
30

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Current Progress in Cross-Platform Application Development

Evaluation of Frameworks for Mobile Application Development

Jan Christoph, Daniel Rösch, Thomas Schuster, Lukas Waidelich

Pforzheim University

Tiefenbronner Straße 65, Germany

{jan.christoph | daniel.roesch | thomas.schuster | lukas.waidelich}@hs-pforzheim.de

Abstract — Cross-platform development is increasingly driven

by web frameworks. Modern frameworks typically support ap-

plication deployment for different platforms as well as the crea-

tion of progressive web apps. This approach is also driven by the

increasing number of different device types and platforms. De-

velopment efforts can be significantly reduced by utilization of

modern frameworks. Hence, several modern frameworks that

have proven to be suitable for cross-platform development will

be compared in this article. This article will extend our previous

research on cross-platform development by several dimensions:

at first, research on literature and technology developments re-

garding cross-platform development is extended. Secondly, we

added further frameworks into our analysis. Thirdly, the evalu-

ation approach is systematically extended to discuss each frame-

work on an individual basis. This is driven by a reference archi-

tecture and implementation. To create a sound and objective

framework comparison, the reference architecture is utilized to

implement applications by means of each framework. Subse-

quently tests for different mobile devices and platforms are de-

fined. All frameworks are compared according several key met-

rics. Finally, we describe current strengths and weaknesses of

all approaches before giving an outlook on future steps of re-

search.

Keywords — cross-platform development; web component;

web application framework; progressive web app.

I. INTRODUCTION

This article is an extended version of a former conference
publication, see [1] for further details. Mobile devices have
become an important platform for today’s software applica-
tions. Especially, the utilization of smartphones increased rap-
idly within the last couple of years [2][3]. Since smartphones
are often utilized to consume or orchestrate services, this pro-
cess includes a vast range of applications. Smartphones also
connect to other domains such as the Internet of Things (IoT)
and often utilize smart cloud-based services [4].

The introduction of smartphones rapidly increased the
need and development of mobile software. The development
of mobile software applications is a special case of software
engineering. Mobile applications are often also referred to as
apps, which implies that the application is intended to be used
on a smartphone or wearable device [5]. Thus, development
must cope with specific aspects such as: short application
lifecycles, limited device capabilities, mobility of users and

devices, availability of network infrastructure as well as secu-
rity and privacy issues [6]. The difference in devices also gen-
erates a variety of different resolutions and display sizes.

While developers are enacted to create and distribute ap-
plications in a large scale, they also have to deal with these
inherent differences and limitations of mobile devices (i.e.,
battery life or small displays). Furthermore, it is necessary to
address different operating systems (especially for
smartphones, and, to a limited extent, for feature phones as
well). Since the market for smartphones has consolidated re-
cently, some operating systems (i.e., Windows Phone, Black-
berryOS and other OS hold a market share of 3.2%) vanished
again. Still, to address the smartphone market, applications for
both, Android (market share: 72.4%) and iOS (market share:
24.4%) need to be provided [7]. In addition, Android is split
into different versions, manufacturers and various system cus-
tomizations. Despite vendor customization and just consider-
ing the Android version, current most widely used is Oreo (8.0
and 8.1 with 28.3%), followed by Nougat (7.0 and 7.1 with
19.2%) and finally, the latest version Pie (9; with 10.4%) [8].

In order to reach as many users as possible, applications
need to support all major device platforms and versions of op-
erating systems [6][9]. This introduces the need to either de-
velop platform specific or platform agnostic applications.
Platform specific implementations (native apps) literally re-
quire almost as many application implementations as plat-
forms that are intended to be addressed. Therefore, this ap-
proach generates correspondingly high development expend-
itures. On the other hand, with a more generic approach, a sin-
gle application or some core components could serve as the
basis for multiple platforms. Besides reduced developments
efforts, a generic approach also strengthens reuse of code and
components.

Currently, generic approaches can be further subdivided
into Web and hybrid applications (see Figure 1). Web appli-
cations can be used virtually under any platform, as a Web
browser is preinstalled on almost all devices. The most salient
advantage is application portability, which basically comes at
no cost. Web apps are typically optimized by means of Hyper
Text Markup Language (HTML5), Cascading Style Sheet
(CSS) and JavaScript [10]. Numerous frameworks (such as
Angular, Bootstrap, React or Vue) provide additional func-
tionality on top of Web standard technologies and help to
speed up development of Web apps.

31

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1: Mobile App Technology Stack.

Major disadvantages of Web applications are that they do
not possess platform specific look and feel and often are re-
stricted in functionality – especially access to system func-
tions and device sensors. Furthermore, they must be inter-
preted and suffer performance losses compared to native ap-
plications [11].

Hybrid applications are built on frameworks such as
Apache Cordova or Adobe PhoneGap. Often they rely on Web
technologies also, and enact access to native device functions
and sensors [6]. Hybrid apps utilize a specialized browser to
present the user interface (UI). This results in a presentation
layer, which is identical or very near to widgets used in native
apps. Today's hybrid framework technologies are mainly ex-
tensions of Cordova and PhoneGap, as they extend and sim-
plify the development of cross-platform applications. There-
fore, the frameworks Cordova and PhoneGap are not included
in the evaluation. While hybrid apps overcome some issues of
Web apps (such as access to system functions and sensors),
they still experience a loss of performance compared to native
applications. However, it is notable that performance of hy-
brid apps has improved a lot with latest developments [6][10].
Comparing the short development lifecycles of devices and
operating systems on the one hand to that of hybrid app frame-
works on the other, it is noticeable that the latest developments
are implemented with delays by the frameworks. As a result,
access to new functionalities can be gained earlier when de-
velopment is based on native apps.

Issues of supported functionality, performance and the ge-
neric question of maintenance of cross-platform applications
lead us to the evaluation of multiple cross-platform frame-
works. With this paper we want to record the current state of
the art in the development of cross-platform apps. In addition,

we want to uncover innovations and differences that arise with
the deployment of new frameworks and versions. We achieve
this with our reference app. The remaining parts of this article
are structured as follows: First, Section II introduces the liter-
ature research method. This work can be seen as a starting
point for further work on the article. Section III provides an
overview of current mobile app development. In Section IV,
a reference architecture is presented and five framework-
based implementations of this architecture are discussed. The
reference implementations are being evaluated in Section V.
Finally, Section VI outlines the conclusion and outlook for
further research.

II. LITERATURE RESEARCH

A comprehensive literature research was initiated to iden-

tify significant literature on the topic of cross-platform devel-

opment and cross-platform frameworks. In addition, im-

portant scientific articles from the same field of research

should be identified, which will form the basis for the later

main part of the article. For this purpose, the proven literature

research of Brocke et al. [12] was used. A five-phase model is

defined by Brocke et al., which enables a systematic literature

search. In the process, they combine approaches from Cooper

[13] and Webster & Watson [14] . The method, the five-phase

process is shown in Figure 2.

A. Definition of review scope

Phase I defines the different characteristic values of liter-

ature research. We apply the taxonomy of Cooper [13] in this

phase as a basis. The applied taxonomy according to Cooper

is explained below and also shown in TABLE I. The focus of

32

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

this article is on research outcomes in the area of cross plat-

form technologies. In addition, the practical application of

these technologies plays an important part in our research. If

the technologies in focus are not applied in a broad common

sense, they might lack in one or more aspects (e.g., they are

just not well-known, they are error prone, they do not offer

simplified multi-platform deployment, they do not support

well supported programming languages or constructs or they

are simply not applicable to specific project requirements).

Figure 2: Literature review framework used for literature research

according to Brocke et al. [12].

The goal of our work is to answer central questions on

cross-platform development. We intend to do so by analysing

different cross-platform frameworks and comparing them

with each other. In a broader sense, the organisation of the

work is to be characterised as conceptual. The different

frameworks are described individually and compared step by

step. The perspective of the authors is classified as neutral.

The authors intend to provide the reader with a no-obligation

perspective and to perform the subsequent tests from a neu-

tral perspective. The article is aimed at general scholars who

are interested in the cross-platform concept and also want to

acquire knowledge about the existing frameworks and their

distinctions. In addition, practitioners dealing with cross-plat-

form development will be addressed. The underlying litera-

ture research does not claim to be exhaustive, because of its

topicality in this thematic area. Therefore, a short overview

of the current state of research is given, with the aim of a cen-

tral literature search, which focuses on the above defined top-

ics.

TABLE I: APPLIED TAXONOMY OF COOPER [13].

Characteristic Categories

(1) Focus

Research
outcomes

Research
methods

Theories
Applica-

tions

(2) Goal Integration Criticism
Central

issues

(3) Organisation Historical Conceptual
Methodo-

logical

(4) Perspective Neutral representation Espousal of position

(5) Audience
Specialised

scholars
General
scholars

Practition-

ers / politi-

cians

General
public

(6) Coverage Exhaustive
Exhaus-
tive and

selective

Representa-

tive

Central/

pivotal

B. Conceptualisation of the topic

In Phase II, the conceptualization of the cross-platform

development topic field is carried out. In the current work,

this is done on the one hand by brainstorming and on the other

hand by systematic mapping of topics on a canvas, which

supported the research team in developing a common stand-

point on the topic analysed. In addition, initial concepts were

identified, which will then be searched for within the scope

of the third phase.

C. Literature search

Phase III describes the procedure for literature search. In

this section, the reader has the opportunity to gain insights

into the authors' systematic approach.

The framework conditions are set at the beginning. There-

fore, the key terms are defined as follows. The literary search

uses two keyword strings. The first keyword string is "cross-

platform development", the second search string equals

"cross-platform frameworks". The string was searched in

English language.

Furthermore, the media types are defined on the basis of

Brocke et al. [12]. The sources of the current research consist

of the latest journal and conference articles as well as web

documents. The aim of this selection is to identify the main

findings on the state of scientific research. Different data-

bases are selected for the two source types. Peer-review arti-

cles in journals or conferences are found in current databases

such as ScienceDirect, Emerald Insight and especially

through the Google Scholar search engine. Web documents

have been investigated by the search engine Google.

The next step is to perform the electrical search. In addi-

tion to the keyword-string entered, the search settings in the

database for articles are set to journals and conferences and

the web search is focused on documents. In addition, the last

three years are taken into account. The first 20 hits of all types

of researched publications are considered, which are sorted

in advance according to relevance.

According to later findings, the search was extended to

the five specific frameworks Ionic, Xamarin, React Native,

Oracle Jet and Flutter. The same search process was used for

these five concepts.

33

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Literature analysis and synthesis

Phase IV comprises the literature analysis and synthesis

of the collected works. This is done through a multi-level fil-

tering approach to obtain the final list of documents relevant

to the following activities. These steps apply to the two media

types from the previous section.

The first type of filter refers to the title that has been pub-

lished. The presence document must refer to the keyword

string. If this requirement is fulfilled, the literature will con-

tinue to be considered. Secondly, abstraction is examined.

There, the existing literature must contain elements of the

keyword string. If this requirement is also met, the literature

will be considered further. The full text is then filtered. If the

document contains or refers to the contents of the keyword

string, it is included in the final selection. The final step is the

redundancy analysis, which eliminates redundant entries

from journals and Internet documents.

Afterwards, the relevant literature is then transferred to a

spreadsheet in, which the results are first classified according

to the following criteria: author, title, publication type, year

of publication, language, publisher/journal and found data-

base/search engine. In the next step, the works were exam-

ined for their relevance in terms of content. The spreadsheet

is converted into a so-called concept matrix according to

Webster & Watson [14]. The identified focal points and con-

cepts for cross-platform development and cross-platform

frameworks are added to the spreadsheet. The concepts are

assigned to the individual documents in the form of crosses.

As a result of this step, the concept matrix can be used.

E. Research Agenda

Finally, Phase V aims to identify topics within the so-

called Research Agenda. These topics are under-represented

in the identified literature. This allows a recommendation;

which concepts should be part of future research. Further

fields of research are addressed in section VI Conclusion and

Outlook. Based on the identified documents, the main focus

will mainly be on the cross-platform frameworks. In other

words, which of the identified frameworks are particularly

useful for the suitability of mobile applications? As a result

of Section II, the identified works will be presented in an ad-

ditional step. This will be addressed as status quo of cross-

platform development hereafter in Section III Related Work.

III. RELATED WORK

This section covers different solutions and technologies

which enable fast and efficient cross-platform-development

of applications.

A. Cross-Platform Development

As stated above, there are several approaches for cross-
platform development. This type of development is subject to
typical challenges of ubiquitous computing. In addition, fur-
ther challenges are typical to cross-platform development [6],
[15], the most important issue being associated with:

1. User Interface (UI)
2. Limited Resources
3. Device Management
4. Application Maintenance

The design of UI is associated with questions of simplicity
and intuitiveness. For mobile cross-platform development,
this is extended by design guidelines defined by the different
operating systems. It is further restricted because of different
device capabilities (e.g., screen sizes and resolution) [16].
Limited resources is a typical issue in mobile software engi-
neering; for cross-platform development the application size
and resource consumption (especially power and memory
management) is a typical issue [6][17]. Since cross-platform
development addresses a vast variety of devices, their man-
agement in terms of appropriate usage of hardware and sen-
sors (i.e., CPU, memory, Bluetooth, or camera) becomes an-
other typical challenge. Furthermore, different operating sys-
tems must be handled as well. Finally the application has to
be maintained by following short lifecycles of devices, oper-
ating systems and frameworks [6][16].

A lot of different methods that address cross-platform de-
velopment can be observed in science and industry. Some are
based on model-driven software engineering [18]. The ad-
vantage of model-driven methods is that developers and users,
which are less familiar with specific programming paradigms
are enabled to efficiently implement applications. As Object
Management Group (OMG) standard, the Interaction Flow
Modeling Language (IFML) offers model-based and plat-
form-independent development of applications for different
types of devices. Following the Model-Driven Architecture
(MDA) it is based on a meta-model and it is built upon Web
Modeling Language (WebML). A Web-based and an eclipse-
based modelling environment is provided for IFML. Further-
more, extensions for Apache Cordova and PhoneGap are pro-
vided [18][19]. An open challenge is to keep the extensions
up-to-date. Other solutions, such as WebView, utilize native
code and combine it with Web technologies. Native compo-
nents are used as containers to render Web pages that contain
application logic and presentation layer definitions. Native
components serve to access device-specific functions (i.e.,
push notifications or sensor data). Although WebView is a na-
tive application, it can internally use Web technologies with-
out switching to a standard browser. WebView also supports
CSS and JavaScript for custom interface development [11].
However, WebView does have two main drawbacks: 1) cus-
tom styling is necessary to gain a native look and 2) its perfor-
mance is below average [20]. In summary, we observe three
general approaches to cross-platform development:

1. Native application
2. Transformation- or generator-based application
3. Interpreted application (parser-based)

With native development, an application is developed for
each specific device (and operating system). Benefits include
the native look and feel, the ability to use all platform-specific
features and a comparatively high performance of the app. The
most prevalent disadvantage is high efforts for development
and maintenance.

34

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II: COMPARISON OF FRAMEWORK POPULARITY [21].

Source Unit Ionic Xamarin React Native Oracle Jet Flutter

StackShare

Stacks 2.360 461 3.880 N/A 105

Fans 2.310 549 3.740 N/A 156

Jobs 98 47 726 N/A 5

Votes 1.660 646 821 N/A 49

Hacker News Posts 669 995 917 8 N/A

Reddit Posts 989 1.080 N/A 55 1.080

Stack Overflow

Stats

Posts 4.430 35.000 45.100 280 9.890

GitHub Stats
Stars 36.700 N/A 73.200 295 51.400

Forks 12.800 N/A 16.200 81 5.360

The latter is a result of redundancy in code and support
because each platform has to be served by a separate applica-
tion [11][15].

The use of generators employs a meta-implementation,
which is then transformed to specific platforms (e.g., as used
in Cordova or Ionic). Similarly, model-driven development
approaches (such as IFML) may use transformations to pro-
duce platform specific code. An advantage is that the applica-
tion logic is platform agnostic [18]. Applications, which are
interpreted rely on some kind of parser. The parser interprets
application code during runtime in order to create platform
specific instructions. Fabrik19 utilizes an interpreted approach
in its Mobility Suite (MOS) framework.

B. Cross-Platform Frameworks

As discussed above, there are a lot of cross-platform
frameworks like IFML, Cordova, Corona Software Develop-
ment Kit (SDK), Appcelerator Titanium, TheAppBuilder,
PhoneGap, Native Script, SenchaTouch, Framework7,
Apache Weex, Flutter, Oracle Jet, Jasonette or Manifold – also
see [9]. All of them utilize one or a combination of the three
methods to create platform specific applications. In our eval-
uation we also regard the popularity of the different frame-
works. We consider communities like StackShare, Hacker
News, Reddit, Stack Overflow Stats as well as GitHub Stats.
In our comparison, we strive to evaluate the most frequently
used and most progressively developed frameworks as illus-
trated in TABLE II.

Ionic offers a generator-based approach [22]. The frame-
work is free to use and available as open source. Additionally,
several services are available via pay on demand. The gener-
ator utilizes a Web application as input. Thus, development of
cross-platform applications is based on Web technologies (Ja-
vaScript/TypeScript, HTML5 and CSS; see Figure 3). Ionic
also relies on Angular [22] in order to foster component based
development and reuse of templates. Ionic officially supports
Android, iOS and Universal Windows Platform (UWP) [23].
Since Ionic is based on Web applications that are generated

into platform specific applications through Apache Cordova,
these source applications may also be executed in any Web
browser. Native operating system functions and access to sen-
sors is only available after generation of platform specific
code. The utilization device specific functionalities often also
rely on plugins that have to be declared as dependency [19].

Figure 3: Ionic Architecture [23].

Xamarin is another framework to develop cross-platform
apps for Android, iOS and UWB [24]. Other platforms such
as Linux are not supported and macOS support was recently
added with the launch of Xamarin.Mac.

Xamarin is based on .Net and utilizes C# as programming
language. Xamarin is divided into two major parts: 1) Xama-
rin platform and 2) Xamarin.Forms. The Xamarin platform
(Xamarin.Android, Xamarin.iOS) provides APIs to share
code for application logic between all platforms. The UI is
written individually for each platform. Xamarin.Forms allows
to create additional platform-independent UI, which are
mapped into native UI in a second step (see Figure. 4). The

35

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

development environment is based on Visual Studio (or
Xamarin Studio for macOS) [24].

Figure 4: Xamarin Architecture [24], [25].

React Native is a parser based open-source framework for
building cross-platform applications [26]. It is based on React.
Both frameworks are being developed by Facebook. React
Native currently supports Android and iOS and uses a Na-
tiveScript Runtime environment to execute the application
code (see Figure 5). However, with a little more effort, it is
also possible to deploy to UWP. Since React is built on JavaS-
cript, this holds true for React Native as well. React Native
invokes Objective-C APIs to render to iOS components and
Java Application Programming Interface (APIs) to render to
Android components. This means that no code generation is
utilized in React Native. Facebook promises that the perfor-
mance of apps would be almost as good as that of native ap-
plications. Components for React Native may either be built
as functional components or class components [26].

Figure 5: React Native Architecture.

Oracle Jet follows a similar philosophy as Ionic and was
developed in the software house Oracle. The framework and
its tools are freely available as open source. Oracle Jet also
uses the generator-based approach. Web technologies (JavaS-
cript, Knockout, jQuery, HTML5 and CSS, etc. see Figure 6)
are used for the development. Platform-specific versions can
be derived from the web application. Apps for Android, iOS
and UWP can be officially released. Also, an execution in the
browser is possible without further ado, particularly since the
application is converted by means of Web technologies. For
the use of platform-specific sensors, Cordova plug-ins must
be used [27][28].

Figure 6: Oracle Jet Component Architecture [29].

36

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7: Flutter Architecture.

Flutter is a parser based, open source SDK, which offers
an easy way to develop high-fidelity and high-performance
mobile apps for android and iOS. Flutter uses a rich set of Cu-
pertino (iOS) and Material Design behaviours and widgets.
Furthermore, Flutter implements platform-specific code like
navigational patterns, fonts and more. Flutter apps are written
in Dart. Its syntax looks a lot like Java, JavaScript, C# or swift.
Dart uses the standard Android and iOS toolchains to compile
your code [30]. Flutter does not separate views, controllers,
layouts and other properties like other frameworks. It uses one
consistent, unified object model, so called widgets. Widgets
can define structural elements (like buttons or menus), stylis-
tic elements (like fonts or colour schemes, aspects of layouts
(like margins) and so on [31]. Messages between the client
(UI) and the host (platform) are passed using platform chan-
nels as illustrated in Figure 7. These messages and their re-
sponses are passed asynchronously. This way the user inter-
face will remain responsive.

IV. REFERENCE ARCHITECTURE AND IMPLEMENTATION

This article follows the constructivist paradigm of design
science [32]. Thus, insights will be retrieved by creating and
evaluating artefacts in the form of models, reference architec-
tures and, in our case, specific implementation variants and
efforts spent on their creation. Contrary to empirical research,
the goal is not necessarily to evaluate the validity of research
results with respect to their truth, but to the usefulness and fea-
sibility of the different approaches in order to solve a common

problem – here, to deploy with ease to different mobile plat-
forms. Following this line of thought, requirements will be im-
posed by the definition of a reference application architecture.
The reference architecture is derived using common hypothe-
ses, practitioner interviews and literature review. The refer-
ence architecture serves as requirements model for the imple-
mentation of different alternatives and tests in a real environ-
ment.

Thus, the reference application architecture is defined to
compare most utilized frameworks against each other and to
identify strengths and weaknesses. To enact a comprehensive
comparison [9][33], the application should access native sys-
tem functionalities and provide a platform specific UI. In
short, the frameworks should generate applications, which are
close to native applications. Thus, we also evaluated against
platform specific UI guidelines for Android and iOS [34]. We
defined the following functional reference criteria:

1. Layout: Grid
2. Layout: Tab
3. Operating System Function: Access current time
4. Sensor Function: Access current position (GPS)
5. Sensor Function: Access the phone camera

In addition to functional criteria, it is also important to
measure quality aspects, such as development efforts and ap-
plication performance. Therefore, we analysed two different
types of layouts mentioned in the list above, which are often
used in today’s apps – Mock-ups are depicted in Figure 8,

37

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

which serve as system templates for the reference app. Three
tabs can be used to test the system time, GPS and camera func-
tions.

Figure 8: Wireframes.

A. Ionic

Layout – Grid: Ionic provides a typical Grid-View with
the <ion-grid> component [23]. Furthermore, styling of the
GridView can be set individually. Layout – Tab: Using Tabs
in Ionic is easy as wall, it may be just derived by use of the
starter template (which provides this from scratch). Precise in-
structions may also be found in the documentation [23].

Access system time: This is derived by simple and built-
in JavaScript function calls (e.g., date().getHours() is used to
get the current hour). Access current position (GPS): To de-
termine the position, the Cordova plug-in Geolocation has to
be installed via npm. Then, it can be integrated in the project
[23]. As shown in Listing 1 the position can be retrieved, if
the necessary sensors are available and permissions are given.
Access to the camera: To use the camera, the Cordova plugin
Camera is required and has to be integrated into the project
[23].

Listing 1

getThePosition(){
 this.geolocation.getCurrentPosition().
 then((resp) =>{
 this.longitude = resp.coords.longitude;
 this.latitude = resp.coords. latitude;
 this.altitude = resp.coords. altitude;
 this.speed = resp.coords. speed;
 }).catch((error) => {
 console.log("Error getting location",
error);
 });
}

Debugging & testing: Ionic offers several methods to de-
bug and test apps. If the application is not utilizing sensor in-
formation, a clean Web test can be driven (by ionic serve).
Web tests may be carried out as known for Web applications
in general – such as debugging by means of the browser’s de-
veloper console (F12 shortcut) or employing Web driver test
scripts. If sensor information is utilized the application has to
be deployed to a platform specific device or an emulator. With

Ionic this can be done by calling ionic cordova build an-
droid|ios to build the app and ionic cordova emulate
android|ios to execute the app on an emulator. If a test de-
vice is being utilized instead of emulation (by calling ionic
cordova run android|ios) the application may again be
tested in a browser, e.g., using Google Chrome
(chrome://inspect/#devices has to be called and the spe-
cific device has to be selected). In order to automate unit test-
ing typical tooling as known for other JavaScript-based frame-
works can be used. To test the reference implementation, we
could simply employ the well-known frameworks Karma and
Jasmin. The application source code is publically available via
GitHub, the repository URL is:

https://github.com/futureLABHsPforzheim/ionic_blog_proto-
type.git

B. Xamarin

Layout – Grid: In Xamarin the layout differs, depending
on the chosen platform. For Android GridView and for iOS
uicollectionview has to be used [24]. Layout – Tab: In
Xamarin tabs have to be set up manually. There is no standard
template available to support this layout. Typically, a tabbed
page will be used to reference other content integrated as tabs.

Access system time: To retrieve the system time, a View-
Model is created, and a DateTime attribute tracks the current
time. For updates a PropertyChanged event is fired. The ref-
erence is made possible by the data binding. Access current
position (GPS): The current position is determined by the
plugin Xam.Plugin.Geolocator [24] (installed via NuGet).
Adjustments are needed to support Android. In addition, nec-
essary privileges for querying the position must be granted.
After configuration, the logic can be implemented. Attributes
for longitude and latitude have to be mapped to determine the
location (see Listing 2). Access to the camera: Camera access
is realized with the plugin Xam.Plugin.Media [24]. It has to
be configured by means of xml. In important step is the defi-
nition of a resources folder to determine where to store cap-
tured pictures and videos. The camera itself can be called
asynchronously (getTakePhotoAsyncCommand).

Listing 2

public async System.Threading.Tasks.Task
getLocationAsync()
{
 var locator = CrossGeolocator.Current;
 locator.DesiredAccuracy = 50;

if (locator.IsGeolocationAvailable &&
locator.IsGeolocationEnabled) {

 var position = await
 locator.GetPositionAsync();
 this.Longitude="Longitude" +

 position.Longitude.ToString();
 this.Latitude="Latitude" +

 position.Latitude.ToString();
 }
}

38

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Debugging & testing: Xamarin enables unit testing and
debugging with Visual Studio. For Xamarin, Visual Studio
basically offers the same mechanisms as known for any other
component, which is developed within Visual Studio (such as
break points and live debugging). Visual also offers support
for asynchronous testing and mock object creation, e.g., if the
Model View Viewmodel (MVVM) pattern is applied and
view models invoke service operations asynchronously.

Visual Studio also provides a well sophisticated profiler,

which provides monitoring of memory utilization and object

allocation. Finally, Xamarin also offers also a test cloud for

UI-Tests – where automated testing for native and hybrid ap-

plications is done by employing the App-Center. The source

code of the Xamarin-Reference-App is publically available

via GitHub, the repository URL is:

https://github.com/futureLABHsPforzheim/xama-

rin_blog_prototype.git

C. React Native

Layout – Grid: React Native does not provide a grid lay-
out immediately. To resemble a grid-layout within the refer-
ence implementation, a ScrollView component was used and
individual views had been adapted by means of CSS. Alterna-
tively, third-party grid components could be utilized as well
to resemble a grid layout. React Native Easy Grid and React
Native Layout Grid are just two examples of these compo-
nents, which may be installed via npm. Layout – Tab: React-
Native Expo IDE can create a starter app, which directly op-
erates with tabs. Manual creation is not as easy as in Ionic but
efforts are still considerably low.

Access system time: Is achieved by simple JavaScript
calls. this.state [26] is needed for the databinding and new
Date().getHours() retrieves the current hour. Access cur-
rent position (GPS): The determination of the current posi-
tion is already integrated in the React Native API [26]. The
position is retrieved by calling navigator.geoloca-
tion.getCurrentPosition, further details can be seen in
Listing 3. Access to the camera: Camera and access rights
have to be configured and hasCameraPermission has to be
set to zero. The componentWillMount method the permis-
sions are checked and we the status is updated. The asynchro-
nous method takePicture is utilized tJano check if the cam-
era is available and if it was possible to take a picture.

Listing 3

Navigator.geolocation.getCurrentPosition(
 (position) => {
 this.setState({
 latitude: position.coords.latitude,
 longitude: position.coords.longitude,
 error: null,
 });
},
(error) => this.setState({ error: error.message }),
{ enableHighAccuracy: true, timeout: 20000,
maximumAge: 1000},
);

Debugging & testing: React Native similarly offers mul-
tiple ways to debug and test apps. Debugging mode can be

activated from a developer menu. This can be called by key-
board shortcuts or, if running on a test device, by shaking the
smartphone. To debug the JavaScript code in Chrome, a re-
mote debugging session can by created when select Debug JS
Remotely is selected from the developer menu. This will open
http://localhost:8081/debugger-ui in a new browser
tab. Other debugger implementations may be used as well and
a recommendation then would be to use the standalone version
of React developer tools. These can be installed via npm in-
stall -g react-devtools and may be called via react-
devtools. To set up unit testing for React Native it is recom-
mended to utilize Jest and execute tests via node. For integra-
tion testing, several different options exist. Integration testing
always relies on platform specific environments; thus, those
have to be set up first. The application source code is publicly
available, the repository URL is:

https://github.com/futureLABHsPforzheim/react_blog_pro-

totype

D. Oracle Jet

Layout – Grid: Oracle Jet offers several components for

displaying data. With the tag <oj-data-grid> data can also be

displayed in a GridView. Layout – Tab: Oracle Jet offers

ready-made templates for tabs that can be reused. An inde-

pendent implementation can be done by using the tag <oj-

tab-bar> in combination with a [27].

Access system time: Oracle Jet also uses JavaScript tech-

nologies, so the time query is similar to Ionic

(date().getHours(). Access current position (GPS): Ora-

cle supports the use of Cordova plug-ins. After installing the

Cordova plugin Geolocation, it can be integrated into the pro-

ject. As can be seen in Listing 4, the values are stored in var-

iables latitude and longitude after a successful determination

of the location. Access to the camera: In Oracle Jet, the Cor-

dova Camera Plugin can be used to provide camera function-

ality. In order to use the camera in Oracle Jet, an appropriate

authorization must be granted.

Listing 4

self.getMapLocation = function (info) {

 navigator.geolocation.getCurrentPosition
 (onMapSuccess, onMapError, {
 enableHighAccuracy: true });
 };
 var onMapSuccess = function (position) {

 self.latitude(position.coords.latitude);
 self.longitude(position.coords.longitude);
 };

Debugging & testing: Oracle Jet applications can be ex-
amined with any browser. In our development environment
we used Chrome for debugging. As soon as the application
was started with ojet serve ios|android|windows -
browser, debugging in the local browser is possible. Debug-
ging on an emulator or a physical device is also possible. The
commands ojet serve ios|android|windows -emulator
and ojet serve ios|android|windows -device are used

39

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for this purpose. As soon as the app is started, it can be exam-
ined in the browser. Chrome offers a selection of available de-
vices via chrome://inspect/#devices. Thus, console out-
puts, network communication, memory utilization etc. can be
examined. To test the application and its functionality, differ-
ent frameworks can be used that are JavaScript compatible.
Oracle itself uses QUnit [27]. The source code is publically
available via GitHub, the repository URL is:

https://github.com/K1ngdan1/JetRefApp.git

E. Flutter

Layout – Grid: To use the GridView in Flutter with Dart

you define a new GridView.count(). CrossAxisCount defines

the amount of children in a Row and childApsectRatio their

size, both spacing options define how much space is between

the grid items, which are defined by children. Here children

attribute is filled with a list of widgets (see Listing 5).

Listing 5

return new Container(
 margin: const EdgeInsets.only(top: 200.0),
 color: Colors.white30,
 child: new GridView.count(
 crossAxisCount: 2,
 childAspectRatio: 1.0,
 padding: const EdgeInsets.all(4.0),
 mainAxisSpacing: 4.0,
 crossAxisSpacing: 4.0,
 children: widgets),
);

Listing 6

return Scaffold(
 appBar: AppBar(
 title: Text('Colla Test App'),
 elevation: 0.7,
 bottom: new TabBar(
 controller: _tabController,
 indicatorColor: Colors.white,
 tabs: <Widget>[
 new Tab(icon: new Icon(Icons.timer)),
 new Tab(icon: new
 Icon(Icons.location_searching)),
 new Tab(icon: new
 Icon(Icons.camera_alt)),
],
),
),
 body: new TabBarView(
 controller: _tabController,
 children: <Widget>[
 new Time(),
 new Gps(),
 new Camera(widget.cameras),
],
)
);

Layout – Tab: Dart defines Tabs with a widget named

TabBar, which creates the look of the Tab Bar. To use the

TabBar a TabController is needed to pass different options

e.g., the amount of tabs to the TabBar. The TabBarView cre-

ates the functionality for the GridView (see Listing 6) [35].

Access system time: To access the system time new

DateTime.now() is called. Access current position (GPS):

To access your location you first need to import the package

location. Then define a new variable and initiate it (see List-

ing 7).

Listing 7

Location _location = new Location();
StreamSubscription<Map<String,double>>
 _locationSubscription;

As illustrated in Listing 8 it can then be listened to the On-

LocationChanged method, which returns the current location

[36].

Listing 8

_locationSubscription=
_location.onLocationChanged().listen((Map<String,
double> result) {
 setState(() {
 lng = result["longitude"];
 lat = result['latitude'];
 alt = result['altitude'];
 speed = result['speed'];
 });
 });

Access the camera: First the camera package needs to be

imported and I must be verified if a camera is available (see

Listing 9).

Listing 9

List<CameraDescription> cameras;
cameras = await availableCameras();

Afterwards it is mandatory to pass the found camera and

the desired resolution to the controller (see Listing 10).

Listing 10

controller = new CameraController(widget.cameras[0],
ResolutionPreset.medium);

The asynchronous method takePicture then lets the user

take a picture and return its file path (see Listing 11) [36].

Listing 11

await controller.takePicture(filePath);
return filePath;

The source code of the Flutter-Reference-App is publicly

available via GitHub, the repository URL is:

https://github.com/futureLABHsPforzheim/flutter_blog_pro-

totype.git

40

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. FRAMEWORK EVALUTION

The evaluation and comparison of all frameworks is based
on the reference architecture and the implementation of the
corresponding test app. We selected several evaluation criteria
based on the evaluation framework developed by Heitkötter et
al. [37]. The aforementioned covers different evaluation crite-
ria, especially for infrastructure (including the lifecycle as
well as the functionality and usability of the app) and app de-
velopment (including testing, debugging and developing the
app). We also extended and removed some criteria (e.g., scala-
bility). Hence, we base the evaluation on the following appli-
cation properties:

1. Supported platforms
2. Supported development environment
3. Access to platform-specific functions
4. Application look and feel
5. Application portability
6. Simplicity of development
7. Application performance

At first, it is important, which platforms (Android, iOS,
UWP, etc.) and to which extent these are supported by each
framework. The next criterion discusses all possible develop-
ment platforms and environments (Windows, MacOS and
Linux). With the help of our test app we intend to analyze if
platform-specific functions are available. Also, an evaluation
of the UI is conducted to measure platform specific look and
feel. Moreover, we want to unveil if the source code is reusa-
ble and if it can be integrated into other frameworks (portabil-
ity). Also, the development efforts play a major role and will
be evaluated within criterion 6. In order to assess and evaluate
efforts and feasibility of the frameworks, we asked five expe-
rienced developers to implement our test application accord-
ing the reference architecture. The following evaluation is also
based on their feedback. Finally, we conducted an assessment
of the application's performance. Therefore, the test app is
used to measure: start time, used memory and execution speed
of internal functionalities such as GPS polling. For this pur-
pose, three test devices (Honor 9, Sony XZ1, Samsung Galaxy
S7, IPhone 8) were used. The specifications of the test devices
are listed in TABLE III. In order to stabilize test results, 100
test runs were conducted for each device. The following sub-
sections will outline our observations for each framework in-
dividually. Finally, this section is concluded by a comparison
of all frameworks.

A. Ionic

Configuring a system for Ionic and creating a first app only
takes a few minutes. Regarding ramp up, the majority of our
developers found that Ionic is the easiest framework to start
with. It has to be mentioned that it is necessary to ensure that
all dependencies (to plug-ins) are installed according their de-
clared version. This can be error prone, especially when Ionic
is updated. In case of multiple app development projects, con-

flicts may also arise between dependencies of different pro-
jects. Hence, previously deployed Ionic projects should be re-
moved from the test device to prevent side effects during test-
ing. As a prerequisite to start and develop Ionic applications
only knowledge in the typical Web development stack
(HTML, JavaScript and CSS) is required. TypeScript as an
extension of JavaScript and thus is easy to learn if JavaScript
is already known. TypeScript provides additional benefits
compared to JavaScript (especially type safety) – some exten-
sion have been adopted into ECMAScript-6 (such as classes,
inheritance or generics) [38].

In addition, Ionic reuses Angular, which makes it easier to
keep the code clean, separate concerns and speed up develop-
ment of the application itself. The project structure in Ionic is
logically well structured according to Web component archi-
tecture. Since Ionic relies on Web technologies, the user is free
to choose the development environment [23]. The use of Cor-
dova is another advantage, especially because it enables ac-
cess to system specific functionality and device sensors. Fur-
thermore, Cordova improves re-use of application compo-
nents, since a single code base can be utilized for all platforms.
However, since Ionic is based on Web-technologies and pack-
aged into native wrapper applications, the performance is be-
hind native applications. Former evaluations also indicated
that the performance is behind Xamarin and React Native, es-
pecially for larger applications [20].

B. Xamarin

Xamarin projects can be set up in Visual Studio. With the
use of C#, Xamarin is the best choice for developers, who also
work conventionally with C#. Another advantage is the native
UI [24]. Users will not recognize any difference to native ap-
plications. Xamarin offers to share a single code base between
platforms, to develop application logic. Platform specific ex-
tensions may be integrated with a subproject feature of Xama-
rin. As for all cross-platform frameworks, problems may arise
with third-party plugins (installed via NuGet). We recognized
several issues with outdated plug-ins. In general, our experi-
ence has shown that new device and operating features of mo-
bile devices had been adopted very fast by Xamarin. Hence,
in most cases its framework-based services can be used in-
stead of third-party plugins. Regarding testing and debugging
applications, the developers stated that Xamarin would be the
most convenient framework to use. This may be the case be-
cause of extended possibilities instantly provided by Visual
Studio.

C. React Native

React Native is easy to set up as well. React Native is built
upon React and is also based on JavaScript. Applications de-
veloped in React Native interpreted directly and the design ap-
pears near to native. Interesting features include a well-de-
signed live debugging. With Expo, React Native offers an
open source toolchain to simplify deployment on test de-
vices.

41

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III: TEST DEVICES

 Honor 9 Sony XZ1 Samsung Galaxy S7 IPhone 8

Processor

type

HiSilicon Kirin 960 octa-core

processor (four 2.4 GHz cores
and four 1.8 GHz cores)

Qualcomm Snapdragon 835 MSM8998

Octa-core (quad 2.35 GHz + quad 1.9
GHz) 64-bit Kryo processor

Exynos: Octa-core (4x2.3

GHz Mongoose & 4x1.6
GHz Cortex-A53)

Apple, Hexa-Core (64 Bit)

1. CPU: A11 Bionic, 4 x
2,24 GHz

2. CPU: A11 Bionic

Memory 4 GB RAM 4 GB 4 GB 2 GB

Graphic

chip

Mali-G71 MP8 GPU Adreno 540 Adreno 530 A11 Bionic

Display

size

5,15 inches

(1080x1920)

5,2 inches

(1080x1920)

5,5 inches

(1440x2560)

4,7 inches

(750x1334)

OS
Version

Android 7.0 Nougat 8.0 Oreo Android 6.0.1 Marshmallow iOS 12.1.2

Although this may result in some benefits, we observed
that the apps that are generated by the Expo are structured dif-
ferently than those set up by the console. Additionally, these
apps have different access to native functions. Another disad-
vantage compared to the other frameworks is interface devel-
opment. React utilizes a lot of specific HTML-Tags, which we
recognized as somewhat difficult to use and configure. This
makes it more difficult to get started than with other frame-
works, even if experience in Web technologies is pre-existent.

Oracle Jet

Oracle Jet also offers its own CLI commands for the cre-

ation of cross-platform projects. Web technologies such as

JavaScript, HTML and CSS are used to build individual

pages of the app. To simplify the retrieval and processing of

information within the application, the jQuery library is used.

In addition, Oracle Jet offers a variety of UI elements to pro-

vide arbitrary display options. Oracle indicates, which

plugins have already been tested and verified. Other plugins

can also be used in Oracle Jet projects, but incompatibilities

may occur, and their functionality is not guaranteed. Oracle

Jet does not offer in-house debugging features, but existing

test and debug tools can be integrated into the system. In ad-

dition, Oracle Jet offers its own packaging functions for An-

droid, iOS and Web.

D. Flutter

Flutter is easy to setup. You literally need to download a

zip folder, unzip it in a directory with no security restriction

(e.g., on Windows C:\). Flutter comes with its own command

line tool, but you can integrate it into your system by adding

it to your environmental variables. Flutter also offers hot re-

load and fast native like performance, which enhances the

speed of development and the feeling of a native app. Flutter

uses its own programming language called Dart. It is oriented

on concepts known by Java and JavaScript but offers a lot of

specific extensions like the handling of asynchronous calls

with their new Future class. It also has its own virtual ma-

chine and comes with 2D-Rendering. In the beginning you

need to get used to Dart because there are some differences

in creating the UI but since their documentation is really good

you will be able to adjust yourself pretty quick.

E. Comparative Evaluation

To evaluate all frameworks comparatively and in an ob-
jective manner, we implemented a test application according
the reference architecture (as defined in Section IV). In a sec-
ond step, we measured the criteria defined at the beginning of
Section V, to reason about benefits and limitations of all
frameworks. Based on upon the evaluation criteria presented
and measured below, the overall results are summarized in
TABLE IV. For each evaluation criterion, we applied a nom-
inal scale that rates the observed framework behaviour in
comparison to our general expectations and in relation to the
other frameworks. The nominal scale contains the following
ratings: “++”=very good, “+”=good, “0”=neutral, “-“=poor,
and “--"=very poor.

Supported platforms: Ionic officially supports Android,
iOS and since 2016 also UWP development, although the doc-
umentation is still very limited here. Xamarin offers full sup-
port for Android, iOS and UWP. Limited support is provided
for MacOS. React Native supports iOS, Android and with a
little extra effort also UWP applications. Oracle Jet also sup-
ports iOS UWP and Android platforms. Flutter supports An-
droid and iOS and with the help of Hummingbird it is possible
to deploy your app in a specialized browser, which means you
can use it on your desktop computer as well. The UWP is not
yet supported and probably never will be because the market
share is just too small to benefit from it. In a developers per-
spective Xamarin is rated best, because its platform support is
broader than all other frameworks.

Supported development environment: Ionic applica-
tions can be developed on Windows, macOS and Linux. The
development platform for Xamarin is Visual Studio for Win-
dows and Xamarin Studio for macOS. React Native supports
Windows, macOS and Linux. Oracle Jet projects, on the other
hand, can be developed on Windows, macOS and Linux. Flut-
ter can be used on any kind of operating system. Literally,
since the web-based frameworks depend on technologies
available on all common development environments, they all
share a best in class rating. The latter does not hold true for
Xamarin, since it is based on .net technologies and hence re-
stricts use of development platforms. Thus, for this criterion
Xamarin is rated less than all other frameworks.

Access to platform-specific functions: Ionic provides ac-
cess to iOS, Android, Microsoft and browser-based features.
Platform-specific functions can be used via various Cordova

42

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

plugins. With Xamarin, all platform-specific functions can be
used in a similar fashion. However, Xamarin offers different
possibilities to access platform specific functions. The fastest
possibility is to install corresponding NuGet packages. A sec-
ond option would be the definition of interfaces with platform
or device specific implementations and expose this shared
code via the dependency service. Then there is also the possi-
bility to use native libraries, for example written in pure Java
for Android, via binding. While React-Native is JavaScript-
based, and many native functions are not supported, it is pos-
sible to include native SDKs and libraries. However, this re-
quires specific code for Android (in Java) and for iOS (in
Swift) which results in higher development efforts. In addi-
tion, these features are currently often not mature enough. Or-
acle Jet projects use Cordova like Ionic to address platform-
specific functions. A common code base is therefore sufficient
to address all different platforms and use their device-specific
functions. Flutter uses Dart to directly interact with the native
API of the client as illustrated already in Figure 8. Overall, the
most comprehensive support for use of platform specific func-
tions is given with Xamarin which it is rated best in this cate-
gory.

Application look and feel: Ionic offers its own widgets
for the UI. Navigation elements (e.g., back button) are pro-
vided in platform-specific style, so the differences to native
apps are small. As already described in Section V, the use of
a GridView in Ionic is very simple. Xamarin creates com-
pletely native UI, thus the interface is familiar to the user.
Xamarin also supports styling with themes and the interface is
not different to native apps. Xamarin Android also supports
material design. React Native uses specialized widgets. Set-
ting up a GridView it is not as easy as in Ionic or Xamarin,
CSS has to be used to achieve this layout. In general, Ionic
and React Native ignore style guidelines of platforms partially
and some widgets break them explicitly. For example, tabs in
Android are at the top of the screen in native apps, while this
is not the case in apps developed with Ionic or React Native.
Xamarin, in contrast, uses tabs as expected. Oracle Jet offers
native themes to display the applications adapted to the plat-
form used. In addition, different templates can be used to
adapt the styling to your own needs. Since Flutter uses its own
widgets, which are accessing the native API and Widgets via
Dart. That brings the look and feel of a native written app. The
most native appearance of apps is given when Flutter and
Xamarin are utilized. While the other frameworks also get
close to a native user experience, they still fall behind.

Application portability: Since Ionic represents a hybrid
approach, portability of the source code is given and further
supported through Cordova. Since Ionic modules are well-
structured and based on Web technologies, they can be trans-
ferred to other Web frameworks. However, as many other
frameworks, Ionic uses specific HTML tags that may not be
supported in other frameworks, thus there is limited transfer-
ability of this module part. Since Xamarin separates applica-
tion logic and UI related code, it offers the best portability and
reuse of the logic. Furthermore, Visual Studio offers tolling
(portability analyser) to transfer the UI related parts as well.
Of course, it has to be said that this is restricted to .Net and

mono frameworks. The UI (defined by eXtended Application
Markup Language, XAML), could in principle be transformed
into HTML or similar languages, which, however, requires
further manual efforts in a second step. Similarly, React Na-
tive offers portability to different platforms. React-Native
code is relatively easy to transfer to other frameworks that use
JavaScript, HTML, and CSS. Comparable to Ionic, special-
ized HTML tags have to be XAML handled manually. How-
ever, since as React Native Logic, UI and CSS are typically
implemented in a single file, this tends to be tedious. Like
Ionic, Oracle Jet uses a hybrid approach. JavaScript is used for
the application logic, HTML for the page structure and CSS
for the styling. This allows this code to be transferred to other
hybrid approaches that use web technologies. However, the
Oracle Jet specific HTML tags represent limitations. These
cannot be transferred to other frameworks and must be re-
placed. Even though Flutter uses Dart is possible to use the
code elsewhere, since there are possibilities to compile or re-
use the code in web apps like Hummingbird, DartPad and
dart2js [36][39][40]. Overall, we expected frameworks to be
much more advanced already, nevertheless neither of them
could really fulfil our expectations.

Simplicity of development: Through a lot of documenta-
tion (tutorials, community discussion, API documentation,
quick start and programming templates) a quick and efficient
start in development of Ionic Apps is possible. Because of the
short development lifecycle, confusion may occur through
different version documents and some outdated plugins. Oc-
casionally, the framework reveals unexpected behavior (some
builds end up with broken apps, while a rebuild without code
change is successful). We intend to examine this further. Cur-
rently we believe that this is related to generator issues. In
principle, the development with Xamarin is fast as well, since
the framework also possesses a very good documentation (tu-
torials, sample projects and a very precise API documenta-
tion). The programming language underneath (C#) also is very
sophisticated and in our opinion much better then JavaScript.
In terms of simplicity, Visual Studio or NuGet may pose a
certain barrier for developers not used to it in the beginning.
The entry into the development with React Native is compa-
rable to Ionic. The use of the framework-specific UI elements
is different from the other frameworks but does not impose an
obstacle. The ability to see and debug all changes in real-time
eases troubleshooting. A larger issue is related to external li-
braries and modules. Since many of these modules and librar-
ies are not officially supported, regular maintenance and sup-
port is not guaranteed. In addition, we observed that the instal-
lation of node modules consumes much more time compared
to Ionic. For Oracle Jet, the vendor provides extensive docu-
mentation from application setup to testing and debugging Or-
acle Jet applications. A cookbook is available for existing el-
ements (collections, controls, forms, framework, layout and
patterns). Additionally, sample projects and starter templates
are offered to speed up the start of development. Thus, de-
tailed documentations are available, which simplify the devel-
opment with Oracle Jet. A detailed debugging using the
browser tools promotes the development and simplifies the
finding and elimination of errors.

43

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV: EVALUATION OF CROSS-PLATFORM FRAMEWORKS

Evaluation Criteria Ionic Xamarin React Native
Oracle

Jet

Flutter

Supported platforms + ++ + + +

Supported development platforms ++ 0 ++ ++ ++

Access to platform-specific func-

tions
+ ++ 0 + +

Application Look & Feel + ++ + + ++

Application Portability 0 0 0 0 0

Simplicity of development ++ + 0 + +

Application performance + + 0 + ++

Flutter comes with a very good documentation that offers
a cookbook for different widgets and use cases. It also has a
large number of code labs/tutorials to help you getting into
Flutter and Dart. In terms of debugging and testing Dart has
some tools like the Dart Analyzer to check our code for errors
or the Dart Observatory, which lets you define your own
breakpoints in the code without using an IDE to do so. Like in
every mentioned framework you can print out logs as well.
Furthermore, Flutter has integrated the possibility of writing
unit tests, widget tests and integration tests, which is well doc-
umented on their official page. We faced very little errors and
bug while developing though the framework is still young. In
this category we rated how quick and flawless a developer can
initiate and develop an application. Overall, all frameworks
provide developer support but Ionic currently provides the
most comprehensive developer guidelines.

Application performance: In order to stabilize test re-

sults, we deployed all test applications and measured results

of 100 test runs with four test devices. Hence, we could ob-

serve the following numbers: The required start time of the

Ionic test app is between 2s and 2.44s, while Xamarin re-

quires 3 to 3.3s, React Native 4 to 4.5s and Oracle Jet 1,2s.

Flutter just needed 0.5s to start the app The size of the Ionic

app is 10 MB, while Xamarin requires 24 MB, React Native

requires 11 MB, Oracle Jet requires 19.13 MB and the Flutter

app requires 34.12 MB. The time the Ionic app takes to re-

trieve the current location (with high signal strength of GPS)

is approximately 0.1s, while Xamarin needs 3.0s, React Na-

tive 0.4s, Oracle Jet 1.2s and Flutter 0,3s.

VI. CONCLUSION AND OUTLOOK

In this article, we reviewed a couple of cross-platform

frameworks and discovered that they can significantly reduce

development efforts, especially if code shall be shared be-

tween different platforms. This of course, is not the case with

native app development. Hence, in our point of view cross-

platform development is superior to native app development.

This especially holds true, if a cost-benefit relation is applied.

In addition, there are almost no limitations in the use of native

functionalities when cross platform libraries are employed.

In this article, we focused the evaluation on five different

frameworks and evaluated, which of them provides the best

development support for multiplatform deployment. In order

to decide, which frameworks and approaches to choose for

evaluation, we conducted a literature review and did some re-

search about popularity of frameworks. Hence, we evaluated

developer-oriented web portals and usage statistics of cross-

platform development frameworks. While we had been able

to discover several scientific approaches to multiplatform de-

velopment, we recognized that current development is mainly

driven by standardized web technologies. These are typically

extended by generator-based technologies, which are utilized

in order to transform and package applications for platform

specific rollout (deployment). Further approaches where de-

fined in literature, such as transformation-based or inter-

preted application (parser-based) development.

We analysed and evaluated all frameworks on the basis of

the following categories: a) supported platforms, b) sup-

ported development environment, c) access to platform-spe-

cific functions, d) application look and feel, e) application

portability, f) simplicity of development, and g) application

performance. The results of our evaluation conclude that

Flutter is the best suited framework for cross-platform devel-

opment. In our case study, we examined Ionic, Xamarin, Re-

act-Native, Oracle Jet and Flutter in detail. Our results re-

vealed several differences to other comparable articles. First,

numerous articles have reported that Ionics’s performance is

rather poor compared to the other frameworks. However,

Ionic scored surprisingly well in our tests. Together with the

Flutter framework, Ionic had the best performance score.

Compared to other studies [6], performance enhancements of

all evaluated cross-platform frameworks could be observed

in general. This applies to response and processing times as

well as sensor access. The latter can be a result of framework

improvements within the latest versions as well as mobile de-

vice platform improvements. From a user's point of view,

there are almost no observable performance issues when

compared to native applications. All evaluated frameworks

offer full access to system functionalities and sensors. Alt-

hough new versions of operating systems can lead to different

functionalities and sometimes completely different APIs, the

rate and speed of their adoption in cross-platform frameworks

is quite high [41]. All cross-platform frameworks allow ge-

neric development for different operating systems, although

there are still limitations. As we mentioned before, apps are

sometimes not fully portable and may require platform-spe-

cific customizations. This holds true for all approaches. Fur-

thermore, the statement that the reuse of components between

44

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

different mobile applications is not yet fully supported is not

valid. Ionic has released betas, which support the use of other

components written in React, Vue and Angular [23]. Never-

theless, we could not observe that components developed in

one framework could be integrated in other frameworks with

ease. Since the web-component standard is promising in this

context, we plan to do research of cross-component integra-

tion between different frameworks in a next step.
As another important feature of a framework, long-term

support is essential to reach a wide range of users and ensure
support for current applications. In newer versions of the
frameworks examined, it was observed that downward com-
patibility with APIs of earlier releases was not given. This is
common in web development and is known at least since An-
gular 2 completely broke with the API of its predecessor An-
gularJS. This can be observed repeatedly for new releases, and
its likelihood that this is repeated for future framework re-
leases is high. Thus, it is important for mobile software engi-
neering, whether standardized component development (e.g.,
the web component architecture) will be adopted in all frame-
works. Supplementary important aspects are, if framework
consolidation is promoted or whether the spread of new pro-
gramming languages and techniques will further divide the
market. Similar arguments apply to the downward compatibil-
ity of the API. This will give rise to further research questions
on API issues.

As mentioned above, an important question will be
whether it is possible to transfer code from current framework
applications into new releases and preserve their functionality
(even if the API changes). Therefore, we intend to define a
model-driven approach to address this problem in a next step.
In this context, we plan to compare parser-based methods with
transformation-based cross-platform approaches and to derive
API mappings. As a broader outlook, a more detailed study in
the area of web components will be performed. In this context,
we are planning to assess reusability of web components. Our
goal is to evaluate web component programmed utilization
across multiple different frameworks.

ACKNOWLEDGEMENT

This article is result of our work conducted in the project

“EDV – Einfaches Digitales Vergessen”. The research pro-

ject was supported by the German Federal Ministry of Eco-

nomics and Energy (BMWi) as part of the smart data funding

line.

REFERENCES

[1] J. Christoph, D. Rösch, and T. Schuster, “Cross-Platform De-

velopment. Suitability of Current Mobile Application Frame-

works,” in The Eighth International Conference on Ad-

vanced Collaborative Networks, Systems and Applications,

Venice, Italy, 2018, pp. 13–20.

[2] Statista, “Internet of Things, Forecast, Number of networked

devices worldwide by 2020,” Statista. [Online]. Available:

https://de.statista.com/statistik/daten/studie/537093/um-

frage/anzahl-der-vernetzten-geraete-im-internet-der-dinge-

iot-weltweit/. [Accessed: 07-Mar-2018].

[3] Statista, “Number of smartphone users worldwide 2014-

2020.” [Online]. Available: https://www.statista.com/statis-

tics/330695/number-of-smartphone-users-worldwide/. [Ac-

cessed: 15-May-2018].

[4] L. Knoll, “Developing The Connected World Of 2018 And

Beyond,” Forbes. [Online]. Available:

https://www.forbes.com/sites/forbestechcoun-

cil/2018/03/16/developing-the-connected-world-of-2018-

and-beyond/. [Accessed: 30-Jan-2019].

[5] L. Corral, A. Janes, and T. Remencius, “Potential advantages

and disadvantages of multiplatform development frame-

works–a vision on mobile environments,” Procedia Com-

puter Science, vol. 10, pp. 1202–1207, 2012.

[6] W. S. El-Kassas, B. A. Abdullah, A. H. Yousef, and A. M.

Wahba, “Taxonomy of Cross-Platform Mobile Applications

Development Approaches,” Ain Shams Engineering Journal,

vol. 8, no. 2, pp. 163–190, Jun. 2017.

[7] Statista 2019, “Marktanteile der führenden mobilen Betriebs-

systeme an der Internetnutzung mit Mobiltelefonen weltweit

von September 2009 bis November 2018,” 01-Nov-2018.

[Online]. Available: https://de.statista.com/statis-

tik/daten/studie/184335/umfrage/marktanteil-der-mobilen-

betriebssysteme-weltweit-seit-2009/. [Accessed: 31-Jan-

2019].

[8] Android Developers, “Android distribution dashboard.”

[Online]. Available: https://developer.an-

droid.com/about/dashboards. [Accessed: 01-Jun-2019].

[9] I. Dalmasso, S. K. Datta, C. Bonnet, and N. Nikaein, “Sur-

vey, comparison and evaluation of cross platform mobile ap-

plication development tools,” in Wireless Communications

and Mobile Computing Conference (IWCMC), 2013 9th In-

ternational, 2013, pp. 323–328.

[10] M. Lachgar and A. Abdali, “Decision Framework for Mobile

Development Methods,” International Journal of Advanced

Computer Science and Applications (IJACSA), vol. 8, no. 2,

2017.

[11] V. Ahti, S. Hyrynsalmi, and O. Nevalainen, “An Evaluation

Framework for Cross-Platform Mobile App Development

Tools: A case analysis of Adobe PhoneGap framework,”

2016.

[12] J. vom Brocke, A. Simons, B. Niehaves, and K. Reimer, “Re-

constructing the Giant on the importance of Rigour in docu-

menting the Literature search Process,” ECIS 2009 Proceed-

ings, vol. Paper 161, pp. 1–14, 2009.

[13] H. M. Cooper, “Organizing knowledge syntheses: A taxon-

omy of literature reviews,” Knowledge in Society, vol. 1, no.

1, pp. 104–126, Mar. 1988.

[14] J. Webster and R. T. Watson, “Analyzing the Past to Prepare

for the Future: Writing a literature Review,” MIS Quarterly,

vol. 2, no. 26, pp. xiii–xxiii, 2002.

[15] P. Smutný, “Mobile development tools and cross-platform

solutions,” in Proceedings of the 2012 13th International

Carpathian Control Conference, 2012.

[16] J. Perchat, M. Desertot, and S. Lecomte, “Component based

framework to create mobile cross-platform applications,”

Procedia Computer Science, vol. 19, pp. 1004–1011, 2013.

[17] M. E. Joorabchi, M. Ali, and A. Mesbah, “Detecting incon-

sistencies in multi-platform mobile apps,” in Software Relia-

bility Engineering (ISSRE), 2015 IEEE 26th International

Symposium on, 2015, pp. 450–460.

45

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[18] R. Acerbis, A. Bongio, M. Brambilla, and S. Butti, “Model-

Driven Development Based on OMG’s IFML with WebRa-

tio Web and Mobile Platform,” in Engineering the Web in the

Big Data Era, 2015, pp. 605–608.

[19] Apache Cordova, “Architectural overview of Cordova plat-

form.” [Online]. Available: https://cor-

dova.apache.org/docs/en/7.x/guide/overview/index.html.

[Accessed: 09-Mar-2018].

[20] A. Holzinger, P. Treitler, and W. Slany, “Making Apps Use-

able on Multiple Different Mobile Platforms: On Interopera-

bility for Business Application Development on

Smartphones,” in Multidisciplinary Research and Practice

for Information Systems, 2012, pp. 176–189.

[21] “Ionic vs React Native vs Xamarin 2018 Comparison | Stack-

Share.” [Online]. Available: https://stackshare.io/stack-

ups/ionic-vs-react-native-vs-xamarin. [Accessed: 07-Mar-

2018].

[22] M. Ramos, M. T. Valente, R. Terra, and G. Santos, “Angu-

larJS in the wild: A survey with 460 developers,” in Proceed-

ings of the 7th International Workshop on Evaluation and

Usability of Programming Languages and Tools, 2016, pp.

9–16.

[23] Ionic, “Build Amazing Native Apps and Progressive Web

Apps with Ionic Framework and Angular,” Ionic Frame-

work. [Online]. Available: https://ionicframework.com/.

[Accessed: 20-May-2019].

[24] “Developer Center - Xamarin.” [Online]. Available:

https://developer.xamarin.com/. [Accessed: 07-Mar-2018].

[25] A. Sandu, “Build Cross-Platform Android and iOS UIs with

Xamarin Forms,” 26-Feb-2016. [Online]. Available:

https://www.sitepoint.com/build-cross-platform-android-

ios-uis-xamarin-forms/. [Accessed: 31-Jan-2019].

[26] Facebook, “React Native · A framework for building native

apps using React.” [Online]. Available: https://face-

book.github.io/react-native/index.html. [Accessed: 09-Mar-

2018].

[27] Oracle, “Oracle Jet Developer’s Guide.” [Online]. Available:

https://docs.oracle.com/en/middleware/jet/6.1/develop/in-

dex.html. [Accessed: 18-Jan-2019].

[28] Oracle, “Welcome to Oracle JET.” [Online]. Available:

https://www.oracle.com/webfolder/technetwork/jet/in-

dex.html. [Accessed: 18-Jan-2019].

[29] Oracle, “The Oracle JET Architecture,” JavaScript Exten-

sion Toolkit (JET) Developing Applications with Oracle JET.

[Online]. Available: https://docs.oracle.com/middle-

ware/jet410/jet/developer/GUID-293CB342-196F-4FC3-

AE69-D1226A025FBB.htm#JETDG113. [Accessed: 31-

Jan-2019].

[30] “Building Beautiful UIs with Flutter.” [Online]. Available:

https://codelabs.developers.google.com/codelabs/flutter/#0.

[Accessed: 25-Jan-2019].

[31] “Flutter - Beautiful native apps in record time.” [Online].

Available: https://flutter.io/. [Accessed: 25-Jan-2019].

[32] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design Sci-

ence in Information Systems Research,” MIS Quarterly, vol.

28, no. 1, pp. 75–105, Mar. 2004.

[33] M. E. Joorabchi, A. Mesbah, and P. Kruchten, “Real chal-

lenges in mobile app development,” in Empirical Software

Engineering and Measurement, 2013 ACM/IEEE Interna-

tional Symposium on, 2013, pp. 15–24.

[34] M. Willocx, J. Vossaert, and V. Naessens, “A Quantitative

Assessment of Performance in Mobile App Development

Tools,” in 2015 IEEE International Conference on Mobile

Services, 2015, pp. 454–461.

[35] Flutter, “Dart API docs,” 07-May-2019. [Online]. Available:

https://docs.flutter.io/. [Accessed: 25-Jan-2019].

[36] “Dart Packages,” Dart Packages. [Online]. Available:

https://pub.dartlang.org/. [Accessed: 25-Jan-2019].

[37] C. Rieger and T. A. Majchrzak, “Weighted Evaluation

Framework for Cross-Platform App Development Ap-

proaches,” in Information Systems: Development, Research,

Applications, Education, 2016, pp. 18–39.

[38] Microsoft, “TypeScript is a superset of JavaScript that com-

piles to clean JavaScript output,” 07-Jun-2018. [Online].

Available: https://github.com/Microsoft/TypeScript. [Ac-

cessed: 07-Mar-2018].

[39] Dart, “dart2js: The Dart-to-JavaScript Compiler,” 17-Apr-

2019. [Online]. Available: https://web-

dev.dartlang.org/tools/dart2js. [Accessed: 28-Jan-2019].

[40] Y. Jbanov, “Hummingbird: Building Flutter for the Web,”

Flutter, 04-Dec-2018. [Online]. Available: https://me-

dium.com/flutter-io/hummingbird-building-flutter-for-the-

web-e687c2a023a8. [Accessed: 28-Jan-2019].

[41] M. Martinez and S. Lecomte, “Towards the Quality Improve-

ment of Cross-Platform Mobile Applications,” in 2017

IEEE/ACM 4th International Conference on Mobile Soft-

ware Engineering and Systems (MOBILESoft), Buenos

Aires, Argentina, 2017, pp. 184–188.

