
311

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Context-aware Storage and Retrieval of Digital Content
Database Model and Schema Considerations for Content Persistence

Hans-Werner Sehring
Namics

Hamburg, Germany
e-mail: hans-werner.sehring@namics.com

Abstract—In increasingly many information systems that
publish digital content, the documents that are generated for
publication are tailored for and delivered to users working in
different and varying contexts. To this end, the content from
which an actual document is created is dynamically selected
with respect to a specific context. The task of content selection
incorporates queries to an underlying database that hosts data
representing content. Such queries are parameterized with a
description of the context at hand. This is particularly true for
content management applications, e.g., for websites that are
targeted at a user’s context. The notion of context comprises
various dimensions of parameters like language, location, time,
user, and user’s device. Most data modeling languages,
including programming languages, are not well prepared to
cope with variants of content, though. They are designed to
manage universal, consistent, and complete sets of data. The
Minimalistic Meta Modeling Language (M3L) can be applied as
a language for content representation. M3L has proven
particularly useful for modeling content in context. Towards an
operational M3L execution environment, we are researching
mappings to databases of different data models, and for each
data model schemas to efficiently store and utilize M3L models.
This article discusses such schemas for context-aware data
representation and retrieval. The main focus lies on efficiency of
queries used for M3L evaluation with the goal of context-
dependent content selection. This is achieved by expressing
context-aware models, in particular M3L statements, by means
of existing persistence technology.

Keywords-data modeling; data schema; databases; content
modeling; context-aware data modeling; content; content
management; content management systems; context.

I. INTRODUCTION
In many information systems, e.g., web-based ones, data

represents content to be incorporated into documents that are
generated on purpose. More often than not content is required
to be queried dynamically on document access, calling for
adequate content storage and retrieval. First studies on such
content persistence have been reported [1]. This article
extends the report on the current state of these database
schema investigations.

In the digital society [2], data is required to represent all
kinds of content, ranging from structured content of text
documents to unstructured, typically binary representations of

video and audio content. Content is used for many purposes,
the most obvious ones being information and commerce.
Content is published by means of documents, often
multimedia documents incorporating different media that are
interrelated to form hypermedia networks. So-called
publication channels offer the medium for one kind of
publication, e.g., a website, a document file, or a mobile app.
Content is typically represented in a channel-agnostic way in
order to support multi- or even omni-channel publishing.

It is quite common to deliver content to users in a way that
addresses the context in which they are when requesting the
content. This may include the channel they are using, the
working mode they are in, the history of previous usage
scenarios, etc. Targeting content to users’ contexts can range
from simply arranging content in a specific way, over
specifically assembled documents, to content that is
synthesized for the current requests. Examples are a
prominent display of teasers for content that is assumed to be
of interest to the user, the production of documents matching
a user’s native language, adjustment of document quality
based on the current network bandwidth and the receiving
device, and creating content that represents some base data in
knowledgeable form.

For such content targeting scenarios, data needs to be
stored in a way that allows generating different views on the
content, mainly by selecting content relevant in a certain
context. Data representing all forms of content in such a
system, therefore, needs to be attributed with the contexts in
which it is applicable or preferred. Obviously, some notion of
context is required for such representations [3].

Data modeling and programming languages typically do
not exhibit features to represent context and to include it in
evaluations. Database management systems, being the
backbone of practically every information system, are
particularly optimized for one connected set of data that is
supposed to be consistent and complete. This means that they
are not well equipped for dynamic content production, neither
regarding content representation nor efficient context-
dependent retrieval.

Data retrieval needs particular attention when content is
dynamically assembled depending on some context in which
it is requested. For the tasks of context-aware content
management, complex collections of data to be used as
content are requested frequently. A context-aware schema has

312

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to efficiently support the underlying queries that are employed
to identify relevant content.

For the discussion of data models, we consider content in
contexts as it is expressible using the Minimalistic Meta
Modeling Language (M3L). This language allows expressing
content in a straightforward way. Being a modeling language,
there is no obvious mapping to established data structures,
though.

The rest of this paper is organized as follows. Section II
reviews related work in the area of context-aware data and
content models. Sections III and IV give a brief overview over
the M3L and describe those parts of the language that are
required for the discussion in this paper. Section III describes
the static aspects of the M3L used to define application
models. Section IV focuses on the dynamic evaluation of such
models. The architecture of a current M3L implementation is
discussed in Section V in order to clarify the scope of M3L
persistence. Section VI presents a first conceptual model of an
internal representation of M3L concepts. Section VII makes
this model more concrete by means of logical representations,
comparable to the logical view on databases. Aspects of M3L
persistence implementations based on different data models
are touched in Section VIII. The conclusion and
acknowledgment close the paper in Section IX.

II. RELATED WORK
Context is important in the area of content management,

but also in other modeling domains. This section names some
existing modeling approaches to contextual information.

A. Content Management Products
Most commercial content management products have

introduced some notion of context in their models and
processes. They utilize context information to target content
to users. Some use the term personalization, which is similar
to, but different from contextualization [4].

In most cases, there are publication rules associated with
content, similar as discussed in [5]. These rules are based on
so-called segments. Every user is assigned one or more
segments. When requesting content, the rules are evaluated
for the actual segment(s) in order to select suitable content.

Content authors and editors maintain the content rules.
Segments are assigned to users automatically by the systems
based on the users’ behavior (user interactions), the user
journey (e.g., previously visited sites and search terms used
for finding the current website), and context information (e.g.,
device used and location of the user).

Segments offer a rather universal notion of context, though
there is no explicit context model.

B. Context-aware Data Models
Parallel to the notion of context used for content, there

exists some work on the influence of environments on running
applications. In mobile usage scenarios, context refers mainly
to such environmental considerations, e.g., network
availability, network bandwidth, device, or location.

Context changes are incorporated dynamically into
evaluations in these scenarios [6].

Context-awareness is not limited to data models. It is also
used for adaptable or adaptive software systems, e.g., to map
software configurations to execution environments [7], or to
control the behavior of a generic solution [8].

C. Concept-oriented Content Management
Concept-oriented Content Management (CCM) [9] is an

approach to manage content reflecting knowledge. Such
content does not represent simple facts, but instead is subject
to interpretation. Furthermore, the history of things is
described by content, not just their latest state.

CCM is not directly concerned about modeling context.
Instead, it aims to introduce a form of pragmatics into content
modeling that allows users on the one hand to express
differing views by means of individual content models, and
on the other hand to still communicate by exchanging content
between individualized models.

CCM uses a notion of personalization that goes far beyond
the one of content management systems (see above).

It is similar to contextualized content usage, although the
system does not know about the context of a user. Instead,
users carry out personalization (in CCM terms) manually.

A CCM system reacts to model changes and relates model
variants to each other. The basis for this ability is systems
generation: based on the definitions of users, schemas, APIs,
and software modules are generated.

Some aspects of the considerations presented in
Section VIII were gained from the research on the generation
of CCM modules that map content to external data, e.g.,
content representations stored in databases.

III. THE MINIMALISTIC META MODELING LANGUAGE
The Minimalistic Meta Modeling Language (M3L,

pronounced “mel”) is a modeling language that is applicable
to a range of modeling tasks. It proved particularly useful for
context-aware content modeling [10].

For the purpose of this paper, we only introduce the static
aspects of the M3L in this section. Dynamic evaluations that
are defined by means of different rules are presented in the
subsequent section.

The descriptive power of M3L lies in the fact that the
formal semantics is rather abstract. There is no fixed domain
semantics connected to M3L definitions. There is also no
formal distinction between typical conceptual relationships
(specialization, instantiation, entity-attribute, aggregation,
materialization, contextualization, etc.).

A. Concept Definitions and References
A M3L definition consists of a series of definitions or

references. Each definition starts with a previously unused
identifier that is introduced by the definition and may end with
a semicolon, e.g.:
Person;

A reference has the same syntax, but it names an identifier
that has already been introduced.

We call the entity named by such an identifier a concept.
The keyword is introduces an optional reference to a base

concept, making the newly defined concept a refinement of it.

313

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A specialization relationship as known from object-
oriented modeling is established between the base concept and
the newly defined derived concept. This relationship leads to
the concepts defined in the context (see below) of the base
concept to be visible in the derived concept.

The keyword is always has to be followed by either a, an,
or the. The keywords a and an are synonyms for indicating
that a classification allows multiple sub-concepts of the base
concept:
Peter is a Person; John is a Person;

There may be more than one base concept. Base concepts
can be enumerated in a comma-separated list:
PeterTheEmployee is a Person, an Employee;

The keyword the indicates a closed refinement: there may
be only one refinement of the base concept (the currently
defined one), e.g.:
Peter is the FatherOfJohn;

Any further refinement of the base concept(s) leads to the
redefinition (“unbinding”) of the existing refinements.

Statements about already existing concepts lead to their
redefinition. For example, the following expressions define
the concept Peter in a way equivalent to the above variant:
Peter is a Person;
Peter is an Employee;

B. Content and Context Definitions
Concept definitions as introduced in the preceding section

are valid in a context. Definitions like the ones seen so far add
concepts to the top of a tree of contexts. Curly brackets open
a new context, e.g.:
Person { Name is a String; }
Peter is a Person{"Peter Smith" is the Name;}
Employee { Salary is a Number; }
Programmer is an Employee;
PeterTheEmployee is a Peter, a Programmer {
 30000 is the Salary;
}

We call the outer concepts the context of the inner, and we
call the set of inner concepts the content of the outer.

In this example, we assume that concepts String and
Number are already defined. The sub-concepts created in
context are unique specializations in that context only.

As indicated above, concepts from the context of a concept
are inherited by refinements. For example, Peter inherits the
concept Name from Person.

M3L has visibility rules that correlate to both contexts and
refinements. Each context defines a scope in which defined
identifiers are valid. Concepts from outer contexts are visible
in inner scopes. For example, in the above example the
concept String is visible in Person because it is defined in
the topmost scope. Salary is visible in PeterTheEmployee
because it is defined in Employee and the context is inherited.
Salary is not valid in the topmost context and in Peter.

C. Contextual Amendments
Concepts can be redefined in contexts. This happens by

definitions as those shown above. For example, in the context
of Peter, the concept Name receives a new refinement.

Different aspects of concepts can explicitly be redefined
in a context, e.g.:
AlternateWorld {
 Peter is a Musician {
 "Peter Miller" is the Name;
 }
}

We call a redefinition performed in a context different
from that of the original definition a conceptual amendment.

In the above example, the contextual variant of Peter in
the context of AlternateWorld is both a Person (initial
definition) and a Musician (additionally defined). The Name
of the contextual Peter has a different refinement.

A redefinition is valid in the context it is defined in, in sub-
contexts, and in the context of refinements of the context
(since the redefinition is inherited as part of the content).

D. Concept Narrowing
There are three important relationships between concepts

in M3L.
M3L concept definitions are passed along two axes:

through visibility along the nested contexts, and through
inheritance along the refinement relationships.

A third form of concept relationship, called narrowing, is
established by dynamic analysis rather than by static
definitions like content and refinement.

For a concept c1 to be a narrowing of a concept c2, c1 and
c2 need to have a common ancestor, and they have to have
equal content. Equality in this case means that for each content
concept of c2 there needs to be a concept in c1’s content that
has an equal name and the same base classes.

For an example, assume definitions like:
Person { Sex; Status; }
MarriedFemalePerson is a Person {
 Female is the Sex;
 Married is the Status;
}
MarriedMalePerson is a Person {
 Male is the Sex;
 Married is the Status;
}

With these definitions, a concept
Mary is a Person {
 Female is the Sex;
 Married is the Status;
}

is a narrowing of MarriedFemalePerson, even though it is
not a refinement of that concept, and though it introduces
separate nested concepts Female and Married.

E. Semantic Rule Definitions
For each concept, one semantic rule may be defined.
The syntax for semantic rule definitions is a double

turnstile (“|=”) followed by a concept definition. A semantic
rule follows the content part of a concept definition, if such
exists.

A rule’s concept definition is not made effective directly,
but is used as a prototype for a concept to be created later.

The following example redefines concepts
MarriedFemalePerson and MarriedMalePerson:

314

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

MarriedFemalePerson is a Person {
 Female is the Sex;
 Married is the Status;
} |= Wife
MarriedMalePerson is a Person {
 Male is the Sex;
 Married is the Status;
} |= Husband

The concepts Wife and Husband are not added directly,
but at the time when the parent concept is evaluated.
Evaluation is covered by the subsequent section.

Concepts from semantic rules are created and evaluated in
different contexts. The concept is instantiated in the same
context in which the concept carrying the rule is defined. The
context for the evaluation of a rule (evaluation of the newly
instantiated concept, that is) is that of the concept for which
the rule was defined.

In the example above, the concept Wife is created in the
root context and is then further evaluated in the context of
MarriedFemalePerson.

Rules are passed from one concept to another by means of
inheritance. They are passed to a concept from (1) concepts
the concept is a narrowing of, and (2) from base classes.
Inheritance happens in this order: Only if the concept is not a
narrowing of a concept with a semantic rule then rules are
passed from base concepts.

E.g., Mary as defined above evaluates to Wife.

F. Syntactic Rule Definitions
Additionally, for each concept one syntactic rule may be

defined.
Such a rule, like a grammar definition, can be used in two

ways: to produce a textual representation from a concept, or
to recognize a concept from a textual representation.

A semantic rule consists of a sequence of string literals,
concept references, and the name expressions that evaluate
to the current concept’s name.

During evaluation of a syntactic rule, rules of referenced
concepts are applied recursively. Concepts without a defined
syntactic rule are evaluated to/recognized from their name.

E.g., from definitions
WordList {
 Word; Remainder is a WordList;
} |- Word " " Remainder;
OneWordWordList is a WordList |- Word;
Sentence { WordList; } |- WordList "."
HelloWorld is a Sentence {
 Words is the WordList {
 Hello is the Word;
 OneWordWordList is the Remainder {
 World is the Word;
} } }

the textual representation
Hello World.

is produced.
Syntactic rule evaluation is not covered in this article.

IV. CONCEPT EVALUATION
As pointed out, there is no fixed generic semantic of M3L

constructs. Nevertheless, concrete models receive semantics

by means of semantic rules and their evaluation. After
definition, each concept (in the root context) is evaluated in a
way described in this section.

Concept evaluation is based on (a) narrowing (see
Section III.D) and (b) semantic rules (Section III.E).

This section gives a semi-formal description of these
means to assign semantics to M3L models. We present as
many definitions as are required to derive the main database
operations that drive the evaluation process in database-driven
M3L implementations.

Throughout this section, let ℂ be the set of concepts, 𝕊 be
the set of sets of concepts, and ℝ be the set of semantic rules.
Let 𝕋 be the set of root concepts (concepts that do not have
another concept as their explicit context).

A. Concept Relationship Access Functions
First, we define typical access functions to the components

of a M3L model.
The function context returns the context of a concept as

defined by a concept definition, or ^, if the given concept is a
root concept:

 context: ℂ→ℂ. (1)

The reverse relation, content, returns the content of a
concept:

 content: ℂ→𝕊: c↦{c’∈ℂ | context(c’)=c}, c≠^,
 content: ℂ→𝕊: ^↦𝕋. (2)

The base relationship maps a concept to its base concepts:

 base: ℂ´ℂ→𝕊. (3)

Since the set of base concepts may be extended by
contextual concept amendments, the relation is evaluated
relative to a context, given by the context-defining concept
(second parameter), or by ^ if base concepts as defined in the
root context are requested.

The inverse, the refine relationship, maps concepts to the
concepts derived from them in a given context x:

 refine: ℂ´ℂ→ℂ: (c,x)↦{c’∈ℂ | c’∈base(c,x)}. (4)

Let semanticRule be a projection function that returns the
semantic rule defined for a concept in a given context x. If
none is defined in x or any parent context, the function
returns ^.

 semanticRule: ℂ´ℂ→ℝ (5)

Likewise, let concept be the function that returns the
concept that is defined by a rule definition:

 concept: ℝ→ℂ. (6)

E.g., for a concept Concept in the root context defined as

315

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Concept |= NewConcept {Content;}

the function application concept(semanticRule(Concept,^))
returns NewConcept.

B. Computed Relationships
On the basis of the accessor functions defined in the

previous subsection, some computed relationships can be
defined. In this subsection we define helper functions required
to define narrowing in the subsequent subsection, and to
finally define evaluation in Section IV.D: the set of transitive
base concepts baseT, the set of transitive refinements refineT,
and the bottom of a concept set.

Chained base relationships are retrieved by

baseT: ℂ´ℂ→𝕊,	
	 baseT: (c,x)↦base(c,x) ∪ {baseT(c’,x) | c’∈base(c,x)}. (7)

Likewise, transitive refinement is defined by:

refineT: ℂ´ℂ®𝕊,	
	 refineT: (c,x)↦{c} ∪ {refineT(c’,x) | c’∈refine(c,x)}. (8)

The function bottom removes concepts from a concept set
if these are already subsumed by other contained concepts.
These are concepts that are refined by a concept in the set and
are themselves not refining that concept:

bottom: 𝕊´ℂ®𝕊,	
bottom: (S,x)↦S \ {c∈S | $c2∈S: c2∈refineT(c,x)

 Ù cÏrefineT(c2,x)}. (9)

C. Concept Narrowing
One central point in the process of evaluating concepts is

to compute their narrowing. In order to define narrowings, we
first introduce some helper functions.

Let Rc be the set of root concepts that (transitively) are
base concepts of a concept c, Rc = 𝕋 ∩ baseT(c,x). A superset
of c’s narrowing is easily computed using

narrowCandiateList: ℂ´ℂ®𝕊
 narrowCandiateList: (c,x)↦{refineT(c’,x)|c’ÎRc}, (10)

meaning that all narrowings are found in the set consisting of
all concepts from all content hierarchies to which the concept
belongs.

In order to remove candidates for narrowings, helper
functions to examine a concept’s “type” are required. Two
functions help analyzing whether a concept c is a refinement
of a base concept b, (interpreted in the context of concept x):

hasType: ℂ´ℂ´ℂ→Bool
 hasType:	(c,b,x)↦baseT(c,x)ÊbaseT(b,x), (11)

and whether two concepts c1 and c2 are the same with respect
to their set of base concepts:

sameType: ℂ´ℂ´ℂ→Bool: (c1,c2,x)↦c2ÎbaseT(c1,x) Ú c1=c2
 Ú hasType(c1,c2,x). (12)

Besides these static type checks, we also need structural
matching of concepts (sometimes called “duck typing” [11]):

hasWholeContent:	ℂ´ℂ´ℂ→Bool
hasWholeContent:	(c,candidateBaseConcept,x)↦

"c1∈content(candidateBaseConcept): $c2∈content(c):
 sameType(c2,c1,x). (13)

The function hasWholeContent determines for two
concepts c and candidateBaseConcept whether (interpreted
w.r.t. the context of concept x) the whole content of c is also
part of the context of candiateBaseConcept, meaning that
there is a concept with an equal set of base classes.

With the helper functions (10)-(13) we define the
narrowing of a concept c in the context of a concept x as:

narrowing: ℂ´ℂ®𝕊: (c,x)↦refineT(c,x)
∪ {c’Î narrowCandiateList(c,x) | hasType(c,c’,x)

 Ù hasWholeContent(c,c’,x)}. (14)

D. Semantic Rule Application and Concept Evaluation
At the core of the concept evaluation lies the productive

application of semantic rules as described in Section III.E.
During the evaluation process, semantic rules are applied

by instantiating the concept named in a rule. We express this
by a function apply as

apply: ℝ´ℂ®	ℂ:	
apply: (r,x)↦concept(r) in context(x), if it exists,	

apply: (r,x)↦deep copy of concept(r) in context(x),
 interpreted in x, else. (15)

With narrowing and rule application we can define M3L
concept evaluation as

evaluate: ℂ´ℂ®𝕊,	
evaluate: (c,x)↦bottom(evaluate(apply(semanticRule(

 narrowing(c,x),x),x),x),x),
 if some concept in narrowing(c,x) has a rule,

evaluate: (c,x)↦bottom(evaluate(refineT(c,x),x),x),
 if some concept in refineT(c,x) has a semantic rule
 evaluate: (c,x)↦bottom(refineT(c,x),x), else. (16)

For the sake of brevity, we use extensions to set-valued
parameters to relationships (5), (15), and (16).

V. ANATOMY OF THE M3L ENVIRONMENT
This section outlines the architecture of a first M3L

implementation. It is studied here in order to determine base
functions that require an efficient implementation for concept
evaluation. This leads to the requirements on the persistence
layer that is the subject of this article.

316

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Architecture of the current M3L implementation.

When implementing concept evaluation (16) and all
supporting functions (1)-(15), one notices that there are the
basic accessor functions (1)-(6). Other functions are defined
on top of these basic functions. Therefore, an efficient
implementation will place the accessor functions (1)-(6) and
those making heaviest use of them, (7) and (8), close to the
data layer, while the others can be implemented in a storage-
agnostic way. These assumptions lead to an architecture as the
one presented in this section.

The current M3L runtime environment is an application
that is based on several components. These components are
interchangeable in order to be applicable in a wide range of
configurations, namely different M3L syntaxes (compact or
verbose), interpretation of files or interactive input, or
compilation to different target languages and different
persistence technology for concept storage and retrieval.

The UML class diagram in Fig. 1 illustrates this M3L
implementation. For the method signatures shown in the
diagram assume M3LConcept to be an interface for concept
representations and M3LConceptSet to be a set of those.

For brevity, the types of method arguments are omitted. In
the figure, c denotes a M3LConcept to perform an operation
on, ctx a M3LConcept giving the context of the operation,
name a String giving a concept name, and r a semantic rule.

At the frontend, a Parser recognizes M3L statements and
creates an abstract syntax tree (AST) for further processing.
The parser is based on a parser generated by the ANTLR
(ANother Tool for Language Recognition) parser
generator [12]. The grammar of the M3L is quite simple. Still,
this powerful parser generator is employed because it plays an
important role for the handling of syntactic rules (see
Section III.F) at runtime and thus is part of the setup anyway.

In fact, there are different parsers and listeners for different
syntaxes of the M3L we are experimenting with. Fig. 1 shows
the M3LVerboseParser for the syntax used in this article.

In the next stage of M3L processing, a Builder creates an
internal representation of the parsed M3L definitions.

Using the AntLR framework, a Parser and a Builder are
connected by an observer, here the M3LVerboseListener, that
receives callbacks whenever the parser recognized a syntactic
construct.

In order to receive notifications, the observer implements
methods defined by the AntLR API in the interface
ParseTreeListener. The interfaces are not shown in detail but
illustrated in UML by the “lollipop”. In turn an observer uses
an interface provided by Builder implementations (again
represented by a lollipop) to pass information to them.

These interfaces allow different Builder implementations.
Most notably, there are interpreters and compilers. The
Interpreter acts directly. It contains generic code for the
creation and evaluation of concepts. This code is based on
operations provided by a M3LStore (see below). The inner
working of the Interpreter is outlined by the private methods
shown on the diagram in Fig. 1. The methods implement those
functions from Section. IV that are expressed using the more
basic functions.

A compiler creates equivalent code for the creation and
evaluation of concepts that can (repeatedly) be executed.

Every concrete Builder implements the methods defined
in the Builder interface that decorate the AST and pass the
intermediate representation to a M3LStore. These methods are
omitted in Fig. 1 in the shown Interpreter. Additionally,
concrete builder implementations typically define methods for
the functions (9)-(16) for concept evaluation. In Fig. 1 such
methods are listed as private methods of Interpreter.

Analysis of these functions unveils the functionality to be
provided by a M3LStore. According to this design, M3LStore
implementations deliver the base functionality required for the
builders, namely the required access functions as well as
computed relationships that use them most (1)-(8).

org.antlr.v4.runtime

org.antlr.v4.runtime.tree

Builder
<<interface>>

M3LStore
<<interface>>

M3L Runtime

M3L Verbose
Recognizer Listener

<<interface>>

+ addBaseConcept(c, name, ctx):void
+ addSingletonBaseConcept(c, name, ctx):void
+ baseConcepts(c, ctx):M3LConceptSet
+ baseConceptsTransitive(c, ctx):M3LConceptSet
+ concept(r):M3LConcept
+ content(c, ctx):M3LConceptSet
+ context(c):M3LConcept
+ deepCopy(c, targetCtx, ctx):M3LConcept
+ find(name, ctx):M3LConcept
+ findOrCreate(cPath, ctx):M3LConcept
+ refinement(c, ctx):M3LConceptSet
+ refinementTransitive(c, ctx):M3LConceptSet
+ semanticRule(c, ctx):SemanticRule
+ setSemanticRule(c, ruleC):void

Interpreter

- applyRule(rule, ctx): M3LConcept
- bottom(results, ctx):M3LConceptSet
- evaluate(c, ctx):M3LConceptSet
- hasType(c1, c2, ctx):boolean
- hasWholeContent(c1, c2, ctx):boolean
- isOfSameTypeAs(c1, c2, ctx):boolean
- narrowCandiateList(c, ctx):M3LConceptSet
- narrowing(c, ctx):M3LConceptSet

M3L Verbose
Listener

<<implements>>

ParseTreeListenerParser

M3L Verbose Parser

317

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. M3L concept refinements and contexts.

The M3LStore interface shown in Fig. 1 consists of
methods used by a Builder to build up a model during parsing,
and the abovementioned methods that implement the base
functions used during concept evaluation (1)-(8).

For an efficient implementation, we lay an emphasis on
the responsibilities of the M3LStore. The remainder of this
article discusses mappings to some established persistence
technologies that can be used as a basis of M3LStore
implementations.

VI. A CONCEPTUAL MODEL FOR CONTENT
REPRESENTATIONS

A conceptual model, as known from database modeling,
serves as a first step towards data models for context-aware
content. The notion of “concept” is ambiguous here: The aim
is a model of (M3L) concepts. A conceptual model for this
allows us to abstract from the M3L as a language. The model
is not supposed to address practical properties such as
operational complexity.

A set of M3L concept definitions can be viewed as a graph
with each node representing a concept, labeled with the name
of the concept. There are two kinds of edges to represent
specialization and contextualization. In fact, such a graph
forms a hypergraph to account for contextualization. Every
node can contain a graph reflecting definitions as the
concept’s content.

The following subsections detail specialization and
contextualization relationships, as well as contextual
redefinitions.

A. Representing Specialization
Conceptually, a specialization/generalization relationship

can straightforward be seen as a many-to-many relationship
between concepts. Fig. 2 shows an example.

Arrows with filled heads, directed from a concept to its
base concepts, represent specialization relationships in the
figure. For example, Concept 4 is a refinement of Concept 1
and Concept 2.

Fig. 2 furthermore indicates an amendment in a context,
namely Concept 9. While Concept 7 is a refinement of
Concept 4 and Concept 5 in the default context, it is
additionally a refinement of Concept 6 in the context of
Concept 9 (if it is an is a/is an definition; otherwise,
Concept 7 would only be a refinement of Concept 6 in the
context of Concept 9).

Figure 3. M3L concept definitions in contexts.

B. Representing Context
Since contexts form a hierarchy, contextualization can be

represented by a one-to-many relationship between concepts
in the roles of context and content.

Fig. 3 represents such a hierarchy by nested boxes shown
for concepts. The contextualization relationship is thus
visually represented by containment. For example, Concept 2
is part of the content of Concept 1, or Concept 2 is defined in
the context of Concept 1.

The outermost context is the default context. There is no
corresponding concept for this context.

C. Representing Contextual Information
Specialization and contextualization act together.

Refinements of a concept inherit its content; concepts from
that content are valid also in the context of the refinement.
Each context allows concept amendments. These are a second
way to add variations of concepts.

In order to represent contextualized redefinitions, we
introduce two kinds of context definitions: Initial Concept
Definition and Contextual Concept Amendment. Both can be
placed in any context.

An initial concept definition is placed in the topmost
context in which a concept is defined. Redefinitions of
concepts are represented by contextual amendments inside the
concept in whose context the redefinition is performed.

Figure 4. M3L concept amendments in contexts.

Concept 1 Concept 2 Concept 3

Concept 4 Concept 5 Concept 6

Concept 7 Concept 8

Concept 9

Concept 7

Default Context

Concept 1 Concept 4

Concept 2

Concept 3

Concept 5

Concept 6

Concept 7

Context

Base Concept

Initial Concept Definition

Refinement

Sub Context

Base Concept 2

Contextual Concept Amendment

Refinement 2

318

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Representation of refinements using materialized transitive refinement relationships.

Fig. 4 illustrates such a concept redefinition scenario. As
before, contexts are depicted as nested boxes. There is one
Context and a Sub-Context. Both show a Concept that has
originally been defined as a refinement of Base Concept and
is itself refined to Refinement. In the context on Sub-Context,
the concept gets the additional base concept Base Concept 2,
and there is another refinement Refinement 2. These additions
are recorded in the contextual amendment of Concept in Sub-
Context. This is, of course, transparent on model level.

Amendments have a reference to the next higher
definition. This reference is called Original. In Fig. 4, it is
shown by the dotted line.

Traversal of the original references allows collecting all
definitions in order to determine the effective definition.

VII. LOGICAL CONTENT REPRESENTATION
This section refines contextual content representation

models to a level similar to that of a logical data model. This
way it discusses properties of data representations without
taking implementation details into account.

The complexity of lookups is of major importance for the
schema design. During the evaluation of M3L statements,
many graph traversals are required to find all valid contexts,
all base concepts (to determine content sets) and all
refinements (to narrow down concepts before applying rules;
this evaluation process is not laid out in this paper).

The most important design decision is the degree of
(de)normalization of the schema. The basic assumption is that
content is mainly queried, so that creation and update cost is
less important than lookup cost.

We consider two designs of denormalized schemas:
materialization of reference sets and storage of relationships
in a way that allows efficient queries. Efficient storage is
based on the usage of numeric IDs to reference concepts and
computing relationships based on ID sets. An example of such
an approach is the BIRD numbering scheme for trees [13] that
allows range queries to determine subtrees.

A. Storing Refinements
Compared to the straightforward conceptual model, the

logical schema is denormalized in order to avoid repeated

navigation of specialization relationships when collecting the
set of (transitive) base concepts or refinements of a concept.

Two approaches are investigated: aggregated data and
transitive refinement relationships.

Aggregated data collects necessary information to avoid
nested queries for refinements. All base concepts and all
refinements are stored in an object representing the concept
definition in a certain context. Context-dependent content is
added in contextual concept amendments (s.a.) that are stored
as part of the context hierarchy. These aggregate the
definitions effective in all parent contexts.

The description objects additionally reference each other
via original references.

Alternatively, just transitive refinement relationships are
materialized for every concept in every context. This way,
transitive refinements are directly available, and base concepts
can be collected using a simple query.

Fig. 5 shows an example for the sample from Fig. 2. The
dashed boxes show the transitive refinements per relevant
context. Base concepts can be determined by queries.

For example, the (transitive) base concepts of Concept 4
are those concepts that have this concept as a
refinement. Specifically, these are Concept 1 and Concept 2
(in both the default context and in the context of Concept 9).

Storing the context together with the refinement
relationships is vital for handling singleton (is the)
relationships, in particular the unbinding of concepts.

B. Storing Context Hierarchies
Performance is particularly important for the retrieval of

the hierarchy of contexts a concept is defined or amended in.
The effective definition of a concept (including aggregated
base concepts and content) relies on this concept hierarchy.

By blending in the context information into the transitive
refinements, as shown in the previous subsection, the situation
is leveraged to a large degree. Still, the content that a concept
has in a certain context is also relevant to concept evaluations.

As for the specialization/generalization relationships, two
approaches are discussed here: materialized content
collections in all contexts and information about paths in the
context hierarchy.

has refinements {4,7,8}
in default context and in

Concept 9

Concept 1 Concept 2 Concept 3

Concept 4 Concept 5 Concept 6

Concept 7 Concept 8

Concept 9

Concept 7

has refinements {4,5,7,8}
in default context and in

Concept 9

has refinements
{6,8} in default

context

has refinements
{6,8,7} in

Concept 9

has refinements {7,8}
in default context and

in Concept 9

has refinements {7,8}
in default context and

in Concept 9

has refinement 8 in
default context

has refinements
{8,7} in Concept 9

319

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Representation of context hierarchies my materializing paths.

The materialization of contextual definitions works the
same way as that of refinements: with every concept definition
amendment, we store the effective content in the respective
context. This has to be computed on definition.

For the second approach, Fig. 6 illustrates the attribution
of paths to the schematic example of Fig. 3. For each concept,
we note down the concepts lying on the path in the context
hierarchy from the default context to a specific context. For
example, Concept 1 lies on the paths from the default context
to itself, to Concept 2, and to Concept 3.

We used numeric IDs to reference the concept (with the
ID 0 given to the pseudo-concept for the default concept). IDs
have to be ordered from the default context to sub-contexts.
By querying for all concepts on the path of a concept, ordered
by ID, we retrieve the path to that concept.

VIII. PHYSICAL CONTENT STORAGE MODELS
This section briefly discusses some implementation

approaches to context-aware content models using different
data models. Specifically, we present the basics of a mapping
to relational databases, to a document-oriented database, a
content repository, and a graph database.

A. Mapping M3L to a Relational Database
There is a range of approaches to storing trees and graphs

in relational databases [14]. On the basis of these, we add
materialized transitive relationships as described above.

Relational tables for the transitive context hierarchy can
be defined by statements like (with numeric type INT):
CREATE TABLE concept (id INT PRIMARY KEY);
CREATE TABLE paths (
 concept_id INT REFERENCES concept(id),
 terminal_concept INT REFERENCES concept(id),
 PRIMARY KEY (concept_id, terminal_concept));

The table concept holds concepts (both initial definitions
and amendments) with artificial IDs (other data is omitted
here). The second table holds the path information as indicated
in Fig. 6. concept_id refers to the concept, terminal_concept
refers to the concept on whose path the concept lies.

Data stored this way can be queried by, e.g.,
SELECT c.* FROM concept c, paths p
 WHERE c.id = p.concept_id
 AND p.terminal_concept = i
 ORDER BY p.concept_id DESC;

to retrieve the path to concept i.

Transitive refinements can be stored in a table:
CREATE TABLE transitive_refinements (
 base_concept_id INT REFERENCES concept(id),
 refinement_id INT REFERENCES concept(id),
 context_id INT REFERENCES concept(id),
 PRIMARY KEY (base_concept_id, refinement_id,
 context_id));

The base concepts of, e.g., Concept 4 can be queried by:
SELECT base_concept_id
 FROM transitive_refinements
 WHERE refinement_id = 4 AND context_id = 0;

in the default context (with ID 0), or by:
SELECT base_concept_id
 FROM transitive_refinements
 WHERE refinement_id = 4 AND context_id = 9;

for the context of Concept 9.

B. MongoDB
As an example of so-called NoSQL approaches, we

conduct ongoing experiments with MongoDB [15], a widely
used document-oriented database management system.

The definition of concept relationships is done in a similar
way as in relational databases: records have IDs, and records
store IDs for references. There are no distinct relation
structures, though. References are stored as document fields.

In contrast to a purely relational structure, documents
allow representing nested contexts in a natural manner by
embedded documents.

As an example of a schema, the insert statement shown in
Fig. 7 stores the whole graph of Fig. 2.

This structure can be queried as required. For example, to
find concepts with base concept Concept 6 in the context of
Concept 9, the aggregate statement in Fig. 7 can be applied.

C. Content Repository for Java Technology API (JCR)
In an attempt to define a content-specific database, the

Content Repository for Java Technology API (JCR) standard
has been set up in Java Specification Requests JSR-170 [16]
and JSR-283 [17]. The standard is employed by some
commercial content management system products.

The API implies a content model to be supported by JCR
implementations. The data model behind JCR is similar to
XML: It features hierarchies of nodes, where each node can
have properties, attributes of one out of a set of predefined
base types.

Default Context

Concept 1 Concept 4

Concept 2

Concept 3

Concept 5

Concept 6

Concept 7

on context paths starting at
{0, 1, 2, 3, 4, 5, 6, 7}

on context paths starting at
{1, 2, 3}

on context paths starting at
{4, 5, 6, 7}

on context paths starting at
{2}

on context paths starting at
{3}

on context paths starting at
{5}

on context paths starting at
{6}

on context paths starting at
{7}

320

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Document definitions to map M3L to MongoDB and a sample query.

With these characteristics, M3L concept models can be
mapped to JCR in a straightforward manner: nodes represent
concepts, and concept relationships are expressed in the node
hierarchy as well as by properties of type reference.

Context hierarchy in M3L is reflected by the node
hierarchy in JCR. This way, the API allows direct access to
context by Node#getParent() and access to content by
Node#getNodes().

Relationships to base concepts are represented by a (multi-
valued) reference property base-ref.

Contextual concept amendments are represented as nodes
on their own as outlined in Section VI.C. Nodes for
amendments link to the node representing the definition they
add to by a reference property original.

A semantic rule is represented by a reference from a
concept to the one that is defined by its rule. To this end, rule
concepts that are instantiated on rule application are stored
outside of concept hierarchy.

With this mapping, a M3LStore can be expressed easily
using the JCR API. Functions regarding the context hierarchy
are directly reflected in the node hierarchy, base concept
references are expressed by reference properties of nodes.

Only refinement relationships require special
consideration for navigating base concept references against
their direction. E.g., for transitive refinements, Java code like
the following is included (with c a node representing the
concept for which to compute the transitive refinement, ctx a
node representing the context in which to evaluate it,
refinement a set in which to collect nodes):
outer: for (Node c2 : allConcepts()) {
 Node[] baseConcepts
 = baseConceptsTransitive(session, c2, ctx);
 for (Node bC : baseConcepts)
 if (bC.getPath().equals(c.getPath())) {
 refinement.add(c2);
 continue outer;
 }
}

This code is the core of the refinementTransitive() method
of a M3LStore for JCR.

D. Mapping M3L to a Graph Database
Graph database management systems [18] organize data

as graphs of different types.

In this section, the DMBS Neo4J [19] is considered as a
representative of graph database management systems. It
allows data modelling using directed colored graphs with
labelled nodes. Data manipulation and querying is performed
using the language Cypher [20].

In Neo4j, we model M3L concepts as nodes. Following
the conceptual model from Section VI, we introduce types
(labels) CONCEPT and CONCEPTAMENDMENT for initial
concept definitions and for conceptual content amendments.
For each contextual definition, an explicit node with a label is
created. Edges representing concept relationships are set to
and from nodes representing concepts in specific contexts.

For the different concept relationships occurring in M3L
models, we add edges of different types. To express context,
we use an edge of kind CONTEXT from a node representing a
concept to a node representing the context of that concept. The
relationship between a refinement and its base concept is
represented by an edge of kind BASE. We record a reference
from a contextual concept amendment to the concept it is
redefining using an ORIGINAL edge. The semantic rule of a
concept is expressed by a SEMANTICRULE edge from the
concept to the new concept the rule defines.

Fig. 8 shows a database resulting from the concept
definitions in the example of Person entities from Section III.
It is a screen shot taken from the tool Neo4j Browser.

The node color shows the label assigned to a node: green
for initial concept definition, blue for conceptual amendment.

Cypher allows expressing transitivity directly, e.g., using
the path ()-[:BASE*]-() for (7) (baseT). Therefore, the
basic concept definitions and access functions can be mapped
to Cypher in a straightforward way.

Root level concepts are defined by a simple CREATE
directive:
CREATE (c:CONCEPT) SET c.name='concept name'

In the mapping examples in this section, italicized terms
are placeholders for parameter values. In the create directive
this is the name of the concept to be created.

Nested concepts are defined in a given context by:
MATCH (ctx{name: 'context’s concept name'})
 -[:CONTEXT]->...(t)
WHERE NOT (t)-[:CONTEXT]->()
CREATE (c:CONCEPT) SET c.name='concept name'
CREATE (c)-[:CONTEXT]->(ctx)

db.concept.insert({ name: "Default Context", content: [
 { name: "Concept 1", baseConcepts: null, content: null },
 { name: "Concept 2", baseConcepts: null, content: null },
 { name: "Concept 3", baseConcepts: null, content: null },
 { name: "Concept 4", baseConcepts: ["Concept 1", "Concept 2"], content: null },
 { name: "Concept 5", baseConcepts: ["Concept 2"], content: null },
 { name: "Concept 6", baseConcepts: ["Concept 3"], content: null },
 { name: "Concept 7", baseConcepts: ["Concept 4", "Concept 5"], content: null },
 { name: "Concept 8", baseConcepts: ["Concept 4", "Concept 5", "Concept 6"], content: null },
 { name: "Concept 9", baseConcepts: null, content: [
 {name: "Concept 7", baseConcepts: ["Concept 4", "Concept 5", "Concept 6"], content: null,
 original: "Concept 7" }] }] })
db.concept.aggregate([
{$unwind:"$content"},{$replaceRoot:{newRoot:"$content"}},{$match:{name:"Concept 9"}},
{$unwind:"$content"},{$replaceRoot:{newRoot:"$content"}},{$match:{baseConcepts:"Concept 6"}}])

321

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Representation of M3L definitions in a graph database.

The MATCH selects the node representing the concept in
whose content to create the new concept. In order to select the
right node, the complete path to that node is given. The path
has to be generated for the context concept at hand,
exemplified by the ellipsis. The WHERE clause constrains the
match to paths whose end node does not have any further
outgoing edges of kind CONTEXT (which are the root nodes).

A concept refinement is defined by:
MATCH (c{name: 'concept name'})
 -[:CONTEXT]->...(t)
WHERE NOT (t)-[:CONTEXT]->()
MATCH (b{name: 'base concept name'})
 -[:CONTEXT]->...(t)
WHERE NOT (t)-[:CONTEXT]->()
CREATE (c)-[:BASE]->(b)

Here, c matches the refinement and b matches the base
concept using generated paths.

Concept amendments are defined by creating a node and
relating it to the redefined node with an ORIGINAL edge as
described in Section III.C. This is done by:
MATCH (ctx{name: 'context’s concept name'})
 -[:CONTEXT]->...(t)
WHERE NOT (t)-[:CONTEXT]->()
MATCH (o{name: 'concept name'})
 -[:CONTEXT]->()
 <-[:CONTEXT|:BASE*]-(ctx)
CREATE (c:CONCEPTAMENDMENT)
SET c.name='concept name'
CREATE (c)-[:CONTEXT]->(ctx)
CREATE (c)-[:ORIGINAL]->(o)

The node ctx representing the context is found by
matching a path as in the above statements. The concept
definition o to be amended is found by the second MATCH
directive. It looks for a node with the right name in the context
of a node that is reachable from the context via context
(following CONTEXT edges) or via refinement (following
BASE edges) relationships, meaning that o it is either visible
in an outer context or is inherited.

A new node is created with the same name as the original
node o, labelled with type CONCEPTAMENDMENT, put in
the context ctx, and related to the original.

Semantic rules are set using:
MATCH (c{name: 'concept name'})
 -[:CONTEXT]->...(t)
WHERE NOT (t)-[:CONTEXT]->()
CREATE (r:CONCEPT)
SET r.name='rule concept name'
CREATE (c)-[:SEMANTICRULE]->(r)

The concept c to which the rule is assigned is matched by
name and context path again. The concept r that is instantiated
on rule application is created like any concept and then related
using SEMANTICRULE.

Interpreting the concept definitions from Sections III.B
and III.E on a M3LStore with this kind of mapping from M3L
to Cypher leads to a graph database as shown in Fig. 8.

IX. CONCLUSION
This section sums up the paper and gives an outlook on

future work towards M3L concept persistence and querying.

322

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Summary
This article lays out approaches to context-aware content

management, in particular using the Minimalistic Meta
Modeling Language (M3L). Semantics is given to content by
rules that allow M3L concept evaluation.

The architecture of a current testbed implementation is
presented. The architecture description concentrates on basic
functions required for M3L concept evaluation in a data layer.
Since content bases typically become large in data volume,
persistency has to be provided by this data layer.

Though it is easily possible to map context representations
to existing data management approaches, care has to be taken
to enable efficient querying for M3L concept evaluation.

A logical schema for the representation of contextual
content is presented that introduces first optimizations that are
independent of the target data model and the database
management systems used.

First sketches of implementations using different data
models are conducted. These demonstrate the feasibility of
concept persistence using these data models.

Representative technologies for each data model are used
to present schemas that can serve as a starting point of the
discussion and evaluation of M3L implementations.

B. Outlook
The work on data model mappings for M3L concept

definitions is ongoing work. There is ample room for further
optimizations of the relational database schema with respect
to query execution. The mappings to other data models,
document-oriented, tree, and graph databases, need
elaboration before significant comparisons between these can
be conducted.

The utilization of databases to support M3L concept
evaluation is an open issue. Currently, base functions are
implemented by database queries while the overall evaluation
process is performed in a generic way by application code.
Other functions required for concept evaluation may be
implemented efficiently in certain database models. One
example is the computation of candidate lists for
narrowings (10) that may be formulated using database-
specific queries.

Experiments with different implementations are ongoing.
Data models have yet to be rated based on practical results. To
this end, implementations need to be optimized.

For comparison, a kind of test suite needs to be defined.
Models and rule sets that address realistic scenarios will guide
the investigations in the future. Data of significant volume has
to be generated as concept instances according to such models.

ACKNOWLEDGMENT
Though the ideas presented in this paper are in no way

related to the work at Namics, the author is thankful to his
employer for letting him follow his research ambitions based
on experience made in customer projects.

Discussions with colleagues, partners, and customers are
highly appreciated.

Thanks go to the reviewers of the original conference
paper as well as to those of this journal article.

REFERENCES
[1] H.-W. Sehring, “Schemas for Context-aware Content

Storage,” Proc. Tenth Int. Conference on Creative Content
Technologies (CONTENT 2018), pp. 18-23, Sep. 2018.

[2] M. Gutmann, “Information Technology and Society,” Swiss
Federal Institute of Technology Zurich / Ecole Centrale de
Paris, 2001.

[3] C. Bolchini, C. A. Curino, E. Quintarelli, F. A. Schreiber, and
L. Tanca, “A Data-oriented Survey of Context Models,” ACM
SIGMOD Record, vol. 36, pp. 19-26, December 2007.

[4] A. Zimmermann, M. Specht, and A. Lorenz, “Personalization
and Context Management,” User Modeling and User-Adapted
Interaction, vol. 15, pp. 275-302, Aug. 2005.

[5] S. Trullemans, L. Van Holsbeeke, and B. Signer, “The Context
Modelling Toolkit: A Unified Multi-layered Context
Modelling Approach,” Proc. ACM Human-Computer
Interaction (PACMHCI), vol. 1, June 2017, pp. 7:1-7:16.

[6] G. Orsi and L. Tanca, “Context Modelling and Context-Aware
Querying (Can Datalog Be of Help?),” Proc. First International
Conference on Datalog Reloaded (Datalog '10), Mar. 2010,
pp. 225-244.

[7] D. Ayed, C. Taconet, and G. Bernard, “A Data Model for
Context-aware Deployment of Component-based Applications
onto Distributed Systems,” GET/INT, 2004.

[8] S. Vaupel, D. Wlochowitz, and G. Taentzer, “A Generic
Architecture Supporting Context-Aware Data and Transaction
Management for Mobile Applications”, Proc. International
Conference on Mobile Software Engineering and Systems
(MOBILESoft '16), May 2016, pp. 111-122.

[9] J. W. Schmidt and H.-W. Sehring, “Conceptual Content
Modeling and Management,” Perspectives of System
Informatics, vol. 2890, M. Broy and A.V. Zamulin, Eds.
Springer-Verlag, pp. 469-493, 2003.

[10] H.-W. Sehring, “Content Modeling Based on Concepts in
Contexts,” Proc. Third Int. Conference on Creative Content
Technologies (CONTENT 2011), pp. 18-23, Sep. 2011.

[11] C. Diggins: Explicit Structural Typing (Duck Typing).
[Online]. Available from
http://www.drdobbs.com/architecture-and-design/explicit-
structural-typing-duck-typing/228701413

[12] T. Parr, The Definitive ANTLR 4 Reference. Pragmatic
Bookshelf, 2013.

[13] F. Weigel, K. U. Schulz, and H. Meuss, “The BIRD
Numbering Scheme for XML and Tree Databases – Deciding
and Reconstructing Tree Relations using Efficient Arithmetic
Operations,” Proc. Third international conference on Database
and XML Technologies (XSym'05), Aug. 2005, pp. 49-67.

[14] V. Tropashko, SQL Design Patterns: The Expert Guide to SQL
Programming. Rampant Techpress, 2006.

[15] K. Chodorow and M. Dirolf, MongoDB: The Definitive Guide.
O’Reilly Media, Inc., 2010.

[16] Day Software AG: Content Repository for Java Technology
API Specification (JSR-170). [Online]. Available from
http://docs.adobe.com/content/docs/en/spec/jcr/1.0/index.html

[17] Oracle Corporation: JSR 283: Content Repository for JavaTM
Technology API Version 2.0. [Online]. Available from
https://jcp.org/en/jsr/detail?id=283

[18] R. Angles, M. Arenas, P. Barceló, A. Hogan, J. Reutter, and
D. Vrgoč, “Foundations of Modern Query Languages for
Graph Databases,” in ACM Computing Surveys vol. 50,
September 2017.

[19] J. Baton, R. Van Bruggen, Learning Neo4j 3.x. Packt, 2017.
[20] I. Robinson, J. Webber, and E. Eifrem, Graph Databases: New

Opportunities for Connected Data. O'Reilly Media, 2015.

