
179

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Constructivist Grounded Theory of Trust in Agile Scrum Teams

Trish O’Connell

School of Science & Computing

Galway-Mayo Institute of Technology

Galway, Ireland

trish.oconnell@gmit.ie

Owen Molloy

Dept. of Information Technology

National University of Ireland

Galway, Ireland

owen.molloy@nuigalway.ie

Abstract— As Scrum is predominantly a team-based activity, it

is consequently an intensely social endeavour. In order to

deliver on the mutually agreed goals of the Sprint, Scrum

teams need to collaborate and share knowledge effectively.

Many authors have cited trust as being crucial to fostering

collaboration and knowledge sharing. However, to date there

has been no published research into this crucial social

construct in the context of agile software development teams.

This paper revisits the conceptual model of trust presented at

SOFTENG 2018 in light of the findings from a preliminary

Constructivist Grounded Theory study conducted on two

Scrum teams in a major multinational software development

company in the West of Ireland.

Keywords-Agile; Scrum; Team; Trust; Collaboration;

Knowledge-sharing; Constructivist Grounded Theory;

I. INTRODUCTION

Agile software development is a “task oriented, social

activity [1].” This is particularly true of Scrum, the

ubiquitous software development framework most closely

associated with Agile. The Agile Manifesto [2] advocates

“business people and developers must work together daily

throughout the project... build projects around motivated

individuals. Give them the environment and support they

need and trust them to get the job done.” In Scrum, this is

accomplished by the Scrum team. The Scrum team is vital

to achieving the goals of the software development

initiative.

As Moe, Dingsøyr and Dybå posit “Software

development depends significantly on team performance, as

does any process that involves human interaction [3].” In

part, this is because, according to Schwaber, “When people

work by themselves, they can achieve great things. When

people work with others, they often achieve synergy, where

the joint effort far exceeds the sum of the individual efforts

[4].” In order to fully achieve synergy team members need

to share knowledge within the team and collaborate to

achieve the goals of the Scrum Sprint, which is the

timeboxed period used to develop a software increment.

Dorairaj, Noble and Malik cite trust as “one of the key

factors [5]” in successful Agile projects. Largely this is

because, “trust has been found to be a critical factor

facilitating collaboration [6].” Tschannen-Moran elucidates,

“collaboration and trust are reciprocal processes; they

depend upon and foster one another [7].” With regard to

knowledge sharing Ghobadi posits “the unique and inherent

characteristics of software development signify the

importance of effective knowledge sharing, referring to the

exchange of task-related information, ideas, know-hows,

and feedback regarding software products and processes

[8].” Butler refers to research conducted by Zand when he

states that “trust leads to the disclosure of information [9].”

Furthermore Zand describes how “persons who trust one

another will provide relevant, comprehensive, accurate, and

timely information, and thereby contribute realistic data for

problem-solving efforts [10].” The study by Fields and

Holste acknowledged the role of trust in a “willingness to

share and use knowledge [11] .”

Whilst trust has often been included in the academic

discourse it has predominantly been through a sociological,

psychological, economic or organizational lens.

Consequently, the findings have been somewhat

incongruous when applied to a software development

context. McKnight and Chervany referred to the lack of

consensus about trust as causing “conceptual confusion

[12].” In this study a preliminary constructivist grounded

theory will be presented which seeks to understand the

construct of trust and how it develops in the Agile Scrum

software development team engaged in the development of

software products.

Section II of this paper presents the background to the

study in terms of knowledge sharing, collaboration and

trust. Section III outlines the research that was conducted

including a breakdown of the study methodology and how it

was implemented. Section IV presents the results of the

research and leads into Section V, where the findings are

presented. Section VI presents a discussion of the results

and leads into Section VII which examines the limitations of

the research. Finally, Section VIII concludes and outlines

the plans for future work.

II. BACKGROUND

According to the co-creators of the Agile Manifesto,

Scrum teamwork is characterised by “intense collaboration

[2].” Tabaka specifically refers to the concept of

collaboration in a software development context, citing as

useful, the sharing of “ideas, information, decisions and

180

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

solutions [13].” The relevance of collaboration to Agile

software development was highlighted by Nerur, Mahapatra

and Mangalaraj who expounded “A cooperative social

process characterized by communication and collaboration

between a community of members who value and trust each

other is critical for the success of agile methodologies [14].”

It is important for the team to work cooperatively to share

information where cooperation, according to Collier

involves the “ smooth transfer of work in progress, work

products, and information from one member to another

[15].” Collaboration, by contrast, “elevates groups beyond

cooperation, adding an essential ingredient for emergent,

innovative, and creative thinking [15].”

Ghobadi and Mathiassen posit, “Software development

is a collaborative process where success depends on

effective knowledge sharing [16].” Thus it may be argued

that knowledge sharing plays a vital part in enhancing the

success of the Sprint. As Ryan and O’Connor assert

“knowledge sharing is a key process in developing software

products [17].”

In order to facilitate collaboration and knowledge

sharing in a Scrum team there is one key ingredient, which

binds the team together, trust. Chen, Lin and Yen state

unequivocally that “trust leads to better inter-organizational

collaboration and knowledge sharing [18].”

A. Knowledge Sharing

Cummings (2004) argues that knowledge sharing within

a group “includes the implicit coordination of expertise …

and information about who knows what in the group [19].”

There are two types of knowledge which are of vital

significance in Scrum teams, explicit knowledge and tacit or

implicit knowledge. The distinction between these two

distinct types of knowledge was highlighted by Nonaka in

1994 when he wrote about the “joint creation of knowledge

[20]” in organizations. Wyatt defines explicit knowledge as

consisting of “of facts, rules, relationships and policies that

can be faithfully codified in paper or electronic form and

shared without need for discussion [21].” Nonaka concurs,

describing that explicit knowledge “refers to knowledge that

is transmittable in formal, systematic language [20].”

By contrast, Nonaka maintains that tacit knowledge is “a

personal quality, which makes it hard to formalize and

communicate. Tacit knowledge is deeply rooted in action,

commitment, and involvement in a specific context [20].”

Chau et al. posit that tacit knowledge includes “system

knowledge, coding convention, design practices, and tool

usage tricks [22] .” The authors argue that “developers tend

not to document this knowledge and it is usually not

explicitly taught through formal training [22].”

From a Scrum team perspective the sharing of both types

of knowledge is crucial to Scrum team performance since as

Levy and Hazzan claim “software development work

requires various forms of explicit as well as implicit

knowledge [23].”

At the outset, in a Scrum team, the Sprint Planning

meeting is the forum where the product backlog is discussed

and negotiated. In general the information is shared

explicitly among the team members. However, when the

Sprint commences it is not unusual for developers to

discover obstacles which are shared with the team at the

Daily Scrum. The sharing of information at the Daily Scrum

is mostly explicit in nature given that the team uses the

meeting as the vehicle to describe what progress has been

made during the previous day; what progress is expected to

be made in the current day and what, if any, blockers are

impeding progress and causing an impasse in the

development.

However, knowledge sharing, whilst vital is not

sufficient on its own for successful software development.

Judy and Krummins-Beens describe how the Agile

Manifesto emphasizes “collaboration among team members

and project sponsors [24].”

B. Collaboration

Tabaka establishes the importance of collaboration by

stating that “when teams declare a collaborative imperative

in their work, it is their pledge to employ consensus-based

decision approaches through participatory decision-making.

They apply high-bandwidth information gathering coupled

with well-formed and well-articulated priorities [13].” The

Agile Manifesto argues strongly for collaboration

advocating “customer collaboration over contract

negotiation [2]” and “developers must work together daily

throughout the project [2].” Fowler and Highsmith contend

that “only through ongoing collaboration can a development

team hope to understand and deliver what the client wants

[25].” Tabaka summarises that collaboration in Agile has

become “an integral component of what would be

considered a responsive, adaptive software development

approach [13].” Chau and Maurer concur, positing software

development is “a collaborative process that needs to bring

together domain expertise with technological skills and

process knowledge [26].”

That Scrum software development is a collaborative

endeavour is undeniable. The Agile Manifesto advocates

strongly for “face-to-face conversation [2].” Paulk argues

that this can best be achieved by having the team members

in close proximity to each other, stating “Agile teams are

expected to be co-located [27].” In Scrum, Deemer et al.

advocate “An excellent practice is for the team to be

collocated [28].” In addition to the informal opportunities

offered by collocation of having team members discuss

ideas and solutions to possible problems the Scrum

framework has a number of events which facilitate

181

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

knowledge sharing and problem solving by providing

opportunities for collaboration.

McHugh, Conboy and Lang cite “sprint/ iteration

planning, daily stand-up, and sprint/iteration retrospective

[29]” as three key practices which require the “collective

participation of all team members with a focus on people,

communication, interaction, and teamwork [29].”

The Sprint planning meeting is the timeboxed meeting

which happens prior to each iteration. It is at this meeting

that the planning for the upcoming Sprint “is created by the

collaborative work of the entire Scrum Team [30].” It is at

this meeting that the Scrum team negotiates a shared

understanding of the work to be completed for the upcoming

Sprint.

The development team uses the Daily Scrum or Daily

Stand-Up as it is often called “to inspect progress toward the

Sprint Goal and to inspect how progress is trending toward

completing the work in the Sprint Backlog. The Daily

Scrum optimizes the probability that the Development Team

will meet the Sprint Goal [30].” The Daily Scrum is the

optimum vehicle for collaboration since it considers what

was accomplished in the previous day of the Sprint. It

explores what will be achieved in the coming day and it

seeks to clarify what, if any, impediments exist to progress.

It is at this point that collaboration comes into its own. If a

team member has a particular obstacle which is causing an

impasse to progress, the team can come together to

brainstorm possible solutions in what Levy and Hazzan

refer to as a “collaborative workspace – a space which

supports and facilitates communication [23].”

In similar vein, the Sprint Retrospective is the forum to

“encourage the Team to revise, within the Scrum process

framework, its development process to make it more

effective and enjoyable for the next Sprint [31].”

C. Trust in the Academic Discourse

Mach, Dolan and Tzafrir argue, “trust is an integral part

of teamwork because team tasks require a high level of

interdependence between members [32].” Furthermore,

Sandy Staples and Webster postulate, “team members must

rely on each other and share required knowledge with

others. If sharing does not happen within the team, it is

unlikely to meet its objectives [33].”

As previously stated, the literature on trust examines it

from a number of different perspectives. Consequently the

result is highly fragmented and unintegrated when it comes

to applying it to the Scrum team context. Nevertheless, it is

possible to take some generalities from the extant research

into trust.

Sociologists have often seen trust as a type of mystical

‘faith’ that one person has in another. Simmel in 1950

wrote “confidence is intermediate between knowledge and

ignorance about a man. The person who knows completely

need not trust [34].” Giddens would appear to concur

advocating “There would be no need to trust anyone whose

activities were continually visible and whose thought

processes were transparent [35].” It is likely that from a

psychological viewpoint these sociologists were referring to

trusters having a “propensity to trust” or “trusting

disposition” as referred to by Rotter [36] and McKnight and

Chervany [12].

The notion of expectancy or expectation is often

synonymous with trust in the literature. Largely this notion

emanates from the realm of social psychology. Deutsch

offers as a definition of trust that “Person I trusts Person II

to do something and I perceives that the behavior he

expects of Person II is perceived by II to have relevance to I

[37].” Barber concurs with Deutsch acknowledging that

trust is “a dimension of all social relationships [38].” In his

seminal volume The Logic and Limits of Trust he describes

how actors in social relationships have “expectations” of

each other [38]. Given that expectation has the connotation

of often being reciprocated, Deutsch associated trust with a

“reciprocal, cooperative relationship between people who

make the decision to trust [1].” Additionally Deutsch

introduced the notion of ‘competence’ being involved in

the fulfilment of expectations. One can only meet

someone’s expectations, if one has the competence to so do.

Gabarro added to Deutsch’s notion of competence and

included “openness about task problems [39].” Openness,

“freely sharing ideas and information [40],” and integrity,

“honesty and truthfulness [40],” were also cited by Butler

and Cantrell who listed these as conditions of trust.

Assuming that we trust people that we know better than

those we do not know Luhmann contended that familiarity

should also be seen as the “prerequisite for trust [41].”

Whilst initially Mayer [42] and Mishra [6] perceived

trust as a willingness to accept vulnerability, Mayer

described this willingness as largely cognitive. That this

cognitive based trust should eventually develop affective or

emotional overtones was postulated by McAllister who

described “affect based trust [43].” This view was

advocated also by Lewicki and Bunker who described

initial trust as being “calculus based [44].” To clarify,

calculus based trust is arrived at in a stepwise process with

each trusting endeavour being used as the basis for the next

level. In this sense it is described as “tactical climbing

[44].” From this cognitive position Lewicki and Bunker

then describe “knowledge based” trust as relying on

“information rather than deterrence. The better we know the

other individual, the more accurately we can predict what

he or she will do [44].” The authors also described

“identification based” trust in which a “collective identity

develops [44].”

Thus, it would seem that the academic discourse

presents trust as initially cognitive in that one makes a

judgement call on whether to trust, and if expectations are

fulfilled, this calculative trust can develop into an emotional

182

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

connection with the person being trusted into a deeper

bond of genuine affect where both the trustee and the

truster have “fully internalized the other's preferences [45].”

D. The Scrum Team

Katzenbach and Smith define a team as “a small number

of people with complementary skills who are committed to

a common purpose, set of performance goals, and approach

for which they hold themselves mutually accountable [46].”

According to Schwaber and Sutherland, the co-creators of

the Scrum framework, Scrum teams should be “small

enough to remain nimble and large enough to complete

significant work within a Sprint [47].” Three to nine team

members is regarded as being optimal. In terms of

complementary skills Scrum team members, viewed as an

entity, tend to possess “technical expertise (knowledge

about a specialized technical area), (2) design expertise

(knowledge about software design principles and

architecture), and (3) domain expertise (knowledge about

the application domain area and client operations) [48].”

In addition Katzenbach and Smith advocate the need for

“problem-solving and decision-making skills, and

interpersonal skills [46].”

The common purpose element of the team definition

contributed by Katzenbach and Smith is unquestionable. By

its very design Scrum teams collaborate to achieve Sprint

goals. As Moe, Dingsøyr and Dybå explain “In a software

team, the members are jointly responsible for the end

product and must develop shared mental models by

negotiating shared understandings about both the teamwork

and the task. Project goals, system requirements, project

plans, project risks, individual responsibilities, and project

status must be visible and understood by all parties

involved [49].”

Similarly, mutual accountability in Scrum is de rigeur

given the requirement to account for progress at the Daily

Scrum meeting. Cervone explains “the purpose of the daily

Scrum is to both track the progress of the team as well as

allow team members to make commitments to each other

and the Scrum Master so that work can proceed in the most

expedient and unimpeded manner.” McHugh,Conboy and

Lang concur that the Daily Scrum meeting “provides

transparency and visibility on the day-to-day progression of

tasks [29].”

E. Trust in the Scrum Team

Having examined trust in isolation in the academic

discourse and furthermore having introduced the Scrum

team as the vehicle for collaboration and knowledge

sharing and collaboration it is somewhat surprising that no

published studies appear to have “examined trust in an agile

context [29].” Consequently, what follows is an attempt to

synthesize the extant literature with a view to applying it to

a Scrum team. Figure 1 represents a first stage conceptual

model of trust in a Scrum team.

1) Perception

Whilst perception does not really appear in the literature

on trust the authors contend that in any team scenario,

perception may well play a role. An individual who is new

to a team will most likely be subject to a degree of initial

judgement. Based on how they are initially perceived the

calculus based trust will enhance or detract from their

position.

2) Reputation

Some authors [29] contend that reputation is involved in

the trust construct. Undoubtedly, a team member’s

reputation for delivering on their commitments plays a part

in whether or not they can be trusted to deliver on their next

commitment. This too must surely play a part in the

decision to trust or calculus based trust scenario.

3) Integrity

As a team member becomes enmeshed in the Scrum

team their integrity and credibility is often tested by other

team members. Insofar as a team member does what s/he

says s/he will do, integrity is strengthened in the calculative

decision to trust.

4) Competence

As shown in Figure 1 the first four conditions for trust,

as described above function to enhance the positive

reinforcing feedback loop that is calculus based trust. In

other words, as a team member demonstrates integrity or

competence, for example, the trust in them grows. This

allows the relationship to transition to knowledge based

trust in which familiarity and openness themselves function

as positive feedback loops as described below.

5) Familiarity

As the team members spend time together they come to

know each other better; a good rapport is established and

the relationships within the team can move past the

calculus-based, cognitive decision to trust to a more affect-

based knowledge of the other. It is at this stage that the

team has really bonded. As Santos et al. describe “Agile

values and principles foster changes in team members’

attitudes and strengthen their relationships [50].”

6) Openness

Largely as a consequence of an increase in familiarity

the team members should become more open with each

other. As Zand described in Section I, “persons who trust

one another will provide relevant, comprehensive, accurate,

and timely information, and thereby contribute realistic data

for problem-solving efforts [10].” This happens directly as

a result of the openness in the team.

Once this reinforcing loop has begun it is argued that

the team members come to identify with each other’s goals

and the goals for the Sprint itself. At this stage the calculus

based trust has been sidelined in favor of affective bonds

within the team.

183

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

7) Reciprocity

Once familiarity has become embedded in the team

DeVries et al. describe “a cycle of reciprocity, in which

team members are more likely to exchange (i.e., both

donate and collect) knowledge with each other [51]”

becomes the norm.

This again would appear to be a reinforcing loop since

as the team bonds the emotional ties become stronger and

team members are more likely, and willing, to help each

other.

It should be noted, however, that this is a conceptual

model of trust within the Scrum team. With a view to

understanding the construct of trust in the Scrum team and

how it develops in the Agile Scrum software development

team engaged in the development of software products the

research study that was undertaken will now be described.

III. THE RESEARCH

As this research involves the construct of trust, which

does not well suit quantitative analysis it would be more

usual for social science topics such as trust to fall into the

realm of qualitative data. Johnson and Onwuegbuzie outline

the strengths of qualitative research as “The data are based

on the participants’ own categories of meaning [52].”

Since this research is quite unequivocally involved in

the perceptions and feelings of the Agile team members

who will be interviewed the ontological perspective of this

study must be subjective. In terms of the epistemology that

underpins this research the constructivist epistemology

(also referred to in the literature as Interpretivist) asserts,

“social phenomena and their meanings are continually

being accomplished by social actors. It implies that social

phenomena are not only produced through social interaction

Figure 1. Conceptual Model of trust in a Scrum Team

184

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

but are in a constant state of revision [53].” According to

Vanson, the interpretivist approach “suggests that facts are

based on perception rather than objective truth. With this

approach, the conclusions are derived from the

interpretations of the participants rather than the abstract

theories of the researcher [54].”

Thus, it is intended to use a constructivist grounded

theory approach to this research with the intent of gathering

the views, perspectives and feelings of the members of a

purposive sample of Agile software development teams

from a selection of different industries with a view to

generating a theory of how trust is developed and serves to

enhance collaboration in Agile teams.

It is hoped that using this inductive approach this study

will in some way contribute to understanding the construct

of trust enhancing team performance in Agile software

development teams.

Grounded theory was initially conceived by Glaser and

Strauss as a polemic against the logico-deductive method of

generating a theory whereby new knowledge (theory)

follows from old knowledge through the application of

research hypotheses and sound arguments that verify these

new theories. Glaser and Strauss, by contrast, argued against

data collection being influenced by pre-conceived

hypotheses. Rather, “systematic data collection and analysis

should lead into theory [55].” However, whilst Glaser and

Strauss adopted an ontologically positivist approach

Charmaz [56], by contrast advocates an interpretivist

approach to the process acknowledging “subjectivity and

the researcher’s involvement in the construction and

interpretation of data [56].” Since trust is socially

constructed the study will adopt the Constructivist

Grounded theory (CGT) method as described by Charmaz.

In CGT the researcher must obtain “rich data [56]” from

interviews with participants. Rich data refers to collecting

data which fully addresses the complexities and depth of the

topic under study. The data is then analysed, initially using

what is termed “initial coding [56]” where each sentence is

fractured and analysed for meaning. Through the process of

constant comparison the open codes eventually build into

focused codes which are basically at a higher level of

abstraction. Eventually the theory emerges from the data as

codes are elevated to categories.

With a view to ensuring that the codes fully describe the

emerging theory a process known as theoretical sampling is

used to elaborate and refine the newly-constructed

categories. This is achieved by continuing to sample until no

new categories emerge.

In order to conduct this study purposive sampling was

used to contact software development companies that use

Scrum as their development methodology. Purposive

sampling [57] is a type of focused sampling and in this case

an organization known to use Scrum was approached and

permission was sought to conduct the research. The

company has a number of onsite Scrum teams and given the

logistical issues, viz team availability, participant workload

etc. we were able to interview participants from two of the

local onsite teams as shown in Table I.

TABLE I. TEAM COMPOSITION AND ROLES

In-depth interviews were conducted with all of the

participants with a view to eliciting what Charmaz refers to

as ‘rich data’ [56]. The interviews lasted from 30 minutes

to 50 minutes. Each interview was audio recorded and

transcribed. With a view to ensuring that all of the nuances

and subtleties were captured by the author, as illustrated in

Figure 2, the transcribed interviews were subsequently

returned to the participants for verification.

 Figure 2. The Constructivist Grounded Theory process

Participant
Team A

Participant
Team B

P#1
Scrum
Master P#6

Scrum
Master

P#2
Product
Owner P#7

Product
Owner

P#3 Developer P#8 Developer

P#4 Developer P#9 Developer

P#5 Developer P#10 Developer

 P#11 Developer

Memoing

Purposive sampling to identify
participant organisations

Data collection via interviews

Transcription & verification by
participants

Initial coding

Focused coding

Elevating focused codes to
categories

Theoretical sampling

Building theory

185

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Subsequent to gathering background data and obtaining

consent for audio recording from each participant, the

interviews focused initially on collaboration and then moved

on to describing how trust is established in the Scrum teams.

Following the interviews, the researcher, in accordance with

the established constructivist grounded theory methodology,

transcribed the interviews. Additionally, memos detailing

ideas and refinements that, it was hoped, would advance

theoretical understanding were written. It is, perhaps,

noteworthy that interviews were largely unstructured but

participants who were not naturally loquacious were

prompted in a semi-structured manner for their response to

topics that had been of interest in a prior interview with a

previous interviewee.

IV. RESULTS

In keeping with the tenets of Constructivist Grounded

Theory the transcribed interviews were uploaded into a

qualitative analysis software package. MAXQDA was

chosen for its intuitive easy to use interface. Transcribed

interviews can be stored, analysed and coded in MAXQDA.

Once participants interviews were transcribed and validated

the process of initial coding began. This is where each line

of the participants’ transcription was analysed with a view

to encapsulating the meaning in a code which essentially

describes what the segment of text is about.

Ideally the codes are gerunds which describe actions

e.g., “removing ego” [P#9] which is depicted in Figure 3.

On the right hand side, highlighted in yellow, is the

fragment of what was said by the participant. On the left, in

blue font, is the code that was used to encapsulate what it

was felt the participant meant. Similarly the code ‘helping

each other’ on the left hand side is associated with the

fragment of the interview on the right hand side where the

participant commented that “if somebody needs help you

will help them.”

Once the interview was coded, subsequent interviews

were analysed in a similar manner and compared to each

other. Constant comparison is a key strategy used in

grounded theory where each piece of elicited data is

compared to other pieces of data by the researcher to

identify and highlight similarities and differences in the

participants’ experiences.

MAXQDA was helpful in facilitating this process as

codes assigned from previous transcripts were available to

view in a portion of the window as shown in Figure 4. On

the right of Figure 4 is an interview displaying codes.
This facilitated what Charmaz refers to as “focused

coding” [56] where codes are analysed to advance the

theoretical direction of the study. Charmaz describes these

codes as more conceptual than the initial coding.

Figure 3. Coding fragment from Interview with P#9

Figure 4. MAXQDA Window depicting codes and coding

186

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Finally, the focused codes were raised to conceptual

categories which, when integrated, addressed the question of

how trust is fostered and developed in Scrum teams. It is at

this stage that we had to co-construct the meaning with the

participants. Central to Constructivist Grounded Theory the

researcher brings their own experience into the analysis to

help make sense of the focused codes. Figure 5 depicts an

example of how the codes emerge as categories.

V. FINDINGS

Whilst this research is still ongoing it is nevertheless

believed useful to present the initial key findings.

For successful knowledge sharing and collaboration to

exist in Scrum teams, such as the ones investigated in this

study, various factors must be in place to promote inter-

team trust.

A. Commitment to the Sprint goal

During the Sprint planning meeting the team reaches a

consensus about the Product backlog. This dictates the plan

of what will be achieved in the upcoming Sprint, who will

undertake it and how long it is estimated to take. That the

teams are working towards a common goal for their team

Sprints is evidenced by:

 “We are all focused in around a common goal, and a

common vision of what we are doing, and the guys buy into

that.” P#1, Scrum master.

Commitment to a common goal is of significant

importance as Badke-Schaub et al. state “Team performance

can benefit from shared mental models in situations with a

high need of information exchange in the team [56].”

Figure 5. Emerging categories from codes

187

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Having integrity

As a team member being honest and transparent with

team mates is a key requirement to foster trust. It is

important that:

“they do what they say, not what you say” P#3, Developer.

Another participant highlighted the importance of:

“If they say they are going to do something, they do it or

they put their hand up and say that didn’t get done today

we’ll get it tomorrow.” P#7, Developer.

“You could have saved us a lot of hassle and it would have

made for a lot simpler conversations if you had just

gone ahead and done what we had advised you to do in the

first place.” P#1, Scrum Master

C. Openness and Honesty

Openness and honesty are a crucial component of the

Scrum teams’ ability to move the project forward as

evidenced by:

“I have never heard anybody come in and lie at the stand-

up, you know, to say, oh, yeah, I am doing great, when they

are not.” P#5, Product Owner,

The participants agreed that delivering on what has been

committed at the Daily Stand up is the final arbiter of

success:

“There are a lot of people who talk but it doesn’t prove

anything really until it is actually done.” P#8, Developer.

D. Familiarity with team members

There was unanimity that having friendly relations with

one’s team mates improved trust and thus enhanced

knowledge sharing and collaboration:

“The more familiar you are with people and the friendlier

you get with them, the easier it is to work with them and

have those informal conversations.” P#9, Developer.

“You would be sitting together at lunchtimes and you would

be chatting about this and that and the rest of it.” P#7,

Product Owner.

“I know them all fairly well on a personal level outside of

work. We wouldn’t meet too much outside of work like, but

talk at breaks, etc.” P#4, Developer.

In fact, some members of the team seemed to know each

other so well that:

“You know the name of the kids, you know, more or less

when the birthday of the kids are, and that, kind of

thing.”P#2, Developer.

And from another team member:

 “I would see Joe in here every day. His wife bought my

car.” P#3, Developer.

To sum up:

 “Outside of work I would say that team members would

know each other socially, in either their kids going to Clubs

or sporting things.” P#1, Scrum Master.

E. Seeking and Accepting Help

It was somewhat surprising that one of the key findings

from the study was the importance of team members being

able to both ask for and accept help from their peers.

“it is okay to not be able to do something straight away like

you can ask your Team-mates and you will eventually get it

done” P#8, Developer.

“When the team is working well everyone is prepared to say

I do not know how to do this today but give me a day and

I’ll find out who is really good at it and they will help me.”

P#7, Developer.

“If you see someone has any problem or any concern, or

they, even any, kind of, questions that you have, we are

really not scared to ask them.” P#2, Developer.

Perhaps the rationale for this came from the developer

who commented

“Definitely, on our Team, people are motivated by

delivering a good product and delivering what they say they

will deliver. That is our primary motivation and we are

willing to help each other. There is no selfishness in it.”

P#9, Developer.

This lack of selfishness and team spirit was encapsulated

by the Scrum master who stated

“We are not an individual, we are a group here, we have to

fight this battle” and

“We are all in this or none of us are in it.” P#1, Scrum

Master.

F. Competence

It was expected that competence would feature

prominently in the interviews but surprisingly this did not

appear to be the case. Rather there was an acceptance that

“I think that with time enough everybody can be competent”

P#2, Product Owner.

There appeared to be a recognition that

“You have to accept that everyone has different levels of

abilities.” P#4, Developer and

188

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

“Some people within the team could have competence in

certain areas and would have lower competence in other

areas.” P#1, Scrum master.

VI. DISCUSSION

It woud appear from the research that the conceptual

model as illustrated in Figure 1 came very close to

accounting for the empirical findings. However, the use of

CGT was not intended to validate the model. The strength of

CGT in this study lies in exploring the participants’ view of

trust within their Scrum teams. CGT builds the theory out

of the ‘rich data’ collected from the participants’ own

experience.

 Whilst integrity, openness and familiarity featured

strongly throughout the interviews it would appear that

perception and reputation do not appear to matter unduly. It

might be argued that the category of seeking and accepting

help are components of reciprocity but there is a degree of

limitation in this as reciprocity has a two way connotation

whilst asking for and accepting help tends to only benefit

the team member who has requested the help.

Competence really did not seem to be as crucial to

building trust as had been expected. The emphasis appeared

to be more on the willingness to learn.

There was unanimity throughtout all of the interviews in the

team unifying behind the Sprint goal and this resonates with

the shared mental model as mentioned in Section II D.

The literature refers to a stepwise calculative approach to

building trust. Lewicki and Bunker describe how

“achievement of trust at one level enables the development

of trust at the next level [44].” This appears to be the

approach taken in the company we worked with. New team

members are firstly invited to pair with a more experienced

developer and tasks are worked on jointly. After a period of

time (which largely depends on the new team member) an

individual task is assigned and the experienced developer

steps back but is still available to mentor on an as needs

basis. As this happens the new team member is becoming

known to the team, familiarity and integrity are established.

Once the new team member has become embedded in the

team s/he begins to fully identify with the team, knowledge

sharing and collaboration are enhanced and the teams’ goals

for the Sprint are met.

VII. LIMITATIONS

The key limitation is that the research is not yet

concluded. Thus what is presented is a snapshot which

pertains to two collocated Scrum teams in a single

multinational. Consequently, at this stage the findings are in

no way generalizable.

VIII. CONCLUSION AND FUTURE WORK

Although this study forms the first of what is intended to

be part of several similar studies carried out as part of our

research on trust in Scrum teams in various Irish software

development organizations the findings are nevertheless

considered to be significant in that they represent the

findings from a large successful software development

multinational company based in the West of Ireland.

In terms of future work the research is ongoing in other

multinationals. It is hoped that from this work the body of

knowledge regarding the development of trust in co-located

Scrum teams will be enlarged.

REFERENCES

[1] T. O’Connell and O. Molloy, “The Antecedents and

Feedback Loops Contributing to Trust in Agile Scrum

Teams,” in SOFTENG 2018, 2018, pp. 16–23.

[2] J. Beck, K., Beedle, M., Van Bennekum, A., Cockburn,

A., Cunningham, W., Fowler, M., Grenning, J.,

Highsmith, J., Hunt, A., Jeffries, R. and Kern, “Manifesto

for agile software development,” 2001.

[3] N. B. Moe, T. Dingsøyr, and T. Dybå, “A teamwork

model for understanding an agile team: A case study of a

Scrum project,” Inf. Softw. Technol., vol. 52, no. 5, pp.

480–491, May 2010.

[4] K. Schwaber, Agile Project Management with Scrum.

2004.

[5] S. Dorairaj, J. Noble, and P. Malik, “Understanding the

Importance of Trust in Distributed Agile Projects: A

Practical Perspective,” in Understanding the Importance

of Trust in Distributed Agile Projects: A Practical

Perspective in: Sillitti A., Martin A., Wang X., Whitworth

E. (eds) Agile Processes in Software Engineering and

Extreme Programming. XP 2010. Lecture Notes in

Business Information Processing, vol. 48, pp. 172–177.

Springer, Berlin, Heidelberg.

[6] A. K. Mishra, “Organizational Responses to Crisis: The

Centrality of Trust,” in: Kramer, R, Tyler,T. (eds)Trust in

Organizations: Frontiers in Theory and Research, 1996,

pp. 261–287.

[7] M. Tschannen‐Moran, “Collaboration and the need for

trust,” ournal Educ. Adm., vol. 39, no. 4, pp. 308–331,

2001.

[8] S. Ghobadi, “What drives knowledge sharing in software

development teams: A literature review and classification

framework,” Inf. Manag., vol. 52, pp. 82–97, 2015.

[9] J. K. Butler, “Toward Understanding and Measuring

Conditions of Trust: Evolution of a Condit Toward

Understanding and Measuring Conditions of Trust:

Evolution of a Conditions of Trust Inventory,” J.

Manage., vol. 17, no. 3, pp. 643–663, 1991.

189

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[10] D. E. Zand, “Trust and Managerial Problem Solving,”

Adm. Sci. Q., pp. 229–239, 1972.

[11] D. Fields and J. S. Holste, “Trust and tacit knowledge

sharing and use,” Artic. J. Knowl. Manag., 2010.

[12] D. H. McKnight and N. L. Chervany, “The meanings of

trust.,” 1996.

[13] J. Tabaka, Collaboration Explained: Facilitation Skills for

Software Project Leaders, Pearson, 2006.

[14] S. Nerur, R. Mahapatra, and G. Mangalaraj, “Challenges

of Migrating to Agile Methodologies,” Commun. ACM

May Commun. ACM, vol. 48, no. 5, 2005.

[15] K. Collier, Agile analytics: A value-driven approach to

business intelligence and data warehousing, Addison-

Wesley, 2012.

[16] S. Ghobadi and K. Mathiassen, “Perceived Barriers to

Effective Knowledge Sharing in Agile Software Teams,”

Information Syst., vol. 26, no. 2, pp. 95–125, 2016.

[17] S. Ryan and R. V. O’Connor, “Acquiring and Sharing

tacit knowledge in software development teams: An

empirical study,” Inf. Softw. Technol., vol. 55, no. 9, pp.

1614–1624, 2013.

[18] Y.-H. Chen, T.-P. Lin, and D. C. Yen, “How to facilitate

inter-organizational knowledge sharing: The impact of

trust,” Information Management, vol 51, no 5, 2014.

[19] J. N. Cummings, “Work Groups, Structural Diversity, and

Knowledge Sharing in a Global Organization,” Manage.

Sci., vol. 50, no. 3, pp. 352–364, 2004.

[20] I. Nonaka, “A Dynamic Theory of Organizational

Knowledge Creation,” Organ.. Sci., vol. 5, no. 1, pp. 14–

37, 1994.

[21] J. C. Wyatt, “Management of explicit and tacit

knowledge,” Journal of the Royal Society of Medicine, vol

94, no. 1, pp. 6-9, 2001.

[22] T. Chau, F. Maurer, and G. Melnik, “Knowledge sharing:

Agile methods vs. Tayloristic methods,” in Proceedings

of the Workshop on Enabling Technologies:

Infrastructure for Collaborative Enterprises, WETICE,

2003, vol. 2003–Jan., pp. 302–307.

[23] M. Levy and O. Hazzan, “Knowledge management in

practice: The case of agile software development,” in

2009 ICSE Workshop on Cooperative and Human Aspects

on Software Engineering, pp. 60–65, 2009.

[24] K. H. Judy and I. Krumins-Beens, “Great Scrums Need

Great Product Owners: Unbounded Collaboration and

Collective Product Ownership,” in 41st Hawaii

International Conference on System Sciences, pp. 1-10,

2008.

[25] M. Fowler and J. Highsmith, “The Agile Manifesto,”

Softw. Dev., vol. 9, no. 8, pp. 28–35, 2001.

[26] T. Chau and F. Maurer, “Knowledge Sharing in Agile

Software Teams,” in Logic vs. Approximation 2004, pp.

173–183. Springer, Berlin, Heidelberg.

[27] M. C. Paulk, “Agile methodologies and process

discipline,” Crosstalk, 2002.

[28] P. Deemer, N. K. V. Hazarati, and G. Benefield, The

Distributed Scrum Guide. 2013.

[29] O. McHugh, K. Conboy, and M. Lang, “Agile Practices:

The Impact on Trust in Software Project Teams,” IEEE

Softw., vol. 29, no. 3, pp. 71–76, 2012.

[30] K. Schwaber and J. Sutherland, The Scrum Guide. The

definitive guide to scrum: The rules of the game.

Scrum.org 268, 2013.

[31] A. Sofia, C. Marçal, B. Celso, C. De Freitas, F. S. Furtado

Soares, and A. D. Belchior, “Mapping CMMI Project

Management Process Areas to SCRUM Practices,” in 31st

Software Engineering Worklshop, 2007, pp. 13–22.

[32] M. Mach, S. Dolan, and S. Tzafrir, “The differential effect

of team members’ trust on team performance: The

mediation role of team cohesion,” ournal Occup. Organ.

Psychol., vol. 83, pp. 771–794, 2010.

[33] D. Sandy Staples and J. Webster, “UKISJ Information

Systems,” Authors; J. Compil. ©, vol. 18, pp. 617–640,

2008.

[34] G. Simmel, The sociology of Georg Simmel. Free Press of

Glencoe, 1950.

[35] A. Giddens, The Consequences of Modernity Anthony

Giddens. 1990.

[36] J. B. Rotter, “A new scale for the measurement of

interpersonal trust,” J. Pers., vol. 35, no. 4, pp. 651–665,

Dec. 1967.

[37] M. Deutsch, “Conditions Affecting Cooperation Final

Technical |Report for the Office of Naval Research

Contract NONR- 285,” 1957.

[38] B. Barber, The Logic and Limits of Trust. 1983.

[39] J.J. Gabarro, “The development of trust, influence and

expectations,” Interpers. Behav. Commun. Underst.

relationships, pp. 290–303, 1978.

[40] J. K. Butler and R. S. Cantrell, “Communication Factors

and Trust: An Exploratory Study,” Psychol. Rep., vol. 74,

no. 1, pp. 33–34, Feb. 1994.

[41] N. Luhmann, “Familiarity, Confidence, Trust: Problems

and Alternatives,” in Trust: Making and Breaking

Cooperative Relations, 2000, pp. 94–107.

[42] R. C. Mayer, J. H. Davis, F. D. Schoorman, and F. David

Schoorman, “An Integrative Model of Organizational

Trust,” Acad. Manag. Rev., vol. 20, no. 3, pp. 709–734,

1995.

[43] D. J. McAllister, “Affect-and Cognition-Based Trust

Formations for Interpersonal Cooperation in

190

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Organizations,” Artic. Acad. Manag. J., vol. 38, no. 1, pp.

24–59, 1995.

[44] R. J. Lewicki and B. B. Bunker, “Trust in relationships: A

model of development and decline,” in The Jossey-Bass

conflict resolution series. Conflict, cooperation, and

justice: Essays inspired by the work of Morton Deutsch,

1995.

[45] D. . Shapiro, B. H. Sheppard, and L. Cheraskin, “Business

on a Handshake,” Negot. J., vol. 8, no. 4, pp. 365–377,

1992.

[46] J. R. Katzenbach and D. K. Smith, “The Discipline of

Teams Harvard Business Review,” 1991.

[47] K. Schwaber and J. Sutherland, “The Scrum GuideTM The

Definitive Guide to Scrum: The Rules of the Game,”

2017.

[48] L. Faraj, S. & Sproull, “Coordinating Expertise in

Software Development Teams,” Manage. Sci., vol. 46, no.

12, pp. 1554–1568, 2000.

[49] N. B. Moe, T. Dingsøyr, and T. Dybå, “A teamwork

model for understanding an agile team: A case study of a

Scrum project,” Inf. Softw. Technol., vol. 52, no. 5, pp.

480–491, May 2010.

[50] J. L. Guedes dos Santos et al., “Methodological

perspectives in the use of grounded theory in nursing and

health research,” Esc. Anna Nery - Rev. Enferm., vol. 20,

no. 3, 2016.

[51] R. E. De Vries, B. Van Den Hooff, and J. A. De Ridder,

“Explaining Knowledge Sharing,” Communic. Res., vol.

33, no. 2, pp. 115–135, 2010.

[52] R. Johnson, A. Onwuegbuzie, and L. Turner, “Toward a

Definition of Mixed Methods Research,” J. Mix. Methods

Res., vol. 1, pp. 112–133, 2007.

[53] A. Bryman and E. Bell, Business research methods. 2015.

[54] S. Vanson, “What on earth are Ontology and

Epistemology? - The Performance Solution,” What on

earth are Ontology and Epistemology?, 2014. [Online].

Available: https://theperformancesolution.com/earth-

ontology-epistemology/. [Accessed: 14-Feb-2019].

[55] D. Ezzy, Qualitative Analysis. Routledge, 2013.

[56] K. Charmaz, Constructing grounded theory. 2014.

[57] P. Nardi, Doing survey research : a guide to quantitative

methods. Pearson/Allyn & Bacon, 2003.

 [58] P. Badke-Schaub, A. Neumann, K. Lauche, and S.

Mohammed, “Mental models in design teams: a valid

approach to performance in design collaboration?,”

CoDesign, vol. 3, no. 1, pp. 5–20, Mar. 2007.

