
46

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Holistic Analysis of the Effectiveness of a Software Engineering Teaching Approach

José Carlos Metrôlho, Fernando Reinaldo Ribeiro

R&D Unit in Digital Services, Applications and Content

Polytechnic Institute of Castelo Branco

Castelo Branco, Portugal

metrolho@ipcb.pt, fribeiro@ipcb.pt

Abstract—To provide the best training in software engineering,

several approaches and strategies are carried out. Some of

them are more theoretical, learned through books and

manuals, while others have a practical focus and often done in

collaboration with companies. In this paper, we share an

approach based on a balanced mix to foster the assimilation of

knowledge, the approximation with what is done in software

companies and student motivation. Two questionnaires were

also carried out, one involving students, who had successfully

completed the subject in past academic years (some had

already graduated, and others are still students), and other

questionnaire involving companies, in the field of software

development, which employ students from our school. The

analysis of the perspectives of the different stakeholders allows

an overall and holistic) view, and a general understanding, of

the effectiveness of the software engineering teaching

approach. We analyse the results of the questionnaires and

share some of the experiences and lessons learned.

Keywords- agile methodologies; education; software

engineering; teaching; teamwork.

I. INTRODUCTION

One of the biggest challenges in teaching software
engineering is empowering students with the knowledge and
skills they need to be well prepared to face the labour
market. This includes providing students with technical skills
but also providing them with the non-technical skills
associated to the software engineering process. It is also
known that the teaching of software engineering cannot be
limited to the presentation of concepts and methodologies as
a set of abstract concepts. In our previous paper, presented in
ICSEA [1], we analysed how the main concepts of the
software engineering subject are assimilated by the students
and if they are applied in the labour market. We also learn
that it is important for students to develop practical projects
to complement their education. This is corroborated by other
authors who point out that wherever possible, software
engineering teaching should be adequately complemented
with the practice of software engineering projects so that the
students can assimilate and understand them successfully
[2]–[4]. Additionally, it is important to consider the growing
importance of human factors in the software development
process [5] and consequently the role that some of them play

in the software engineering process, namely:
communication, coordination, collaboration, trust, expert
recommendation, program comprehension, knowledge
management and culture.

Several approaches and strategies have been proposed
and used to improve the teaching and learning of software
engineering. They all ensure the importance of giving
students hands-on experience. However, the way they
propose to do so differs greatly.

This paper describes an experience in teaching Software
Engineering, of a Computer Engineering program, using a
project-based approach. This approach is enriched with the
collaboration of software houses giving the students a real-
world experience of software engineering project
development. In our paper [1] we tried to understand how the
main concepts of the subject are assimilated by the students
and if they are applied in the professional life of our past
students. In this paper we extend our approach to include the
point of view of the companies that employ our students. The
opinion of these companies, which employ and develop
activities in this area (Software development), is very
valuable. It may represent significant contributions for the
improvement of the teaching-learning process and for better
integration of the students in the labour market. To reach this
goal, we conducted a questionnaire with a group of
employers. We chose 5 companies that have recruited our
graduates in Portugal. This set of companies is obviously
reduced compared to the universe of thousands of software
development companies worldwide. However, the collected
data is a starting point for analysing what is considered
relevant to these partners. Although we graduate students for
a larger universe of companies, the collected data are useful
as indicators of aspects that we must take into account, while
obviously not neglecting other methodologies and topics
related to Software Engineering.

The results of this questionnaire allow us to improve the
definition of the topics on which the lecture should focus and
to keep the syllabus updated. Additionally, it helps us to
understand the strengths and weaknesses of the employees
who graduated from our school (soft skills and technical
skills). This analysis of the perspectives of the different
stakeholders allows an overall and holistic view and a

47

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

general understanding of the effectiveness of the software
engineering teaching approach.

The remainder of this paper will be as follows: Section II
presents a brief review of related work; in Section III we
present an overview of our project-based approach for
software engineering; Section IV provides a brief description
of the questionnaires that were conducted to achieve
feedback from former students and employers; in Section V
we present the results and analysis of the questionnaire;
Section VI presents some lessons learned and challenges
faced and finally, in Section VII we present some
conclusions and we outline some of the future work.

II. RELATED WORK

To provide the best training in software engineering,
several approaches and strategies have been proposed. Some
of them are more theoretical, more focused on the study of
theory through books and manuals, while others have a more
practical focus and often done in collaboration with
companies. Nowadays, it seems to be a well-accepted fact
that the software engineering training should not be strictly
focused on the theoretical study of concepts and
methodologies. It is important to provide students with
hands-on experience in a software engineering project and
provide them with the non-technical skills in a software
project. It is important to promote hands-on ability training
and the rapprochement between teaching and practice.
Additionally, the recent diffusion of agile methodologies in
software development brings many difficulties and
challenges to software engineering teaching. In this context,
several authors refer that current approaches to teaching
software engineering are outdated and lack authenticity [6],
[7]. However, as referred in [6], it is not clear which should
be the best approach and there are different perspectives with
different proposed approaches. Some authors (e.g., Clear and
Damian [6][8]) suggest that the best approach is to emulate
the workplace through distributed software development
projects, through cross-university or cross-course courses,
others (e.g., [9]–[11]) suggest involving students in a project
where they have the possibility to experience team work and
understanding in the practice of the theoretical concepts dealt
with in the course and others (e.g., [12]–[14]) argue for the
use of simulations and games to provide students with a
variety of experiences that would not be possible within the
constraints of an academic environment. Next, a brief
analysis of some works that have been proposed for each one
of the perspectives identified before is presented.

The emulation of the workplace through distributed
projects or cross-university courses was approached and
experienced by some authors. The DOSE [8], a Distributed
and Outsourced Software Engineering course, followed an
approach to teaching distributed software engineering
centred in a distributed software development project. They
experienced teaching software engineering using a
geographically distributed software project involving various
countries with different cultures, native languages and time
zones. This approach gives the students the opportunity of
facing the challenges of distributed software development
and helps them understand typical software engineering

issues, such as the importance of software requirements for
specifications, or the relevance of adequate system design.
However, they also identify some time scheduling
inconveniences, and difficulties in keeping teams committed
to their peers. The Undergraduate Capstone Open Source
Projects (UCOSP) program [15] ran for ten terms over six
years providing for over 400 Canadian students from more
than 30 schools. After this period, the authors identified
some lessons they had learned: Students work on real
distributed open-source projects as full members of software
development teams; they use the same software development
processes as regular team members and are provided with
explicit mentorship from volunteer mentors from each
project; students integrate and apply the skills they have
learned in their courses in a real development setting;
students develop and improve their technical communication
skills in a real development setting.

A project-oriented approach is followed in several
software engineering training programmes. Its purpose is to
teach students the theoretical and the practical aspects of
developing software systems in a team environment giving
students a chance to experience a work scenario that is closer
to a real-world experience. A Project-Based learning in
software engineering Lab, teaching through an e-Portfolio
approach is described in [10]. In this approach, the e-
Portfolio allows students to carry out a software project,
addressing each phase collaboratively with other students
and obtaining appropriate feedback from instructors. The e-
Portfolio includes a single problem statement for the
development of a complete software project comprising of a
set of deliverables. To support the implementation, they
chose the Moodle Platform. To assess the students’ e-
portfolios, various rubrics were implemented by scoring and
weighting the sections and categories for every deliverable to
be evaluated. Another project-based learning approach for
teaching software engineering concepts is described in [11].
Their goal is to teach software engineering concepts using
the Scrum framework in real life projects. Projects usually
have a capacity of about 1000 workhours. To make the
projects more relevant real customers were incorporated.
They bring in requirements from industry and present their
topics during a kick-off meeting. During the project, students
work together as self- organized teams (5-7 elements). They
chose an appropriate project management and team
coordination process and they are only asked to use some
core tools that are needed to monitor the projects.

A game-based learning methodology of teaching
software engineering is presented in [13]. They suggest a
methodology of two-fold use of learning games for teaching
software engineers. Students, experienced in programming,
develop learning games, and then they use the games that are
developed for teaching the next generation of students.
Students developing games learn the software development
life cycle phases including testing, deployment and
maintenance, they contact with customers (teachers of
corresponding subjects act as customers) and users (students,
learning these subjects). In their approach, they find both
advantages and disadvantages. As advantages, they identify
the increasing students’ motivation and revealing their

48

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

creativity. The main problems observed include difficulty in
organizing team work especially for students of early years
and lack of time for coordinating them. Schäfer [14]
describes some lessons learned after two teaching periods in
using Scrum with gamification to learn and train the agile
principles. They found that their approach has both
advantages and disadvantages. Gamification is motivating
and helps to bring participants with different backgrounds
together in project teams. As drawbacks, they refer to the
importance of having a real external stakeholder or customer
defining a project goal externally in a Scrum learning
project.

There are different approaches and strategies that may be
followed to provide students with the best training in
software engineering. All of them agree that the theoretical
study of concepts and methodologies should be
complemented with hands-on experience in a software
engineering project. This would allow students to be
provided with a better understanding of the theoretical
concepts and to equip them with the non-technical skills in
software projects. However, the way different approaches
propose to provide the students with the practical experience
is very different. Some of them suggest emulating the
workplace through distributed projects, which may involve
several entities and thus provide interesting experiences in
software engineering. Others suggest a project-oriented
course where students can practice requirements analysis,
project management, development methodologies and
teamwork. Another recommendation is using simulations
and games to simulate distinct scenarios in software
engineering teaching and training.

However, regardless of the approach or strategy, it is
necessary to understand whether students have acquired the
knowledge and skills they need for the performance of their
duties, and whether they apply them in their professional
activity in software engineering. To understand this, it is a
holistic analysis (i.e., analysis of the big picture involving
several stakeholders, namely students, alumni and
employers, about the teaching methodology implemented in
this subject in recent years) that is important since it allows
for an understanding of the vision of the different
stakeholders that may be involved in the software
engineering teaching process: teachers, students, graduates
and employers.

III. OVERVIEW OF OUR APPROACH FOR SOFTWARE

ENGINEERING

In this case a project-based approach was adopted for

teaching Software Engineering. This subject is part of the

second year of a computer science course (undergraduate

course). It is a subject that has 5 ECTS and where the

semester load is 30 hours for theoretical classes and 45

hours for laboratory classes. The focus of the adopted

approach was to combine theory and practice.

One teacher is responsible for the subject management

and theoretical lectures. In these classes, the teacher

presents the concepts and methodologies and promotes

discussion about them. Students are also provided with an

introduction to some software development methodologies

namely Waterfall, Extreme Programming, Scrum, Spiral,

etc. Other topics analysed include quality and metrics in

software engineering, software design, implementation,

testing, configuration management, among others. In the

assessment, this theoretical part has a weight of 40% for the

final grade; the remaining 60% is from the practical

component.

Another teacher is responsible for the practical classes. In

these classes, students acquire some practice of software

engineering through the specification, design,

implementation and validation of a software application, as

a project for teams of 4-6 students. Scrum is the adopted

agile software development methodology. The teacher acts

as a product owner. Each team member has a specific

function (e.g., Scrum Master, Designer, etc.). Each team

develops a different project. However, all the projects are

focused on the development of a game from a software

engineering perspective. This is important to maintain the

students motivated and engaged with the project. The first

deliverable is revised to accommodate feedback from the

product owner. Trello is used for project management and to

track progress on tasks.

A. Additional Realism

One class of the subject has been taught by professionals

from software house companies. In this class, software

development processes like Feature Driven Development

(FDD) and Behaviour Driven Development (BDD) were

approached and some of their practical aspects are

discussed.

Another important initiative to enable students to get in

touch with practice in software engineering is a one-day

visit to the premises of another software house company.

This company (Outsystems) is well-known for the software

development platform they hold and that is used by many

software companies worldwide. Their platform is a low-

code platform for rapid application development. It is

especially designed for developing applications in the

context of agile projects. During this journey, students were

able to have closer contact with some Scrum activities

(namely Daily Scrum, Sprint, Sprint Execution) and contact

with some Scrum Roles (Scrum Master, Development

Team). Professionals explain to the students what they are

doing, and which technologies and tools are used to support

their activities. Students also had a brief session about

software cost estimation.

These events are very important since they provide

students with the contact and interaction with real software

engineering projects with real stakeholders. They help to

improve the understanding and the assimilation of the

concepts learned in the classes of the subject.

B. Student evaluation

The student evaluation comprises both theoretical and

practical evaluation. The theoretical evaluation is a written

49

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

exam over the course material. The exam consists of 10

questions chosen from the list of 30 questions that were

made available to the students at the beginning of the

semester. Most questions are reflexive questions about

software engineering subjects. With this approach, the intent

is to avoid students wanting to memorise the matters learned

along the semester (15 weeks). Also, it is desirable that

students learn and acquire knowledge for a long-life period,

mainly to be used after graduation on their job integration

experience. In section V, some gathering data that wants to

evaluate results about the achievement to this goal of our

approach will be presented.

For the practical evaluation, throughout the semester,

during the 15 working weeks, students´ working teams

develop the product on 6 sprints (sprints here are defined as

having 2 weeks each). The teacher (i.e., product owner)

meets with each team at the end of the sprint to evaluate the

work in progress, the achievements and the goals for the

next sprint. The team works in class (3h/week) and out of

class. Halfway through the semester, after sprint 4, and at

the end of the semester, after sprint 7, each team has an

assessment session where both teachers are present to

evaluate different parameters. Some of the parameters are:

clear goals, state of the art, requirements (functional and

non-functional), software development process (roles,

artefacts, timings, hits and misses), team member´s

description (roles, skills) task scheduling (monitoring using

Trello tool), modelling (user stories), implementation

(code), budget (estimated based on the lesson learned during

the visit to the company referred to on the previous section

of this paper), conclusions (pros and cons) and future work,

literature used and citation on the final report, and final

presentation and discussion.

One of the achievements that students sometimes realize

is learning from mistakes. For instance, if they do not

communicate within the team the achieved results are poor,

when compared with other more cohesive teams. On the

other hand, in collaboration with the “Scrum Master” of the

team, a deeper evaluation can be done to eventually assign

different grades to the members of the team.

IV. UNDERSTANDING STAKEHOLDERS' PERSPECTIVE

In order to gauge the post-retention cognitive load, a

questionnaire of former students was conducted in order to

obtain feedback on the importance of the subject to their

current professional activity (of those who finished the

course and work in the area), and also to know if the

knowledge transmitted in the theoretical classes remains.

For this last component, the questionnaire included

questions that had already been used in the theoretical

evaluation of the subject. The answers were evaluated with

the same evaluation criteria, graded in a scale of 0-20. The

questions were selected from the same set of 30 questions

referred to in Section III-B. Respondents were informed that

the results were for a study. They were also informed that

the goal of the study was to understand if the concepts and

knowledge acquired in the Software Engineering subject

remained present. The questionnaire was also used to gather

insights about the usefulness of the subject for each

graduate’s the practical life. Thus, questions about aspects

that may be used in the day to day of their professional

activities in the companies where they currently work, were

included in the questionnaire.

Also, in order to get feedback from employers about

issues that are important to graduate students starting their

professional activity, a questionnaire for employers was

conducted. The questionnaire included questions about the

development processes used in the company (traditional,

agile, etc.); the importance of software engineering contents

to the company’s activity; soft skills and technical

knowledge that have more importance to the company; and

a question about topics or issues that, in their opinion,

should be considered in software engineering subjects. The

answers were analysed and will be presented in further

sections. Respondents were informed that the results were

for a study. The questionnaire was also used to gather

insights about issues that must be included in future editions

of this subject. Thus, questions about aspects that may be

important in the day-to-day activities in the companies were

included in the questionnaire.

A. Questionnaire of Former Students’ Description

This questionnaire was designed to be directed towards

our objectives and be filled in quickly and simply. Some

questions were answered in free text (case of questions of

theoretical knowledge) and others are multiple choice

questions (e.g., used software methodologies). The

questionnaire was organized in three parts: Questions about

the current professional activity of the respondents;

theoretical questions about software engineering; and space

for feedback on the importance of topics in their current

professional life (for those who had already finished the

course).

As examples of questions, we asked if the graduated

students were working. If yes, we asked about the actual

tasks in their companies (Planning, Requirements analysis,

Design, Code, Quality control, Tester, Project management,

other), the used methodologies (Waterfall, Scrum, XP,

Prototyping, Spiral, FDD, Lean, RUP, other, none). About

the theoretical questions we asked about the fundamentals

of Software Engineering, Software Quality, Verifications vs

Validation, traditional vs Agile, team dimensions and roles,

among other questions and feedback.

B. Questionnaire of Employers’ Description

This questionnaire was also designed to be directed

towards our objectives and be filled in quickly and simply.

Some questions were answered in free text and others are

multiple choice questions (e.g., used software

methodologies). The questionnaire was organized in distinct

parts: Questions to characterize the company activity;

questions to characterize topics of importance to the

50

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

companies’ activity and feedback with contributions for

future improvements of the syllabus.

As examples of questions, we asked about the

respondent’s experience, position in the company, number

of students graduated from our school that work/worked in

the company, activity of the company (planning,

requirements analysis, design, code, quality control, tests,

project management, quality assurance, others), used

software processes in the company (Waterfall, Scrum, XP,

Prototyping, etc.), from the different company’s activities

what are the most important. We also asked about the soft

skills and technical knowledge that are most important to

the company activities. And lastly, but not least important,

we requested feedback to improve and keep the syllabus

updated.

V. QUESTIONNAIRE RESULTS AND ANALYSIS

This section presents the results of the questionnaires
answered by the students, graduates and also the results of
the questionnaire answered by the employers.

A. Data Collection/Methodology: students and graduated

students

As a universe of respondents, questionnaires were sent

to 97 students. Of these, 56 were undergraduate students

(although they had passed in this subject) and 41 graduated.

The questionnaire was done online, using the

LimeSurvey Webtool.

The response rate was of 24.4% of the graduated

students and of 21.4% of the undergraduate students.

It is important to note also that some respondents did not

answer all questions.

B. Results and Analysis: students and graduated students

Figure 1 shows the activities the respondents (Graduated
students) are involved in, in their work. 84% of the
respondents are involved in more than one activity. 50% of
them are involved in planning, analysis and testing but they
are not involved in implementation.

Figure 1. Activities carried out (Graduated students).

Graduated students were also asked to identify the
software development methodologies they use in their
activities. They were able to identify the methodologies they
use considering a list of given methodologies. Results are
presented in Figure 2.

More than 70% of the respondents refer that they use the
Scrum methodology. This appears to be in line with the
results presented in the “12th annual State of Agile report”
[16] that refers that 52% of respondents stated that more than
half of the teams in their organizations are using agile
practices. And it is also in accordance with the results
presented in another questionnaire of more than 2,000 active
Scrum and Agile practitioners [17]. This study refers that
94% of agile users use the Scrum approach in their agile
practice (78% use Scrum with other approaches).

Figure 2. Software development methodologies (Graduated students).

With respect to the importance of the subjects learned,
87.5 percent, of the 8 graduated students that respond to this
question, said that the content learned in the course has been
considerably useful for their actual professional activity (see
Figure 3).

Figure 3. Course content vs professional activity (Graduated students).

51

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The second part of the questionnaire was related to
theoretical questions about software engineering. This part
was evaluated in a 0-20 scale and we compare these results
with the results achieved by the same individual during the
course. We consider the individual “maintained” if (grade

achieved in the subject -1.5  grade achieved in the

questionnaire  (grade achieved in the subject +1.5).
After evaluating the answers of the non-graduated

students to the questions, we conclude that there is a majority
(58%) that has maintained or increased the result (41%
maintained, 17% increased) (see Figure 4).

Figure 4. Grades evolution (Students).

In the case of students already graduated, the results,
presented in Figure 5, are better (less cases (37.5%) of
lowering grades). Despite the long period of time after they
attend the course, this is probably a consequence of the
practical experience they get in the field of software
development.

Figure 5. Grades evolution (Graduated students).

In addition, at the end of each semester, a questionnaire

is usually conducted in order to obtain knowledge about the

students' perception of the importance of the subject for

their academic education. This questionnaire addressed four

issues: acquisition of knowledge; development of skills,

improvement of critical thinking; relevance for academic

background. Figure 6 shows the results of the questionnaires

(average values) performed in the last 2 years. Each topic

was evaluated on a 6-level scale (1 nothing important – 6

very important).

In general, all issues were evaluated very positively,

which shows that there is a recognition of the importance of

the subject for their education.

Figure 6. Students' perception of the importance of the subject for their

academic education.

C. Data Collection/Methodology: employers

We selected 5 companies that have employed graduates

of the school in recent years. The selected companies are

multinationals, working in the ICT area, and each of them

has at least graduates from the school as collaborators. For

each company we asked a member, with an intermediate or

high responsible position, to fill in a questionnaire about

their activities and about the school graduates they currently

employ. The questionnaires were completed by

representatives of the company that hold leadership

positions (Senior Manager, Executive Director, Team

Manager, Business & Project Manager, Ecosystem Talent

Director). The professional experience, in the ICT area, of

these representatives of companies, goes from 13 years to

21 years.

The questionnaire was composed of 4 parts. The first

part with general questions about the company and the

respondent. The second part with 3 questions about the

activity of the company. Two questions on which the

respondent had to select from among the various options

available, and one question where the respondent had to

evaluate various options on a 1-6 scale (1 nothing important

– 6 very important) on the importance of software

engineering to the company's activity. The third part of the

questionnaire consisted of 2 questions about the technical

and soft skills of the employees who were graduated by the

school. In these questions, the respondent had to evaluate

several options on a 1-6 scale (1 very poor – 6 very good).

Part 4 includes only one question where respondents were

asked to provide feedback or additional input.

The five representatives of the companies replied to the

questionnaire.

52

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Results and Analysis: employers

Respondents answered that they had already worked, or

are currently working, with 7, 15, 20, 30 and 38 employees

who graduated from the school (each value correspond to a

different company). This number of employees, graduated

from the school, is higher than the number of graduates who

were questioned (Sections V.A and V.B) because they

represent graduates of several years. Although they do not

represent the same universe, some of the graduates

questioned in Sections V.A and V.B are employees in these

companies. Therefore, they may be included in the group

referred to herein.

Respondents were asked to fit their area of intervention

by considering a list of 8 activities related to software

engineering (see Figure 7). Each respondent could select

several activities from a list or indicate other activities. Most

companies focus on several areas of software engineering.

Only areas related to quality assurance and software quality

control are not ensured in all questioned companies.

Figure 7. Company's activities.

Another important aspect, regarding the activity of

companies, is related to the software development

methodologies they use most in their activity. In our classes

we teach some software development methodologies

namely Waterfall, Extreme Programming, Scrum, Spiral,

etc. However, in the practical project, Scrum is the adopted

software development methodology. The goal is to provide

students with knowledge and practice about the

methodologies most companies follow. And it seems to be a

wise decision. According to the questionnaire’s responses,

the Scrum methodology is the one most used by these

companies. The waterfall software development

methodology is also one of the most used. Figure 8 shows

the software development methodologies used by the

respondent companies. In this question each respondent

could select, from a list, all the methodologies that they used

in their projects. They could also add other methodologies.

Figure 8. Software development methodologies used in the company.

Respondents were also asked to evaluate the importance
of technical knowledge and skills, in 9 areas (from a
predefined list) associated with software engineering. The
graph, shown in Figure 9, presents the number of
respondents that evaluated each area of knowledge and the
average value of the importance that these respondents gave
to this area of knowledge. It is important to note that some of
them did not evaluate all available areas. The knowledge
areas that were evaluated as most important were (in
descending order of importance): coding, requirements
analysis, development methodologies. Some respondents
also mentioned user experience, debug and problem solving.

Figure 9. Importance of knowledge learned about Software Engineering

for what the activity of the company is.

The next two figures represent the opinion of the
representatives of the companies on graduates at school.
Similarly, to the previous figure, in these issues some
companies did not evaluate all the issues that are available in

53

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the list. Graphs, shown in Figure 10 and Figure 11, show the
number of companies that evaluate each skill and the average
value of the evaluation that these companies gave to that
skill. It is also important to note that companies were asked
to make an overall assessment of employees for each
competency. However, this does not have an easy answer.
Employees have different competencies, work on different
projects, and often relate to the respondent in different
domains. This was corroborated by the respondents and, in
particular, one which stated that "…it is very difficult to
assign a general classification to all the employees who were
recruited from school courses. Besides being many, they
were also in different periods, different courses and as you
know, not all are the same."

Figure 10. Strengths and weaknesses of the employees who graduated from

our school (Soft skills).

Figure 11. Strengths and weaknesses of the employees who graduated from

our school (knowledge and technical skills).

Figure 10 corresponds to the feedback given by the
respondents about the soft skills of their employees who
graduated from school. The two skills that got higher ratings
were related to teamwork and adaptability/flexibility. Both
obtained very positive ratings from all respondents. With less
positive evaluations arise the creativity and critical thinking.

The graph (from Figure 11) presents the feedback given
by the respondents about the technical skills of their
employees who graduated from school. Coding stands out
for the positive. Software testing and the quality assurance
had lower ratings.

The last part of the questionnaire was one open question
where respondents were free to provide feedback or
additional input. The answers obtained are different because
they represent different perspectives and are usually
conditioned by the nature of the company and the activities
in which it focuses. However, these are valuable inputs as
they represent the perspectives and real needs of companies.
Below, some comments received:

“... any educational institution should be increasingly
adapted to the major market trends, including them in the
course programme ... so that the transition to the labour
market is simple and contributes to meet the current needs
...”.

“… strengthen the most used subjects:
Methodologies/Development processes,
Implementation/Coding, Maintenance and Software
Testing...”.

“…strengthen the areas of Software Quality (automatic
software testing, AI (artificial intelligence), ... as well as
Computer Security…”.

However, these comments also show the different
perspectives and focus of each of the companies.

VI. LESSONS LEARNED AND CHALLENGES FACED

The contributions of this paper are in the form of the
lessons learnt, which may be seen as guidance for others
looking to approximate the know-how of students to the
methods and techniques used by software companies. In
summary, these are:

• Students should learn by doing and, wherever
possible, software engineering principles should be
assessed in the context of practical work, rather than
by regurgitating material taught or extracted from
textbooks.

• Students must have well defined and known goals.
The assessment of the theoretical subjects does not
need to be a surprise in the exam.

• Opening classes to external stakeholders (by
promoting talks or visiting companies) during the
last part of the semester helps students to reinforce
knowledge and motivate them to the subjects.

• It is very important to get feedback from past
students and evaluate if the transmitted concepts and
knowledge are still there, and if it was improved by
the work experience in the labour market.

• It is important to choose projects that are of interest
to the students and that can motivate them and
involve them in their development.

54

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• It is very important to get feedback from companies
that employ past students. It may contribute to a
better adjustment of the syllabus with the real needs
of the labour market. It also provides very important
feedback on the technical and behavioural skills of
former students.

• It is important to analyse the different perspectives
of the various stakeholders: teachers, students,
graduates and employers. This allows a holistic
analysis and may help to improve the teaching
methodologies.

However, during our experience, we faced challenges
like:

• Difficulty in maintaining all team members equally
motivated and engaged in the same way throughout
the entire project development period;

• Keeping all students involved in the project. Some
students may drop out, leaving the team during the
semester, and affecting the workflow and scheduling
of the remaining members of the team;

• Allowing students to experience various roles within
the team. It is necessary to find a way to rotate the
roles of each one within the team, to avoid any
student being too focused on just one role. It is
important that everyone experiences a diversity, as
broad as possible, of different roles;

• Allowing students to experience different
methodologies in real environments. More field trips
and contact with companies that use different
methodologies, must be promoted to foster more
diversity of experiences.

• The representative of the companies that
collaborated with us were very cooperative.
However, some difficulties in responding to
questionnaire questions were identified. This was
mainly due to the fact that companies employ several
graduates and therefore they try to make an average
assessment.

VII. CONCLUSION AND FUTURE WORK

Our questionnaire of former students was the starting
point of a reflexion about the impact of the approach
followed in previous years in the subject of Software
Engineering. Based on the results, we think that allowing
students to know the pool of questions in advance, fosters the
students on important knowledge in the field and to
understand these items, that we want students to maintain
over a long period of time. The second questionnaire, of
employers, give us important feedback to know the most
important aspects of software engineering to companies, in
the field of software production, where several of our former
students are working. The feedback allows us to understand
the employer’s opinion about our graduated student’s
training and get contributions to focus our teaching goals in
topics that are considered relevant to the future of our
students. Using the feedback achieved from the
questionnaire given to the employees of our graduated
students, we want to improve and maintain updated the

contents of this subject. This holistic analysis that includes
different perspectives from different stakeholders: teachers,
students, graduates and employers, gave us important
guidelines to improve the teaching methodologies and
syllabus.

Regarding the assessment of students, in future editions
of the subject the pool of questions will be increased to
improve the effect of randomisation for the next exams.
Also, a mix of questions from the pool (~66%) and other
questions (~33%), will be used to build the exams and
explore the advantages of both approaches. As for the
practical component, based on the results, Scrum is still used
as a case study since it is one of the most used processes by
companies where our graduated students work.

One final remark to reiterate that the study presented here
is based on data collected from our students and alumni of
the Software Engineering subject and from a group of 5
experienced representatives of multinational companies with
whom we interact. This set of companies is obviously
reduced compared to the universe of thousands of software
development companies worldwide and the opinion of other
employers may differ significantly according to their own
reality and activity. In any case, the collected data is useful
as indicators of aspects that we must take into account,
obviously without neglecting other methodologies and topics
related to Software Engineering.

We will continue to make all efforts to listen to these
types of stakeholders (students, alumni and representatives of
companies) and to broaden the universe of respondents, with
the aim of keeping the themes and methodologies taught
updated.

REFERENCES

[1] J. Metrôlho and F. Ribeiro, ‘Software Engineering

Education: Sharing an approach, experiences, survey and

lessons learned’, in The Thirteenth International

Conference on Software Engineering Advances (ICSEA),

2018.

[2] R. Chatley and T. Field, ‘Lean Learning: Applying Lean

Techniques to Improve Software Engineering Education’,

in Proceedings of the 39th International Conference on

Software Engineering: Software Engineering and

Education Track, 2017, pp. 117–126.

[3] S. D. Zorzo, L. de Ponte, and D. Lucrédio, ‘Using scrum

to teach software engineering: A case study’, in 2013

IEEE Frontiers in Education Conference (FIE), 2013, pp.

455–461.

[4] M. Kuhrmann and J. Münch, ‘Enhancing Software

Engineering Education Through Experimentation: An

Experience Report’. 2018.

[5] C. Amrit, M. Daneva, and D. Damian, ‘Human factors in

software development: On its underlying theories and the

value of learning from related disciplines; A Guest

Editorial Introduction to the Special Issue’, Inf. Softw.

Technol., vol. 56, no. 12, pp. 1537–1542, 2014.

55

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[6] S. Beecham, T. Clear, D. Damian, J. Barr, J. Noll, and W.

Scacchi, ‘How Best to Teach Global Software

Engineering? Educators Are Divided’, IEEE Softw., vol.

34, no. 1, pp. 16–19, 2017.

[7] F. Matthes et al., ‘Teaching Global Software Engineering

and International Project Management - Experiences and

Lessons Learned from Four Academic Projects’, 3rd Int.

Conf. Comput. Support. Educ. CSEDU 2011, p. 12, 2011.

[8] M. Nordio et al., ‘Teaching Software Engineering Using

Globally Distributed Projects: The DOSE Course’, in

Proceedings of the 2011 Community Building Workshop

on Collaborative Teaching of Globally Distributed

Software Development, 2011, pp. 36–40.

[9] D. Dahiya, ‘Teaching Software Engineering: A Practical

Approach’, SIGSOFT Softw. Eng. Notes, vol. 35, no. 2,

pp. 1–5, 2010.

[10] J. A. Macias, ‘Enhancing Project-Based Learning in

Software Engineering Lab Teaching Through an E-

Portfolio Approach’, IEEE Trans. Educ., vol. 55, no. 4,

pp. 502–507, 2012.

[11] A. Heberle, R. Neumann, I. Stengel, and S. Regier,

‘Teaching agile principles and software engineering

concepts through real-life projects’, in 2018 IEEE Global

Engineering Education Conference (EDUCON), 2018, pp.

1723–1728.

[12] M. Yampolsky and W. Scacchi, ‘Learning Game Design

and Software Engineering Through a Game Prototyping

Experience: A Case Study’, in Proceedings of the 5th

International Workshop on Games and Software

Engineering, 2016, pp. 15–21.

[13] O. Shabalina, N. Sadovnikova, and A. Kravets,

‘Methodology of teaching software engineering: Game-

based learning cycle’, Proc. - 2013 IEEE 3rd East. Eur.

Reg. Conf. Eng. Comput. Based Syst. ECBS-EERC 2013,

pp. 113–119, 2013.

[14] U. Schäfer, ‘Training scrum with gamification: Lessons

learned after two teaching periods’, in 2017 IEEE Global

Engineering Education Conference (EDUCON), 2017, pp.

754–761.

[15] R. Holmes, M. Craig, K. Reid, and E. Stroulia, ‘Lessons

Learned Managing Distributed Software Engineering

Courses’, in Companion Proceedings of the 36th

International Conference on Software Engineering, 2014,

pp. 321–324.

[16] VersionOne Inc, ‘12th annual State of Agile report’, 2018.

[17] Scrum Alliance, ‘STATE OF SCRUM 2017-2018.

Scaling and agile transformation.’, 2017.

