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Abstract—Retrieving images from a dataset, which are similar to a
query image, is an important high-level vision problem. Different
tasks define similarity based on various low-level features, such
as shape, color, or texture. In this article, we focus on the
problem of image retrieval of similarly shaped objects, with the
query being an object selected from a test image at run-time.
Towards that end, we propose a novel shape representation and
associated similarity measure, which exploits the dimensionality
reduction and feature extraction methods of Principal Component
Analysis (PCA) and Enhanced Fisher Model (EFM). We demon-
strate the effectiveness of this representation on three shape-
matching problems using multiple large-scale image datasets and
also compare its retrieval performance with the Histograms of
Oriented Gradients (HOG). Furthermore, to test the performance
of our presented descriptor on the non-trivial task of image-
based geo-localization, we create a large-scale image dataset and
conduct extensive experiments on it. Finally, we establish that our
proposed EFM-HOG not only works well on this new dataset, but
also significantly improves upon the conventional HOG results.

Keywords–Histogram of Oriented Gradients; Enhanced Fisher
Model; Content-Based Image Retrieval; Shape Matching; EFM-
HOG.

I. INTRODUCTION

With the enormous popularity of digital devices equipped
with cameras, along with the wide access to high speed Internet
and cloud storage, several applications based on image search
and retrieval have emerged. Such applications include aug-
mented reality, geo-localization, security and defense, educa-
tional uses, to name a few. Billions of images are uploaded and
shared over social media and web sharing platforms everyday,
giving rise to a greater need for systems that can retrieve
images similar to a query image from a dataset. Traditional
approaches of content-based image retrieval are based upon
low level cues such as shape, color and texture features. In
this extended work, we address three image retrieval problems,
which are all based on shape similarity. Specifically, we select
a window surrounding an object of interest from a query
image and want to be able to retrieve other images in the
dataset, which have similarly shaped objects. Towards that end,
we investigate and propose a novel EFM-HOG representation
and retrieval technique [1] that is based on shape features,
dimensionality reduction, and discriminant analysis. It is also
robust to the slight changes in the window object selection.

The Histograms of Oriented Gradients (HOG) feature is
very popular for shape matching. Simple HOG matching, how-
ever, poses significant challenges in effective image retrieval

due to the fact that the apparent shape of the query object
may change considerably between images due to differences
in lighting, camera parameters, viewing angle, scale and occlu-
sion. In this work, we introduce a novel technique of improving
the HOG features to reduce the number of false matches.

Shape matching can be used in a variety of different
scenarios and we demonstrate the effectiveness of the proposed
method in three such scenarios here. The first is a simple
object retrieval problem where the goal is to retrieve images
of objects belonging to the same class as, or more broadly
speaking, similar in shape to the query image. We use the
publicly available PASCAL VOC 2012 [2] image dataset for
this task. The second task that we use our method for is
building image retrieval and landmark recognition. Here it
is important to fetch not other similarly-shaped buildings but
other pictures of the exact same building. It is also important
to fetch multiple instances of the building in top search results
so that the building can be identified without doubt using
a k-nearest neighbors method. We use another large public
database, the Oxford Buildings dataset [3] for this task.

The third problem that we try to solve using the proposed
method is that of image-based geo-localization at the scale of
a city. To make this problem more challenging than landmark
recognition, we created a new dataset [4] based on Google
StreetView images of the city of Lake Forest, Illinois, USA.
This dataset has 10, 000 images and it is more challenging
than a similar dataset built from a big city due to an extremely
high amount of vegetation cover. Here, we had to address the
problem of isolating the buildings in the images and discard
most of the trees and other things. We had to design a form of
coarse semantic segmentation as a preprocessing step on this
dataset for this purpose.

The rest of this paper is organized as follows. Section II
presents a short survey of other methods employed in shape-
based image retrieval, with a brief mention of other researchers
working on related problems. Section III and its subsections
outline in detail the method proposed in this paper. The prob-
lems addressed and the datasets used are described in detail in
Section IV. The experiments performed and results obtained
are detailed in Section V. Finally, we list our conclusions and
directions for future research in Section VI.

II. RELATED WORK

The HOG feature vector [5], proposed nearly two decades
ago for pedestrian detection problems, has been very popular
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Figure 1: The process of generating the retrieval set using the proposed EFM-HOG match technique.

among Computer Vision researchers for representing shape.
It has successfully been combined with other techniques [6]
and fused with other descriptors [7] for classifying both
indoor and outdoor scene images. HOG has also given rise to
other extremely successful object detection techniques, such
as Deformable Part Models (DPM) [8]. More complicated
descriptors [9] [10] [11] have been used for image retrieval
with reasonable success. However, such methods are time con-
suming and more processor-intensive as compared to simple
HOG matching. In recent years, handcrafted features have
declined in popularity due to the success of deep neural
networks in object recognition [12] [13], but such methods are
not without their drawbacks. Deep neural networks require a
lot of processor time and run better on specialized hardware.
They also require far greater number of training images that
are available in a small or medium-sized dataset to avoid
overfitting. For these reasons, enhancing simple handcrafted
features like HOG can be effective for solving small-scale
retrieval problems more effectively than methods of greater
complexity.

The use of HOG for shape matching is fraught with
challenges as mentioned above in Section I. The difficulties
of using HOG for shape-based image retrieval are particularly
evident for content generated by users in the wild, but are
also applicable to more controlled images such as Google
StreetView [14] images due to seasonal differences in vegeta-
tion and lighting. In effect, every query image is an exemplar
of its own class and a retrieval system must be trained to
treat it that way. In [15], this idea is handled using a Support
Vector Machine (SVM) [16]. Instead of an SVM, here we
introduce the novel idea of enhancing the HOG features by

the Enhanced Fisher Model (EFM) process [17] because it
produces a low-dimensional representation, which is important
from the computational aspect. Principal Component Analysis
(PCA) has been widely used to perform dimensionality reduc-
tion for image indexing and retrieval [17]. The EFM feature
extraction method has achieved good success rates for the
task of image classification and retrieval [7]. In the proposed
method, which is represented schematically in Figure 1, we
show this method to be effective in isolating the query object
from the background clutter as well.

The geo-localization problem has been addressed by many
researchers with varying degrees of success since the end of
the last decade. The works range in scale between [18] where
the authors explore the distinguishable architectural features
of cities to [19] [20] where the scale is global Earth. But our
work brings the problem to the scale of identifying individual
buildings on Google StreetView [14] and tries to solve it. This
is most similar to the work of [21], but our method uses very
few (< 10) boxes per image using our proposed EFM-HOG
representation.

We design a coarse semantic segmentation algorithm and
use it as a preprocessing step on the dataset that we built
from Google StreetView images for testing our technique.
Semantic segmentation of outdoor scene images into a small
number of semantic categories has been addressed successfully
by [22]. While they use color histograms in the RGB and HSV
color space, texture, shape, perspective and SIFT features at
the superpixel level to assign pixel-level semantic labels, this
was not necessary in our case. HOG features are extracted
from rectangular windows and it was sufficient to achieve
enough coarse semantic segmentation to draw a rectangular
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Figure 2: Auto-generation of offset windows to be used as
positive training samples during querying. The window
dimensions and offsets shown are only representative.

bounding box around the houses, and hence we used fewer
features. Local Binary Patterns (LBP) [23] is known to provide
good features for not only texture but also object and scene
classification [24] [25] and so LBP was chosen as the primary
feature to represent patches. We also use HSV color histogram
and HOG feature vectors and concatenate them to LBP for
this purpose. While deep neural networks have proven very
successful for the semantic segmentation task [26] [27] [28]
[29], they require a large number of training images with
labeled ground truth. Even weakly supervised methods [30]
require a large number of images labeled at the bounding-box
level and do not work well with non-convex regions such as
vegetation. Since we do not have a sufficient number of images
with labeled ground truth data, and neural networks trained on
other cities were found to perform poorly on our new Lake
Forest StreetView dataset, we do not use deep neural networks
for this work.

III. PROPOSED METHOD

The proposed method, as outlined in Figure 1, works by
matching HOG features [5] from a selected window in a query

Figure 3: Formation of the HOG descriptor from a query
image window.

Figure 4: The positive and negative weights learned from the
HOG features through the EFM discriminative feature

extraction process.

image surrounding an object of interest with the HOG features
extracted from the similarly shaped objects in other images of
the dataset. The following few subsections explain in detail the
various steps needed for the proposed feature extraction and
retrieval process.

(a)

(b)

Figure 5: Some sample query images from (a) the PASCAL
VOC 2012 dataset, and (b) the Oxford Buildings dataset.
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Figure 6: The locations of the images in our dataset. (a) shows the map of Lake Forest. (b) shows the distribution of the
Google StreetView images collected. (c) shows the locations of our query images.

A. Window Generation

We start with generating objectness windows from each
image. We use different methods on different datasets for this
purpose. For the PASCAL VOC 2012 dataset [2] and the
Oxford Buildings dataset [3], the method used by [31] is found
to work well. This method designs an objectness measure
and explicitly trains it to distinguish windows containing an
object from background windows. It uses five objectness cues
– namely, multi-scale saliency, color contrast, edge density,
superpixels straddling, and location and size – and combines
them in a Bayesian framework. We select the 25 highest-
scoring windows from each image in our dataset and extract
HOG features from these windows.

For the Lake Forest StreetView dataset introduced by us,
the objectness method by [31] does not work well. For this
dataset, we generate windows of interest by a combination
of a patch-wise semantic segmentation and heuristics-based
algorithm described in more detail in Section IV-C1. This
method typically produces less than 10 windows per image.
Whatever method we use for generating the windows, the
window coordinates are pre-calculated and stored for each
image file in a dataset.

While testing our system, the user generates a window
on the query image manually roughly enclosing the object
of interest. Then, we automatically select 10 slightly offset
versions of this window. Eight of these are generated by
moving the user-selected window to the right, left, up, down,
up-right, up-left, down-right and down-left by 5%, respectively.
Two windows are generated by expanding and contracting the
user’s selection by 5%, respectively. Features are now extracted
from these 10 as well as the original window for further
processing. This process is represented in Figure 2.

B. The HOG Descriptor

The idea of HOG rests on the observation that local features
such as object appearance and shape can often be characterized
well by the distribution of local intensity gradients in the
image [5]. HOG features are derived from an image based
on a series of normalized local histograms of image gradient
orientations in a dense grid [5]. The final HOG descriptors are

formed by concatenating the normalized histograms from all
the blocks into a single vector.

Figure 3 demonstrates the formation of the HOG vector
for a window selected from an image. We use the HOG
implementation in [32] for both generating the descriptors and
rendering the visualizations used in this paper.

C. Dimensionality Reduction

PCA, which is the optimal feature extraction method in the
sense of the mean-square-error, derives the most expressive
features for signal and image representation. Specifically, let
X ∈ R

N be a random vector whose covariance matrix is
defined as follows [33]:

S = E{[X − E(X )][X − E(X )]t} (1)

where E(·) represents expectation and t the transpose opera-
tion. The covariance matrix S is factorized as follows [33]:

S = ΦΛΦt (2)

where Φ = [φ1φ2 · · ·φN ] is an orthogonal eigenvector matrix
and

Λ = diag{λ1, λ2, . . . , λN}

a diagonal eigenvalue matrix with diagonal elements in de-
creasing order. An important application of PCA is the extrac-
tion of the most expressive features of X . Towards that end, we
define a new vector Y: Y = P tX , where P = [φ1φ2 . . . φK ],
and K < N . The most expressive features of X thus define
the new vector Y ∈ R

K , which consists of the most significant
principal components.

D. EFM

The features obtained after dimensionality reduction by
PCA as discussed in Section III-C are the most expressive
features for representation. However, they are not the optimum
features for classification. Fisher’s Linear Discriminant (FLD),
a popular method in pattern recognition, first applies PCA
for dimensionality reduction and then discriminant analysis
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for feature extraction. Discriminant analysis often optimizes
a criterion based on the within-class and between-class scatter
matrices Sw and Sb, which are defined as follows [33]:

Sw =

L∑

i=1

P (ωi)E{(Y −Mi)(Y −Mi)
t|ωi} (3)

Sb =

L∑

i=1

P (ωi)(Mi −M)(Mi −M)t (4)

where P (ωi) is a priori probability, ωi represents the classes,
and Mi and M are the means of the classes and the grand
mean, respectively. One discriminant analysis criterion is J1:
J1 = tr(S−1

w
Sb), and J1 is maximized when Ψ contains the

eigenvectors of the matrix S−1

w Sb [33]:

S−1

w SbΨ = Ψ∆ (5)

where Ψ,∆ are the eigenvector and eigenvalue matrices of
S−1

w
Sb, respectively. The discriminating features are defined

by projecting the pattern vector Y onto the eigenvectors of Ψ:

Z = ΨtY (6)

Z thus contains the discriminating features for image classifi-
cation.

The FLD method, however, often leads to overfitting when
implemented in an inappropriate PCA space. To improve
the generalization performance of the FLD method, a proper
balance between two criteria should be maintained: the energy
criterion for adequate image representation and the magnitude
criterion for eliminating the small-valued trailing eigenvalues
of the within-class scatter matrix. The EFM improves the
generalization capability of the FLD method by decomposing
the FLD procedure into a simultaneous diagonalization of
the within-class and between-class scatter matrices [17]. The
simultaneous diagonalization demonstrates that during whiten-
ing, the eigenvalues of the within-class scatter matrix appear
in the denominator. As shown by [17], the small eigenvalues
tend to encode noise, and they cause the whitening step to
fit for misleading variations, leading to poor generalization

TABLE I: The number of images in each class of the
PASCAL VOC 2012 dataset

Object Category Number of Images

aeroplane 670

bicycle 552

bird 765

boat 508

bottle 706

bus 421

car 1161

cat 1080

chair 1119

cow 303

dining table 538

dog 1286

horse 482

motorbike 526

person 4087

potted plant 527

sheep 325

sofa 507

train 544

TV/monitor 575

TABLE II: The number of images containing each landmark
in the Oxford Buildings dataset

Landmark Good OK Junk

All Souls Oxford 24 54 33

Ashmolean Oxford 12 13 6

Balliol Oxford 5 7 6

Bodleian Oxford 13 11 6

Christ Church Oxford 51 27 55

Cornmarket Oxford 5 4 4

Hertford Oxford 35 19 7

Keble Oxford 6 1 4

Magdalen Oxford 13 41 49

Pitt Rivers Oxford 3 3 2

Radcliffe Camera Oxford 105 116 127

performance. To enhance performance, the EFM method pre-
serves a proper balance between the need that the selected
eigenvalues account for most of the spectral energy of the
raw data (for representational adequacy), and the requirement
that the eigenvalues of the within-class scatter matrix (in the
reduced PCA space) are not too small (for better generalization
performance). For this work, the number of eigenvalues was
empirically chosen.

E. Training

The EFM feature extraction method uses positive and neg-
ative training samples to find the most discriminative features.
In our setting, there is only one query image to be used as a
positive sample. This is similar to the Exemplar-SVM training
scenario used by [15], but to make the training more robust
to selection error by the user and to prevent overfitting, we
use 11 windows instead of just the one selected by the user as
described in Section III-A.

We rank all region of interest (ROI) windows from all
images in the dataset in terms of Euclidean distance in the
HOG space from the original query window. For the negative
training samples, we use 110 windows that are ranked low, i.e.,
are very distant in the HOG space. Experimentally, we found
that the windows that are ranked last (i.e., farthest from the
query) in the dataset are not very good candidates for negative
training samples, since they are often outlier windows that
contain large blank areas like the sky. Instead, windows that
have a rank of 1, 000 to 5, 000 when sorted by increasing HOG
distance were seen to perform well. We also tried training the
system with different numbers of negative samples and found
a number close to 100 performs the best. These windows are
mostly background regions like ground and vegetation. The
positive and negative weights for the HOG features learned by
this method can be seen in Figure 4.

For an n-class problem, the EFM process for discrimina-
tory feature extraction reduces the dimensionality of any vector
to n − 1. Since our problem is a two-class problem, EFM
produces one feature per window. We compute the score of
each window by finding the absolute value of the difference
between the window EFM feature and the average positive
training set EFM feature. Ranking the images by their best-
scoring windows gives us the retrieval set.

IV. SHAPE RETRIEVAL TASKS AND DATASETS

To prove the effectiveness of our proposed EFM-HOG
descriptor and the associated distance measure, we apply it
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Figure 7: Manually selected training patches used to train the seven SVM classifiers for coarse semantic segmentation.

Figure 8: Some examples of ROI selection from our reference dataset. The left-side images in (a) through (i) show different
semantic categories by using different colors. The red patches indicate the house category and magenta indicates fence. The

right-side images show the output of our ROI-window generation algorithm. Colors of the rectangles in the right-side images
have no significance. Note that in (i), no buildings are found, and so no windows are generated.

to three distinct problems. For each of these tasks, we use a
different dataset with properties suitable for the problem being
addressed. In this section, we will give a brief description of
the different problems addressed and datasets used for our
experiments, and then we will discuss the performance of our
novel EFM-HOG matching algorithm on these datasets in the
next section.

A. Object Search and Retrieval

The first problem that we address is that of object search
and retrieval. In this problem, the user selects a bounding box

around an object in a query image and we attempt to retrieve
similar objects from the dataset. For this task, we use PASCAL
VOC 2012 dataset [2]. We only use the training/validation
data from this dataset to test our retrieval algorithm. This data
consists of 11, 540 images from 20 classes (many images have
multiple classes present). The classes in this image dataset are
aeroplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow,
dining table, dog, horse, motorbike, person, potted plant, sheep,
sofa, train and TV/monitor. The classes and the number of
images in them are shown in Table I. Figure 5(a) shows some
images from this dataset. We create five randomly selected
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Figure 9: Mean retrieval accuracy (measured by the presence
of a relevant image in the top 10 retrieved images).

100-image test sets from the dataset and perform a five-
fold cross-validation. A successful retrieval experiment is one
where the program retrieves at least one relevant image (an
image containing the query object) within the top 10 results.
The performance of our descriptor on this dataset is discussed
in Section V.

B. Landmark Recognition in the Wild

The second problem that we address is that of landmark
recognition in the wild. This is more challenging than the
object search and retrieval problem because the images here
are mostly outdoor images, and buildings are not always as
easily distinguishable from their surroundings as object images
are. The dataset that we use for this problem is the Oxford
Buildings dataset [3], which consists of 5, 062 images of
11 different Oxford landmarks and distractors collected from
Flickr [34]. 55 images from this dataset were used as queries
for testing our retrieval system. Flickr images are completely

Figure 10: Landmark image-retrieval accuracy (measured by
the presence of a relevant image in the top 10 retrieved

images) on the Oxford Buildings dataset. The three sets of
values show the success rate of HOG and EFM-HOG while
varying the quality of available matches in the reference set.

Figure 11: The mean landmark-recognition performance on
the Oxford Buildings dataset by using the k-nearest

neighbors method with varying k.

user-generated, which means there is a great variation in
camera type, camera angle, scale and lighting conditions. This
makes this dataset very difficult for image retrieval in general
and landmark-recognition in particular. Figure 5(b) shows
some of our query images from this dataset. For each query, the
images that contain the query landmark are further classified
into good, OK and junk categories, with progressively poorer
views of the query landmark. Table II shows the landmark-
wise distribution of good, OK and junk images in this dataset.

Figure 12: The confusion matrix for the
landmark-recognition performance of the EFM-HOG

descriptor on the Oxford Buildings dataset by using the
k-nearest neighbors method with k=3.
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Figure 13: Comparison of image retrieval results for HOG and the proposed EFM-HOG on the PASCAL VOC 2012 dataset.

C. Image-based Geo-Localization

Finally, to test our proposed algorithm for image-based
geo-localization of buildings within an entire city using
StreetView images, we built a new image dataset [4], which
we call the Lake Forest StreetView dataset, from the city of
Lake Forest, Illinois. We collected two sets of images for
this purpose: one for query images, and one for reference
images. We acquired our own images for the query dataset
by walking around the city and taking photos of buildings
with smartphone cameras. This dataset has 308 images. For
the reference dataset, we downloaded Google StreetView [14]
images from around the city. We downloaded eight overlapping
StreetView images from points eight feet apart along every
road in Lake Forest. This process downloaded 126, 000 images.
From our 308 query images, we selected 128 images spread
over the whole city of Lake Forest that contained buildings
that were also visible in at least one of the reference images.
To do this, we wrote a program that uses the GPS tags on
each query image to retrieve the geographically nearest 100
images from the reference dataset. We then visually inspected
this retrieved set to determine if the query image building was
visible in any of them. Finally, we combined these retrieved
sets together, eliminated duplicates, and added a few thousand
random distractor StreetView images to bring the total up
to 10, 000 images. This was our final reference set for the
experiments. Figure 6(a) shows the Google Maps view of Lake
Forest. Figure 6(b) shows the distribution of our reference
set, which is composed of downloaded Google StreetView
images. Each blue point in this image represents the location
of a Google StreetView photo. It can be seen that our image
dataset follows the streets and there are large areas without
any images in between, which are private estates and parks.
Finally, Figure 6(c) shows the distribution of our query images
using yellow markers. These markers were generated directly
using the GPS tags of the query images, which were taken
using smartphone cameras.

We ran retrieval experiments on this set using each of

the 128 query images. We manually drew rectangles around
buildings in each of the query images, which were then used
to extract the EFM-HOG features for matching. The process
of selecting multiple windows that are slightly offset from
the original reduces the impact of slight variations between
manually drawn rectangles in two experiments, but still the
manually drawn rectangle boundaries were saved to preserve
repeatability between experiments. Degree of success or failure
of a retrieval was measured by the mean geographical distance
of retrieved images from the query, and also by the presence
or absence of the query building in the retrieval set.

1) ROI Selection for Geo-localization Problem: HOG
matching starts with selecting a bounding box around the ROI,
which in this case would be the buildings. The task of selecting
the buildings in Lake Forest, however, is non-trivial due to a
characteristic of the city itself. The city of Lake Forest has a
very large number of trees and most of the houses are far
from the road in the middle of large estates. The Google
StreetView images are shot with a wide-angle camera mounted
on a moving car. The combination of a wide-angle lens and
the large distance from the road causes the houses to appear
very small in the images, and the vegetation or parts of the
road closer to the camera appear much larger. In majority of the
reference images, the buildings occupy only a small portion of
the image, the rest being filled with vegetation, sky or portions
of the road. Hence, selecting an ROI containing the building
becomes an important preprocessing step before features can
be extracted.

The object detection program used on the other two
datasets did not work well on this dataset, and we needed some
coarse form of semantic segmentation to separate the houses
from the vegetation, road and other objects. We did not use a
deep neural network for this purpose because of two reasons.
First, we did not need pixel-level separation of categories since
HOG features are extracted from rectangular windows anyway.
Second, we did not have labeled segmentation ground truth
training images and networks trained on images from other
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Figure 14: Comparison of landmark image retrieval results for HOG and the proposed EFM-HOG on the Oxford Buildings
dataset.

cities did not generalize well to Lake Forest. So, we built our
own semantic segmentation technique for this step.

On visual inspection of the images, we decided there were
seven major semantic classes, namely sky, grass, tree, road,
house, fence and vehicles. We manually selected rectangular
patches from each of these classes and extracted three sets of
features from each patch. These features are color histogram
in the HSV color space, HOG and LBP. These three sets of
features are concatenated to get our feature vector to train the
classifiers for coarse semantic segmentation. For this task, we
trained an SVM [16] classifier for each class.

2) The Linear SVM Classifier: The SVM is a particular re-
alization of statistical learning theory. The approach described
by SVM, known as structural risk minimization, minimizes
the risk functional in terms of both the empirical risk and
the confidence interval [16]. The SVM implementation used
for our experiments is the one that is distributed with the
VlFeat package [32]. We use the one-vs-all method to train
an SVM for each semantic category. The parameters of the
SVM are tuned empirically using only the training data, and
the parameters that yield the best average precision on the
training data are used for classification of the test data.

We created the training data for our SVMs in the form
of rectangular windows selected manually from the reference
images. 100 training patches were used per class. Some of
these patches are shown in Figure 7. We divide each reference
image into 100 uniformly sized patches over a 10×10 regular
grid and pass each patch through all seven classifiers to

assign one final label to each patch. Finally, we draw minimal
bounding boxes around the house and fence category patches
(if any) with some padding around them, and extract HOG
features from them. This process is shown in the different parts
of Figure 8. The bounding boxes in Figure 8(a) look like they
are enclosing vegetation, but there are underlying house and
fence outlines visible here through the trees. Bounding boxes
are not perfect, and sometimes they either enclose objects other
than houses, like the blue box in Figure 8(e), or the green
box in Figure 8(f), or are too large, like the green box in
Figure 8(h). False positives, however, are less of a problem to
our technique than false negatives, and extra bounding boxes
are better than missing houses. Also note that in Figure 8(i),
there are no buildings, and no bounding boxes are generated,
which is a strong indication that our segmentation algorithm
is successful in cutting down on the number of undesirable
windows in a large number of cases. If we had used the
objectness code that we ran on the other two datasets, we
would have got 25 windows from this image as well. The
different colors of the bounding boxes in the right-side images
in Figure 8 have no special significance. The various colors
have been used to differentiate between the rectangles.

V. EXPERIMENTS AND RESULTS

In this section, we describe in detail the experiments that
we performed on our three datasets and the results that we
obtained in each of the three tasks that we attempted. For
each of the tasks, we used a different dataset and compared
the results of our EFM-HOG descriptor with that obtained
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Figure 15: Comparison of image-based geo-localization results for HOG and the proposed EFM-HOG on the Lake Forest
StreetView dataset.

by conventional HOG features. We also provide samples of
query images along with top matching images retrieved by both
algorithms from all three datasets for a qualitative comparison
of the results.

A. The Object Search and Retrieval Task

The proposed image representation is tested on three differ-
ent tasks, the first of which is object search and retrieval. Here,
an image is used as a query to retrieve similar scenes from the
dataset. For this, the user selects a rectangular ROI from the
query image, and HOG features from this rectangular window
are matched with the 25 highest scoring objectness windows
from each image in the database, both in the raw HOG space
and in the EFM-HOG space after the proposed training and
feature extraction procedure. The closest matches based on
Euclidean distance are retrieved in order of their distance from
the query window. Finding an instance of the query class object
in the top 10 retrieved images is considered a success. Figure 9
compares the retrieval success rates of the HOG descriptor
and the proposed EFM-HOG representation on the PASCAL
VOC 2012 dataset. For this dataset, the retrieval experiment is
performed on five random splits and the average success rate
is found to be 65.2% for EFM-HOG as compared to 36.8%
for HOG. We also find that the conventional HOG performs
quite well for clearly segmented objects, such as airplanes in
the sky, but the EFM-HOG performs much better for images
of objects with a cluttered background.

We also experimented on the Oxford Buildings dataset
from the retrieval point of view. Figure 9 also compares
the retrieval success rates of the HOG descriptor and the
proposed EFM-HOG representation on this dataset alongside
the PASCAL VOC 2012 performance. Specifically, in 41 cases
out of 55 queries in the Oxford buildings dataset (74.5%
cases), the query landmark is retrieved within top 10 images
by the proposed method, as opposed to 40 by HOG (72.7%
cases). This is actually a very small difference, but this can be
explained by the nature of this dataset. For all landmark query
images in this dataset, there are at least some Good images
in the dataset that show clear views of the landmarks with
no occlusions. HOG is actually pretty effective at retrieving
these images. To better demonstrate the effectiveness of the
proposed method, we repeat this experiment with just the OK
and Junk images, and then just the Junk images for each
query. In these experiments, we find that the HOG method
retrieves a relevant image in the top 10 much less frequently
than the EFM-HOG method. With just the Junk files, EFM-
HOG performs more than twice as well as HOG. These results
are shown in Figure 10.

B. The Landmark-Recognition Task

The second experiment that we performed with the new
EFM-HOG descriptor on the Oxford Buildings dataset was a
landmark-recognition task where the system tries to label each
query image with its correct landmark label. Some images
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Figure 16: The means of the top 100 retrieved windows for
HOG and EFM-HOG for 4 query images from the PASCAL

VOC 2012 dataset.

in this dataset belong to one of the 11 landmarks listed in
Table II, the others belong to none of the classes and are
used as distractors. We did this task by retrieving relevant
images in a manner similar to the retrieval task, and then
performing the k-nearest neighbors (k-NN) classification on
the top k results. The same experiments are repeated for the
conventional HOG descriptor as well. As can be seen from
Figure 11, the proposed EFM-HOG outperforms HOG all val-
ues of k between 1 and 35. The highest EFM-HOG landmark-
recognition performance of 65.5% is achieved at k=3. A further
breakdown of the landmark-recognition performance of the
EFM-HOG descriptor is seen in Figure 12. Here, the rows
represent real landmark labels of the queries and the columns
represent predicted labels. The results are averaged over the 5
query images for each landmark and the k-NN classifier has
been used with k=3.

Some HOG and EFM-HOG retrieval results on the PAS-
CAL VOC 2012 dataset are shown in Figure 13. In this figure,
the query images are shown on the left of each row with blue
bounding boxes followed by the two retrieval sets obtained
by using HOG and EFM-HOG. A red bounding box in a
retrieved image indicates that the retrieved image is not from
the same class from the query image (shown on the left).
Correct matches for HOG are shown with green bounding
boxes and correct matches for EFM-HOG are shown with cyan

bounding boxes.

Some comparative retrieval results between HOG and
EFM-HOG on the Oxford Buildings dataset are shown in
Figure 14. In this figure too, the query images are shown on
the left of each row with blue bounding boxes. The retrieval
set in the middle of each row is obtained by using HOG and
the retrieval set on the right is obtained by using EFM-HOG.
A red bounding box in a retrieved image indicates that the
retrieved image has a different landmark building label from
the query image (shown on the left). Correct label matches for
HOG are shown with green bounding boxes and correct label
matches for EFM-HOG are shown with cyan bounding boxes.

C. The Geo-localization Task

We ran two sets of experiments on our Lake Forest
StreetView dataset for this task. The first set does the retrieval
with traditional HOG and the second set uses the proposed
EFM-HOG matching. The improvement in retrieved result sets
achieved by the proposed EFM-HOG technique can be seen
by comparing the results shown in Figure 15. In this figure,
the retrieved images have their geographical distance from
the query written above them. Green text signifies a retrieved
image closer than 0.1 miles, and in all the examples here, an
exact match. As can be seen in all the examples, HOG fails to
find even a single match for the building in the query image
in the top 10 retrieval results while EFM-HOG finds one in
all three.

Our EFM-HOG match program retrieved (within the top
20 results) at least one image that was closer than 100 yards
(0.0568 miles) of our query in 40 out of the 128 queries that we
used. In 17 of these images the exact building was found and
matched. Three such query images and the top 10 retrieved
images along with their geographic distances are shown in
Figure 15. In the result images, a geographic distance written
in green indicates an actual match. HOG is unable to retrieve
a match in the top ten results in any of the three queries shown
while EFM-HOG fetches one result among the top ten in all
three.

D. Qualitative Analysis of Retrieved Image Windows

We also manually inspected our retrieved image windows
and ran some experiments to do a qualitative analysis of
the results. Figure 16 shows an interesting aspect of our
retrieval technique. Here, we show the image means of the
first 100 windows retrieved by both HOG and EFM-HOG on
the PASCAL VOC 2012 dataset. The figure shows that the
EFM-HOG means contain clearer shapes, which indicates that
the EFM-HOG retrieves more similar shapes than HOG, even
when the results are irrelevant to the query.

A few successfully geo-localized buildings from our re-
trieval experiments on the Lake Forest StreetView dataset are
shown in Figure 17. In each of the image pairs shown in
this figure, the left image with a red bounding box shows
the query taken with a smartphone camera, and the right one
with a cyan bounding box shows a retrieved image from the
Lake Forest StreetView dataset. In one of these images, the
match is successful even with only a small section of the
fence visible in the query, which shows the technique is quite
robust. The rectangles around the buildings in the retrieved
images themselves were generated by our coarse semantic
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Figure 17: Successfully geo-located query images along with the retrieved Google StreetView images that are exact matches
for the query.

segmentation algorithm, which is also a qualitative measure
of the success of this algorithm.

VI. CONCLUSION AND FUTURE WORK

We have presented in this paper a new image descriptor
based on HOG and discriminant analysis that uses a novel
approach to fetch scenes with similar shaped objects. We
have conducted experiments using over 5, 000 images from
the Oxford Buildings dataset and over 11, 500 images from
the PASCAL VOC 2012 dataset and concluded the following:
(i) HOG features are not always sufficiently discriminative
to perform meaningful retrieval, (ii) the discriminative nature
of HOG features can be improved with the EFM for feature
extraction and dimensionality reduction, and (iii) HOG features
perform well for clearly isolated objects with little background
clutter, but the EFM-HOG performs better for real-world
images with cluttered backgrounds.

We furthermore demonstrated the effectiveness of our pro-
posed EFM-HOG descriptor for geo-localization on a 10, 000-
image Lake Forest StreetView dataset that we built from
scratch. We also developed a coarse semantic segmentation
strategy to automatically isolate buildings and draw bounding
boxes around them as a preprocessing step before the HOG
feature extraction. Finally, we compare the proposed EFM-
HOG representation and the traditional HOG representation
to demonstrate that our method is superior for retrieval. We
intend to use this method with other image retrieval tasks in the
future, so that a more thorough understanding of its strengths
and weaknesses can be achieved.

It is evident that the successful geo-localization in the
Lake Forest StreetView dataset depends heavily on the quality
of the bounding boxes generated by our coarse semantic
segmentation algorithm, and improving that algorithm will
significantly improve the results. In future, we plan to develop
a more robust strategy for semantic segmentation. Superpixel-
based and deep neural network-based semantic segmentation
may also be used if we can get a sufficient number of labeled
images. We also plan to extend our dataset to cover other cities.
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