous Extensible Markup Language (XML) encoding of
processes and the interactions among them, supporting not
only modeling activities but also process execution by using
appropriate BPMN engines. Several works in the
engineering field have shown the value of using BPMN
instead of UML activity diagrams. Activity Diagram can be
used for business process modeling but BPMN was designed
exclusively for modeling business process [9] and OMG
adopted BPMN instead of the Activity Diagram (UML AD)
as the core standard to create a business modeling framework
[10]. BPMN has model elements that, in some cases, do not
have a corresponding element in UML 2.0 AD. There are
cases when components of the business processes are

129

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

modeled using only one symbol in BPMN and using a group
of symbols in UML AD [11]. Since many activities within a
business process involve decision-making, the OMG defined
recently the Notation and Decision Model and Notation
(DMN) standard for the elicitation and representation of
decision models, effectively separating decision logic and
control flow logic in business processes [12]. DMN was
designed to be usable alongside the standard BPMN. At
present, many companies have adopted BPMN not only
because of its popularity, but because it is strongly related to
DMN. This standard is already receiving adoption in the
industry, with many tools being developed to assist users in
modeling, checking, and applying DMN models.

As the main contribution, this work presents an
innovative approach to enhance requirements traceability in
the context of MBSE, by combining SysML, BPMN and
DMN. This approach can help systems engineers to improve
the design of requirements, to understand and cover their
different views, improving maintenance and verification
activities while contributing to refine the level of detail of the
models.

The rest of this paper is organized as follows: Section II
introduces related work, while Section III summarizes the
basic concepts used in this paper. Section IV addresses the
proposed approach with a case study presented in Section V.
Section VI shows the conclusion.

II. RELATED WORK

Several works in the field of software engineering are
related to the concept of requirements traceability using
SysML. For example, the authors in [13] show how
requirements traceability for mechatronic design can be
achieved using MBSE and SysML. SysML is used for
linking system requirements to the system elements of the
different domain models while guaranteeing the traceability.
This paper presents a case study of a mechatronic system in
order to show this traceability.

In [14], the authors propose a Model-Based Systems
Engineering approach based on SysML. This approach
enables the capture and the definition of functional
requirements, validate these functional requirements through
functional simulation, and verify efficiently the consistency
of these functional requirements. The approach is illustrated
by means of a case study of an industrial avionics system.

In [15], a solution for SysML model verification and
validation in an industrial context is presented. The authors
provide a method and a list of the existing challenges;
besides that, they show experimental results. A case study is
presented, verification rules are in Object Constraint
Language (OCL), while the validation rules are in a formal
text format evaluated by a script. The authors mention that
the verification of these rules ensures a certain degree of
traceability.

In [16], an approach to construct true model-based
requirements in SysML is presented. This approach proposes
that every requirement can be modeled as an input/output
transformation. This proposal uses SysML behavioral and
structural models and diagrams, with specific construction
rules derived from Wymore’s mathematical framework for

MBSE and taxonomies of requirements and interfaces. The
authors consider that this proposal provides several benefits,
including traceability, and improved precision over the use
of natural language.

In [17], the authors propose a model-based approach to
automotive requirements engineering for the general
development of vehicles of passengers. The SysML
requirement element is extended, through stereotype, to
functional and non-functional requirements. The paper
validates the advantages that include classified and modeled
requirements graphically, as well as their relationships that
are explicitly mapped. This article presents a case study that
shows the proposed extension and the performed
requirements traceability.

In [18], the authors propose a model-driven requirement
engineering approach for the embedded software domain.
This approach is based on UML, MARTE and SysML
standard notations, which are integrated in order to improve
requirements specification and traceability. MARTE is used
to allow domain-specific non-functional requirements to
improve the software specification and SysML is combined
with UML/MARTE models to support requirements
management, to follow their changes. The approach is
illustrated by means of a case study.

In [19], the authors propose a metamodel, which
establishes the traceability links among the requirement
model, the solution model and the verification and validation
model for embedded system design. This approach enables
traceability of requirements by considering heterogeneous
languages for modeling and verifying real-time embedded
systems. A case study illustrates the approach with the use of
languages such as SysML, MARTE, SIMULINK, among
others.

However, to the best of our knowledge, no research work
about requirements traceability has considered the decision
requirement, a kind of requirement that involves decision
making. This requirement appears in the decision
requirement diagram, which represents human decision
making or automated decision making within a process. The
main motivation of this work is the need to provide support
to decision requirements, by offering adequate tools to the
systems engineers that improve the design and handling of
these types of requirements. Considering this, the approach
presented in this paper is a step forward to support decision
requirements, completing the different system engineering
views by combining of SysML, BPMN and DMN.

III. BASIC CONCEPTS

This section presents the basic concepts on which the
proposed approach is based. Section A describes the role of
requirements in system engineering, Section B introduces
traceability related concepts in SysML, Section C describes
the SysML requirements diagram and its relationships with
others diagrams like the: use case diagram, block definition
diagram and state machine used in the approach. Section D
shows some concepts about DMN and its relationship with
BPMN.

130

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Requirements

Requirements are the base in system development. They
determine what the system has to offer, they can specify a
desired feature, property, or behavior of a system, i.e.,
requirements set out what the system should do and define
constraints that it has [20]. The concept of the requirement
may also be further classified as [21]:

 Business Requirement. A Business Requirement is
used to indicate the needs of a business. This impact
on the organization and all the projects within it.

 Functional Requirement. Functional Requirements
produce an observable result to someone, or
something, that is using the system, i.e., they are the
services that the system should provide.

 Non-functional Requirement. A Non-functional
Requirement will constrain, or limit in some way,
the way in which Functional Requirement may be
realized.

B. Traceability in SysML

In [2], INCOSE indicates that “requirements traceability
refers to the ability to describe and follow the life of a
requirement in both a forward and backward direction along
the design stages”. Traceability plays an important role as
part of any MBSE methodology [3]. MBSE emphasizes the
use of models to perform the systems engineering activities,
as mentioned before. In fact, “MBSE is the formalized
application of modeling to support system requirements,
design, analysis, verification and validation activities
beginning in the conceptual design phase and continuing
throughout development and later life cycle phases” [22].

Modeling with SysML allows good traceability because
it defines relationships between requirements and among
other modeling elements [23][24]. Figure 1 describes the
approach in which SysML accomplishes traceability by
means of the 4 pillars presented in Section I. This figure
shows the system model as an interconnected set of model
elements. The arrows that cross the pillars, as seen in Figure
1, illustrate how the different elements belonging to the
different types of diagrams that participate in the pillars are
related, supporting requirements traceability.

C. SysML Requirements diagram and its relationships with

others diagrams

In SysML, the requirements diagram shows the set of
requirements and the relationship between them. A
requirement specifies a function that must be satisfied or a
condition that a system must achieve. Requirements
modeling provides a bridge among different SysML
diagrams because a requirement can appear on other
diagrams to show its relationship to other modeling
elements. The relationships that allow relating requirements
with other requirements or with other modeling elements are
[5]:

Figure 1. A system model example in SysML where requirements

traceability is indicated with the connecting arrows (from [6]).

 Containment: a relationship, which is used to
represent how a compound requirement can be
partitioned into a set of simpler requirements
(denoted graphically with a circle containing a +
symbol).

 «deriveReqt»: a relationship, which describes that a
requirement is derived from other requirement.

 «satisfy»: a relationship that describes that a design
element satisfies a requirement. Usually, a
requirement is satisfied by a block.

 «verify»: a relationship that connects a test case with
the requirement that is verified by that test case.

 «refine»: a relationship, which specifies that a model
element describes the properties of a requirement in
more detail.

 «trace»: a general-purpose relationship between a
requirement and any other model element.

The requirements can be related to the use cases through
the relationship «refine». On the one hand, a use case can be
viewed as functionality and/or capacity. On the other hand, a
requirement specifies a capability or condition that must be
satisfied, as previously mentioned, therefore, a use case
diagram may be used to refine one or more functional
requirements. In addition, the requirements are related to the
blocks through the relationship «satisfy», as mentioned
before. The block definition diagram captures the relation
between blocks, such as a block hierarchy. Since the
activities can be seen as a block, they can have associations
between each other, including composition associations.
Activities in block definition diagrams appear as regular
blocks, except for the «activity» keyword [5]. Depending on
the nature of the block, this can have a behavior associated,
in that case, states machine can be used to describe its
internal states. The state machine diagram is used to specify
a behavior, with a focus on the set of states of a block and
the possible transitions between those states in response to

131

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

event occurrences, i.e., the state machine diagram presents
behavior of an entity, as a block, in terms of its transitions
between states triggered by events [25].

SysML enables characterization of any type of
requirements for the system, including user, technical or
others. A modeler can then define relationships between the
specified requirements, providing the opportunity to create
traceability among them. There is also an opportunity to
create traceability from the logical and structural architecture
design to their requirements, one of the most critical
activities in systems engineering [26].

D. BPMN and DMN

The OMG provides the DMN notation for modeling
decisions, which is not only understandable to stakeholders
but it is also designed to be used in conjunction with the
BPMN standard notation [12].

DMN provides constructs to both decision requirements
and decision logic modeling. For decision requirements
modeling, it defines the concept of Decision Requirements
Graph (DRG) depicted with the Decision Requirements
Diagram (DRD). This latter shows how a set of decisions
depends on each other, on input data, and on business
knowledge models. A decision element determines an output
from the inputs, using decision logic, which may reference
one or more business knowledge models. This denotes a
function encapsulating business knowledge, e.g., as business
rules, a decision table, or an analytic model. A decision table
is a representation of decision logic, based on rules that
determine the output depending on the inputs [12]. Decision-
making modeled in DMN may be mapped to BPMN tasks or
activities (Business Rules) within a process modeled with
BPMN. The combined use of both thus provides a graphical
language for describing decision-making, i.e., the BPMN
tasks involving a decision can invoke a DMN decision
model.

IV. MBSE AND REQUIREMENTS TRACEABILITY WITH

SYSML

In this section, our contribution of traceability of
requirements using SysML, BPMN, and DMN is detailed.
Section A presents an extension to SysML for BPMN tasks
while Section B describes details on the proposed approach
for requirements traceability.

A. SysML extensions for BPMN tasks

 In order to support the modeling of BPMN tasks in
SysML, the element of SysML block diagram must be
extended. As noted above, in block definition diagrams, the
activities appear as regular blocks with an «activity»
stereotype. The stereotypes are one of the extensibility
mechanisms of UML, therefore also of SysML, that enable
to extend its vocabulary allowing the creation of new kinds
that are derived from existing ones but specific to a problem
[27]. Stereotypes are shown as text strings surrounded by the
symbols “« »” [28]. The stereotypes change or add semantics
to a base SysML element.

Figure 2. Extension of the SysML «Activity» stereotype.

Figure 2 shows the new types of activities through a
generalization in order to support all types of BPMN tasks
[5].

This extension consists of the following stereotypes:

 «serviceTask»: represents a task that uses a web
service or an automated application.

 «sendTask»: represents a simple task that is
designed to send a message to an external
participant.

 «receiveTask»: represents a simple task that is
designed to wait for a message to arrive from an
external participant.

 «userTask»: represents a task where a person
performs the task with the assistance of a
software application.

 «manualTask»: represents a task that is expected
to be performed without the aid of any business
process execution engine or any application.

 «scriptTask»: represents a task executed by a
business process engine.

 «businessRuleTask»: represents a task that
involves decision-making.

The business rule task was defined in BPMN as a
placeholder for (business-rule-driven) decisions, being the
natural placeholder for a decision task [12].

B. Requirements Traceability using SysML and BPMN-

DMN

The interaction between the process and the decision
models plays a crucial role because a decision can affect the
process behavior or flow [9]. Therefore, it is important that
decision-making must be considered as a requirement that
should be performed and satisfied.

The approach will be illustrated with an example
intended to carry out the traceability of the requirements
through forward engineering, mainly focusing on those
requirements involved in the decision-making activities, in
the blocks that have a behavior related with some of these
activities, and in the use cases that refine some of those
requirements, with the aim of integrating and covering their
different views.

132

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. An example of a requirements diagram.

Figure 4. Example of a «satisfy» relationship between an Block and a

Requirement.

Figure 5. Example of a «satisfy» relationship between an Activity and a

Requirement.

Figure 6. Example of a «refine» relationship between a Use Case and a

Requirement

Figure 7. Block definition diagram with activities as blocks.

As it was mentioned before, the SysML requirement
diagram has several relationships used to connect
requirements. For example, Figure 3 presents a SysML
requirements diagram labeled "Example Requirements
Diagram", which shows the relationship between
requirements. In particular, it can be observed that the
requirement with id=“2” has a relationship with the
requirement with id=“1.2” through the «deriveReqt»
relation. This relation specifies that the requirement with
id=“2” is derived from the requirement with id=“1.2”.

Requirements can be related to other requirements and to
other modeling elements through a specific set of
relationships as mentioned before. Relationships between
requirements and other modeling elements can appear on
various types of diagrams. Figure 4 shows an example of a
«satisfy» relationship between a Block1 block and a Req1.1
requirement, Figure 5 presents an example of a «satisfy»
relationship between a SimAct activity and the Req2
requirement, while Figure 6 shows an example of a «refine»
relationship between a Use Case and a Req2 requirement.
Both requirements appear in the requirement diagram
presented in Figure 3.

The interpretation of the «satisfy» relationship is that the

design of the activity depends on the requirement, meaning

that if the requirement changes, the design of the activity

must be changed. The interpretation of the «refine»

relationship is that the Use Case is more concrete than the

requirement, i.e., less abstract.
Once the main requirements have been captured, the

elements responsible to satisfy those requirements are
modeled through a block definition diagram. As previously
mentioned, activities can be seen as a block, except for the
«activity» keyword [5]. This later provides a means for
representing activity decomposition and allows a
requirement to be satisfied with an activity. This activity can
then be implemented in terms of the decision requirements
diagrams and decision tables DMN. Figure 7 shows an
example of decomposition of the SimAct activity, which was
presented in Figure 5 by using the stereotypes proposed in
Section IV-A. The block definition diagram shown in this

133

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. BPMN diagram of SimAct.

figure indicates that the SimAct is an activity composed of
other activities, including Task 1, DecisionMaking Task and
Task 2, all these activities being of BPMN activity types.

Finally, in order to cover the different views of the
requirements, a BPMN model is constructed and associated
to SimAct activity in order to show its behavior, as can be
seen in Figure 8. In this figure, the activities that compose
SimAct, which were modeled in Figure 7, are explicitated in
BPMN format.

To conclude, the decision model related to the business
rule task is built, since when BPMN and DMN are used, the
BPMN tasks (business rule) have a link associated to the
decision model, as mentioned in Section III-D. The
DecisionMaking Task can then be implemented in terms of
the associated decision requirements diagrams and decision
tables.

V. CASE STUDY

To demonstrate our approach, we conducted a case study
that includes the partial modeling of a Biodiesel Distiller and
its requirements management. This case study illustrates how
to carry out the traceability of the requirements through
forward engineering.

Biodiesel is a type of biofuel that is similar to petroleum-
based diesel, which can replace fossil fuel diesel. It is a
sustainable fuel that is produced from fatty acids derived
from animals such as beef fat, pork fat, chicken fat; and
vegetable oils such as corn oil and cooking oil like those
from restaurants that have already been used and disposed of.
These oils are converted to diesel fuel through a chemical
process.

Distilled biodiesel is a clean fuel that has been purified
through the process of distillation. Biofuel distillation is a
method that consists of taking a biofuel and removing
particles and impurities within the liquid through an
evaporation and condensation process.

The requirements diagram in Figure 9 shows the
breakdown of the Biodiesel Distiller's requirements into a
hierarchy of more refined requirements. This diagram named
"Biodiesel Distiller Requirements Diagram" shows the
relationship between its elements. In particular, it can be
observed that the requirement Initial Statement is partitioned
into a set of simpler requirements: Generate Biodiesel, Heat
Exchanger, Boiler, Biodiesel Properties and Distill Water. In

addition, two use cases can be seen in the figure: Distill and
Change temperature, one of them refines Generate Biodiesel
requirement, and the other refines Heat Exchanger
requirement. In other words, both use cases are more
concrete than the requirements, as was indicated in Section
IV-B.

As previously mentioned, requirements can be related to
other modeling elements through a specific set of
relationships as «satisfy» relationship between a block and a
requirement. Furthermore, activities can be seen as blocks.
As mentioned in Section III-C, depending on its nature, a
block can have a behavior associated and this behavior can
be modeled using state machines.

Once the main requirements of Biodiesel Distiller have
been captured, the elements responsible to satisfy them are
modeled through a block definition diagram.

Figure 10 illustrates how Machine activity is composed
of Boiler block, Water block, Generator activity, which
satisfies Generate Biodiesel requirement, and Heat
Exchanger block, which satisfies Heat Exchanger
requirement, both requirements appear in the requirements
diagram presented in Figure 9.

Figure 9. Requirements diagram: Biodiesel Distiller Requirements

Diagram

134

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Generator activity satisfies the Generate Biodiesel requirement,

and Heat Exchanger block satisfies the Heat Exchanger requirement

Figure 11. States machine diagram: States Water

Continuing with the approach, the state machine diagram
in Figure 11 shows possible states of Water block presented
in Figure 10, which correspond to the states of water during
the distillation process shown in Figure 14. Figure 12
illustrates the decomposition of the Generator activity by
using the stereotypes proposed in Section IV-A. The block
definition diagram shown in this figure indicates that the
Generator is an activity composed of other activities such as:
Choose method business rule, which involves decision-
making, Prepare reactors activity, Notify user task, Heat
Water service task, Separate materials service task, Decant
activity and Washing by decanting service task, all these
activities being of BPMN activity types.

Following the approach presented in this work, a BPMN
model is constructed in order to cover the different views of
the requirements. This model shows the process, which is
carried out to generate biodiesel associated with the
Generator activity. Its behavior can be observed in Figure
14. Note that the states of water presented in Figure 11
participate in several of the activities of the BPMN model
such as: Decant, Separate materials, Heat Water and
Washing by decanting.

The decision model related to the business rule task is
built once the BPMN model is generated. To prepare the
reactors, the type of method to be used must be known and
this depends on the type of material that will be used for the
generation of biodiesel. The materials can be beef fat, pork

Figure 12. Decomposition of the Generator activity.

Figure 13. Decision table to Choose method.

fat, chicken fat, and vegetable fat. In the case of study, this
decision making is shown in terms of the decision table as
shown in Figure 13.

As it was mentioned before, traceability refers to the
capability to describe and follow the life of a requirement in
both a forward and backward direction along the design
stages. Traceability plays an important role in the MBSE
methodology. To conclude the study case, and in order to
show the requirements traceability presented in this article,
Figure 15 shows our approach using three of the four pillars
of SysML presented in Section I. This figure shows, through
direct engineering, how traceability is carried out, showing
how all the models and their elements presented in this
section are connected to each other.

As it was mentioned before, the multiple cross-cutting
relationships between the model’s elements enable systems
engineers to view several different perspectives that focus on
different aspects of the system.

The arrows that cross the pillars structure, behavior, and
requirements, as seen in Figure 15, illustrate how the
different elements belonging to the different types of models
that participate in these pillars are interconnected, supporting
in this way requirements traceability.

Figure 15 shows the different diagrams presented in this
study case: requirement diagram, block definition diagram,
state machine diagram, BPMN diagram, and decision table,
respectively.

The Requirements pillar contains the requirements model
that was initially built for the development of the case study.

135

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 14. BPMN model of Generator.

Figure 15. Traceability study case.

136

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The Structure pillar contains two block definition
diagrams: the Machine Activity block definition diagram and
the Generator Activity block definition diagram. The
Machine Activity block definition diagram has four relations.
One of them shows the relationship between Heat Exchanger
block and Heat Exchanger requirement through a satisfy
relationship, as mentioned before. The other relation
illustrates the relationship between Generator Activity and
Generate Biodiesel requirement through a satisfy
relationship, also this diagram has another relation toward
Generator Activity block definition diagram, which shows
how this activity is decomposed by using the extension
proposed in this article. The fourth relation shows how
Water block is related with states machine diagram in
Behavior pillar. The Generator Activity block definition
diagram has a relationship with BPMN model because of
model illustrates the process, which is carried out to generate
biodiesel associated with the Generator activity.

The Behavior pillar contains three diagrams. A use cases
diagram shows the use cases that refine some requirements
in the requirement diagram presented, in other words, Distill
use case refines Generate Biodiesel requirement, and
Change temperature use case refines Heat Exchanger
requirement. The other diagram is States Water state
machine diagram, which is used to describe the possible
states of Water block in Machine Activity block definition
diagram being these possible states used in some activities in
BPMN model, as mentioned before. These activities are
grouped in the model (rounded corner rectangle with a solid
dashed line). Finally, this pillar has a BPMN model, which
shows the process to generate biodiesel as can be observed in
Figure 15 and mentioned before. In addition, the same figure
shows the decision model related to the Choose method
business rule task.

VI. CONCLUSION

Traceability plays an important role in any Model-Based
Systems Engineering methodology. This methodology
emphasizes the use of models to perform the systems
engineering activities. The objective of this work has been to
carry out requirements traceability understanding that
requirements traceability is the capability to follow the life-
cycle of the requirement. SysML is a general-purpose
modeling language, based on UML, which enables
traceability because it defines relationships between
requirements and other modeling elements. The combination
of SysML and BPMN-DMN is attractive and is a step
forward that enhances the modeling of the different views of
the system to be built including decision requirements. The
proposed approach uses the definition of new stereotypes in
SysML to support all types of BPMN tasks.

 This proposal seeks to integrate and cover the different
views of all requirements, helping systems engineers to
improve the design of them.

The approach was illustrated through a case study to
show how traceability of requirements can be performed.

In future work, we consider analyzing the link among the
DMN decision requirements diagram, SysML requirements
diagram, and use cases diagram. In addition, we consider

working with parametric diagrams in order to complete the
pillars of SysML.

ACKNOWLEDGMENT

The authors thank the reviewers of the ICSEA’19
conference and the IARIA Journal for the very useful
comments that have contributed to enhance both the original
and the extended versions of the paper.

REFERENCES

[1] C. Abdelahad, D. Riesco, and C. Kavka, “A SysML-based
Approach to Requirements Traceability using BPMN and
DMN,” ICSEA, pp. 210-216, 2019.

[2] INCOSE https://www.incose.org/ [retrieved: December,
2020].

[3] J. Jacobs and A. C. Simpson, “Towards a process algebra
framework for supporting behavioural consistency and
requirements traceability in SysML,” in Proceedings of the
15th International Conference on Formal Engineering
Methods (ICFEM 2013), Lecture Notes in Computer Science,
Springer, vol. 8144, pp. 265-280, 2013.

[4] OMG https://www.omg.org/ [retrieved: December, 2020].

[5] SysML https://www.omg.org/spec/SysML/1.6/PDF
[retrieved: December, 2020].

[6] S. Friedenthal, A. Moore, and R. Steiner, “A Practical Guide
to SysML: The Systems Modeling Language,” Elsevier, 2014.

[7] P. Spoletini and A. Ferrari, “Requirements elicitation: a look
at the future through the lenses of the past,” In 2017 IEEE
25th International Requirements Engineering Conference
(RE), IEEE, pp. 476-477, 2017.

[8] Modelica https://www.modelica.org/ [retrieved: December,
2020].

[9] Business process model and notation
https://www.omg.org/spec/BPMN/2.0.2/PDF [retrieved:
December, 2020].

[10] D. Q. Birkmeier, S. Klöckner, and S. Overhage, “An
Empirical Comparison of the Usability of BPMN and UML
Activity Diagrams for Business Users,” ECIS 2010
Proceedings 51, 2010.

[11] C. V. Geambaşu, “BPMN vs UML activity diagram for
business process modeling,” Accounting and Management
Information Systems vol. 11, no. 4, pp. 934-945, 2012.

[12] Decision Model and Notation
https://www.omg.org/spec/DMN/1.2/ [retrieved: December,
2020].

[13] E. J. Vidal and E. R. Villota, “SysML as a Tool for
Requirements Traceability in Mechatronic Design,” In
Proceedings of the 2018 4th International Conference on
Mechatronics and Robotics Engineering, ACM, pp. 146-152,
2018.

[14] Z. H. U. Shaofan, T. A. N. G. Jian, J. M. Gauthier, and R.
Faudou, “A formal approach using SysML for capturing
functional requirements in avionics domain,” Chinese Journal
of Aeronautics, vol. 32, no. 12, pp. 2717-2726, 2019.

[15] R. Baduel, M. Chami, J. M. Bruel, and I. Ober, “SysML
Models Verification and Validation in an Industrial Context:
Challenges and Experimentation,” In European Conference
on Modelling Foundations and Applications. Springer, Cham,
pp. 132-146, 2018.

[16] A. Salado and P. Wach, “Constructing True Model-Based
Requirements in SysML,” Systems, vol. 7, no. 2, 21 pages,
2019.

137

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[17] K. Gruber, J. Huemer, A. Zimmermann, and R. Maschotta,
“Integrated description of functional and non-functional
requirements for automotive systems design using SysML,”
2017 7th IEEE Int. Conf. on System Engineering and
Technology (ICSET), pp. 27-31, 2017.

[18] M. R. S. Marques, E. Siegert, and L. Brisolara, “Integrating
UML, MARTE and SysML to improve requirements
specification and traceability in the embedded domain,” In
2014 12th IEEE International Conference on Industrial
Informatics (INDIN), IEEE, pp. 176-181, 2014.

[19] H. Dubois, M. A. Peraldi-Frati, and F. Lakhal, “A model for
requirements traceability in a heterogeneous model-based
design process: Application to automotive embedded
systems,” In 2010 15th IEEE International Conference on
Engineering of Complex Computer Systems, IEEE, pp. 233-
242, 2010.

[20] I. Sommerville, “Software Engineering,” Seventh Edition,
Pearson Education, 2004.

[21] J. Holt and S. Perry, “SysML for systems engineering,” vol. 7,
IET, 2008.

[22] T. Weilkiens, “Systems engineering with SysML/UML:
modeling, analysis, design,” Elsevier, 2011.

[23] O. C. Z. Gotel and A. C. W. Finkelstein, “An Analysis of the
Requirements Traceability Problem,” Proc. IEEE Int. Conf.
on Requirements Engineering, pp. 94-101, 1994.

[24] K. Hampson, “Technical evaluation of the systems modeling
language (SysML),” Procedia Computer Science, vol. 44, pp.
403-412, 2015.

[25] L. Delligatti, “SysML distilled: A brief guide to the systems
modeling language,” Addison-Wesley, 2013.

[26] http://www.omgsysml.org/INCOSE-OMGSysML-Tutorial-
Final-090901.pdf [retrieved: December, 2020].

[27] UML 2.4 “Infrastructure Specification”
https://www.omg.org/spec/UML/2.4.1/ [retrieved: December,
2020].

[28] G. Booch, J. Rumbaugh, and I. Jacobson, “The Unified
Modeling Language User Guide,” Addison-Wesley, 1999.

138

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

