
452

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

POMVCC: Partial Order Multi-Version Concurrency Control

Yuya Isoda, Atsushi Tomoda, Tsuyoshi Tanaka, Kazuhiko Mogi

Hitachi, Ltd. Research & Development Group

1-280, Higashi-koigakubo, Kokubunji-shi, Tokyo, Japan

email: { yuuya.isoda.sj, atsushi.tomoda.nx, tsuyoshi.tanaka.vz, kazuhiko.mogi.uv } @ hitachi.com

Abstract — This paper proposes Partial Order Multi-

Version Concurrency Control (POMVCC), which is a

concurrency control technique based on partial order

transaction processing. We claim that timestamp generation

per transaction can be a critical section on multi-core for high-

throughput DataBase Management Systems (DBMSs), and

POMVCC can execute multiple transactions using the same

timestamp without losing consistency. In this paper, we change

the order of transaction processing from total to partial on

Multi-Version Concurrency Control (MVCC), which allocates

a timestamp on partial order per multiple transactions. It helps

the DBMS reduce the overall number of increments to the

timestamp; therefore, improving its overall performance. We

claim that a POMVCC-based system achieves 1.74 times

higher throughput than that of a conventional MVCC-based

system. We implemented a lock-free version of POMVCC on

MPDB, which is in-memory DBMS.

Keywords – Partial order transaction processing; Multi-

version concurrency control; Transaction; Timestamp; In-

memory DB.

I. INTRODUCTION

We research to adapt new hardware technology or new
software techniques to old DataBase Management Systems
(DBMS) techniques [1][2][3]. For example, the number of
Central Processing Unit (CPU) cores and memory size have
recently increased due to the progress of hardware
technology. For DBMSs, scalability technology [4][5][6] for
multicore CPUs and large-scale and non-volatile in-memory
technology [7][8] are advancing rapidly, and the
performance of DBMSs is close to reaching one million
Transactions Per Second (tps) [5][9].

A DBMS must guarantee the Atomicity, Consistency,
Isolation and Durability (ACID) properties to maintain data
consistency [10]. However, strictly doing so prevents a
DBMS from improving performance because it needs to
process Transactions (Tx) as serial processing in total order
[11]. To improve performance, a DBMS generally uses the
isolation level, which lessens ACID properties step by step;
thus, improving parallel processing.

Multi-Version Concurrency Control (MVCC) has recently
been used for controlling the isolation level. It manages
timestamps of both before and after updating a record and
enables records to be referenced and updated simultaneously.
As a result, it increases the performance of OnLine
Transaction Processing (OLTP). Recent research has also
clarified how SERIALIZABLE can be implemented.
Therefore, DBMSs with MVCC are expected to become
widespread in the near future [12][13].

There are two types of Timestamps (Ts) for MVCC, i.e.,
physical clock and logical clock. The physical clock is the
time used in the real world, such as Coordinated Universal
Time (UTC). The Network Time Protocol (NTP) is widely
used as a protocol for synchronizing UTC among servers
[14]. Implementation of a logical clock in DBMSs is
common [15]. Spanner implemented a physical clock for
DBMSs, but such an example is rare [16]. The larger the
system is, the more difficult conventional timestamp
management becomes using a logical clock. Because it is
mandatory for timestamps to be numbered every 1 us to
reach one million tps. In such an environment, large-scale
mutual exclusion with a high CPU clock frequency may be
problematic. In addition, the memory size and the number of
CPU cores will increase, e.g., Hewlett Packard’s Memory-
Driven Computing, will further increase [17].

Silo was proposed to solve this problem [9]. Silo is the
timestamp based on Epoch. It periodically updates the high-
order bits of the timestamp. Transaction threads update low-
order bits under the condition that they satisfy the order of
dependence. As a result, Silo can reduce the number of
updates for the timestamp. However, it cannot be easily
adapted for conventional MVCC-based DBMSs because it
requires lock processing and management of the Read-Set
and Write-Set for concurrency control.

Moreover, we must better understand the partial order
model and low isolation levels because a user requires two
advanced points. The first point is high-performance and
high-scalability. NoSQL is very fast and executes 80–120
million operations per second [18]. If we want to promote
only DBMS to a data management system for simple
management, the performance of DBMS needs to exceed the
one of NoSQL. The second point is that we must understand
the meaningless assumptions on industry, as shown in Figure
1 [19]. High isolation levels and the stored procedures are
not needed on industry. Not all transactions are executed as
stored procedures only 47% of users (excluded 0% and 1-
10% on Figure 1.B), and almost all users do not set the
isolation level of SERIALIZABLE. Read Committed is most
frequently used; therefore, we need to develop a high-
performance DBMS on a low isolation level.

From these reasons, we propose Partial Order Multi-
Version Concurrency Control (POMVCC), which is the
partial order transaction processing based on the reduction in
the conflict rate, which is caused by a large-scale DB. It
mitigates the problems with simultaneous executable
transactions on each isolation level. Specifically, it
increments a timestamp during the abortion phase of a
transaction. Thus, multiple transactions can be processed at

453

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the same timestamp, and the number of timestamp updates
can be reduced on any isolation levels.

In summary, our contributions are as follows.
1. We propose partial order transaction control based on

reconsidering the isolation level of MVCC, called
POMVCC. To update a timestamp during the abortion
phase of a transaction, POMVCC can process multiple
transactions at the same timestamp and reduce the
number of timestamp updates. It is also easily
implementable for DBMSs based on MVCC.

2. We show the cause and solution of a new anomaly
called “HISTORICAL READ” caused by POMVCC.

3. We also show a lock-free implementation of POMVCC
and discuss the implementation of mixed Pessimistic
Concurrency Control (PCC) and Optimistic
Concurrency control (OCC) to solve the problem of
long-short transaction.

4. Finally, we discuss the implementation of POMVCC
on an in-memory DBMS and the evaluation its
performance.

The rest of this paper is organized as follows. In Section II,
we introduce research on concurrency control for DBMSs. In
Section III, we reconsider the requirement of concurrency
control for DBMSs and present a problem with performance
and scalability. In Section IV, we propose POMVCC and
discuss a new anomaly called “HISTORICAL READ”
caused by POMVCC and its solution. In Section V, we
describe a method for implementing our developed MPDB,
which is an MVCC-based, lock-free, in-memory DBMS
characterized by parallel logs and mixed PCC/OCC. In
Section VI, we describe a method for implementing
POMVCC that is lock-free. In Section VII, we discuss the
evaluation of POMVCC’s performance and present the
results. Finally, in Section VIII, we give concluding remarks
and discuss our future work.

27%

26%
14%

12%

5%

16%

0% 1-10%

11-25% 26-50%

51-75% 76-100%

15%

61%
2%

9%

10%
3%

Read Uncommitted Read Committed

Cursor Stability Repeatable Read

Snapshot Isolation SERIALIZABLE

(A) isolation levels (B) stored procedure users

Figure 1. Survey on frequency of use on DBMS functions

II. RELATED WORK

In this section, we discuss work related to concurrency
control for DBMSs. The most notable viewpoint of
concurrency control is the durability of an execution result
and the concurrency control of transactions.

Algorithms for Recovery and Isolation Exploiting
Semantics (ARIES) involve general persistence processing
[20]. ARIES is composed of analysis, REDO, and UNDO.

Analysis pinpoints the starting point of a recovery, REDO
re-executes a transaction on the basis of a REDO log, and
UNDO deletes an uncommitted transaction on the basis of an
UNDO log. During logging, Write-Ahead Logging (WAL),
which can restore logs safely in the case of failure, is used.
WAL has a problem in that the speed of writing a log to a
storage device is slow. However, faster technology that uses
distributed logging with non-volatile memory has recently
been proposed for WAL [7].

Research on the concurrency control of transactions has
been conducted since the 1980s. There are two types of
concurrency control, i.e., PCC and OCC [21][22][23]. For
PCC, concurrency control with a 2-Phase Lock (2PL) is
mainly used. DORA [24], PLP [25], and Shore-MT [26]
have been proposed as lock-based DBMSs [27]. However,
DBMSs with MVCC, which enables OCC, have recently
been proposed because the processing cost of locks and
latches is high [28][29][30].

It was stated that an isolation level for SERIALIZABLE is
not possible [31]. However, the proposal of
SERIALIZABLE SNAPSHOT ISOLATION (SSI) has made
this possible [12][13]. Using this technology, H-Store/
VoltDB [32][33], Hekaton [4][6], and SAP HANA [8] were
proposed as MVCC-based DBMSs. H-Store creates
transaction sites, the number of which is the same as the
number of CPUs, and transaction threads that stick to the
logical sites execute Structured Query Language (SQL).
Such a mechanism enables in-memory and lock-free fast
processing. To reduce the number of responses between
interfaces, Hekaton compiles stored procedures into native
codes. SAP HANA manages both the row store, the update
efficiency of which is high, and column store, the reference
efficiency of which is high. Many such MVCC-based
DBMSs that have diverse characteristics have been proposed.

Moreover, a Silo in-memory DBMS that manages Epoch-
based timestamps as a concurrency control has also been
proposed [9]. In Silo, updates of timestamps are removed
from the concurrency control of a transaction on Single-
Version Consistency Control (SVCC). Silo uses a special-
purpose thread for managing timestamps. As a result, it
achieves high-performance. In addition, it creates temporary
areas per transaction for references (Read-Set) and updates
(Write-Set). Concurrency control with Read-Set and Write-
Set can use cache and memory efficiently. Using these
technologies, Silo achieves 700,000 tps for the industry
standard benchmark TPC BenchmarkTM C (TPC-C) [34].
Moreover, Silo-based transaction control is adopted by
Intel’s Rack-Scale Architecture, which has become popular,
and in-memory DBMS Foedus [5], which uses Hewlett
Packard’s Memory-Driven Computing [17]. Therefore, Silo-
based concurrency control has become popular.

Research on SVCC-based DBMSs is now advancing. Silo-
like concurrency control enables faster than conventional
MVCC-based DBMSs. However, it is difficult to adopt it for
MVCC-based DBMSs because many components, such as
thread management, transaction control, and data
management, must be modified. Therefore, we propose an
easier implementation technique that is equivalent to Silo’s
concurrency control for MVCC-based DBMSs.

454

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

III. RECONSIDERING ANOMALIES AND CONCURRENCY

CONTROL ON MVCC

In this section, we outline concurrency control on MVCC
and reconsider the update conflict of timestamps, which is a
problem in Silo, and solve this problem.

A DBMS must maintain ACID properties, but to do so
strictly, transactions must be serialized, which degrades
performance. To avoid this phenomenon, an isolation level,
in which ACID properties are lessened gradually, is used.
The isolation level is defined as the allowable range for an
anomaly, which occurs when transactions are executed in
parallel. This mitigation achieves high-scalability enabled by
the highly parallel and high-performance transactions of
DBMSs.

The isolation level differs between lock-based control and
MVCC-based control [31]. We outline the relationship of the
isolation level for MVCC and anomalies and clarify the
order of transactions and mitigate the problem with
scalability.

We define B as the begin phase of a transaction, C as the
commit phase of the transaction, A as the abort of the
transaction, BTs as an allocated timestamp during the begin
phase, CTs as an allocated timestamp during the commit
phase, ATs as an allocated timestamp during the abort phase,
R as the reference in the transaction, and W as the
update/insert/delete in the transaction. We also define Tx.1,
Tx.2, etc., as identifiers of transactions X, Y, etc. as a set of
records and i, j, etc. as integers.

A. Relationship between isolation level and anomalies

The general anomalies are WRITE SKEW (WS), FUZZY
READ (FR), READ SKEW (RS), and LOST UPDATE (LU)
on MVCC [31]. Examples of these anomalies are listed in
Table I.

For example, LOST UPDATE occurs when Tx.1 and Tx.2
update record X simultaneously and both are successful. This
is a problem because the value of the record is either X' or X'',
and the update history of the record is not uniquely
determined. For one-side failure (W1 W2 C2 A1), LOST
UPDATE may occur when Tx.2 updates record X to X', then
Tx.1 aborts and record X' is roll-backed to X.

The isolation level is defined as the allowable range for
anomalies. SSI has the strictest requirement of consistency.
The second strictest is READ COMMITTED and READ
UNCOMMITED is the least strict. Table II lists the
relationships between the isolation level and anomalies. For
example, for READ COMMITED, WRITE SKEW or
FUZZY READ may occur. READ UNCOMMITTED is
hardly used because user-unallowable anomalies occur.

TABLE I. ANOMALIES ON MVCC

Anomaly Formula

LOST UPDATE (LU) W2[X → X'] W1[X → X'']

READ SKEW (RS) W2[X → X', Y → Y'] R1[X', Y]

FUZZY READ (FR) R1[X] W2[X → X'] R1[X']

WRITE SKEW (WS) R1[X] R2[Y] W1[Y → Y'] W2[X → X']

TABLE II. ISOLATION LEVELS ON MVCC

Isolation Level LU RS FR WS

SERIALIZABLE - - - -

SNAPSHOT ISOLATION - - - v

READ COMMITTED - - v v

READ UNCOMMITTED v v v v

B. Concurrency control

MVCC controls records and transactions by using a
timestamp. MVCC manages the update history of records by
allocating a timestamp at the commit to the records.
Transactions refer to a timestamp at the begin phase or when
SQL executes and to the latest record whose timestamp is
smaller than BTs. The references of transactions maintain
consistency with this method. How BTs is treated differs
depending on the isolation level. SERIALIZABLE and
SNAPSHOT ISOLATION use a timestamp that is referred to
at the begin phase. READ COMMITTED uses a timestamp
that is referred to at SQL execution. Figure 2 shows the
difference between Tx.2 as SNAPSHOT ISOLATION and
Tx.3 as READ COMMITTED. They execute the SQL at the
same time. However, Tx.2.SQL2 reads X, but Tx.3.SQL2
reads X'. Such concurrency control protects SNAPSHOT
ISOLATION from FUZZY READ. Similarly, READ SKEW
is prevented.

The update conflicts at the validation of the commit
process generally use First Committer Win (FCW), which is
an OCC. It executes transactions in the order in which the
commit command is executed. It maintains consistency by
aborting subsequent conflicting transactions.

The concurrency control explained above cannot prevent
WRITE SKEW from occurring. This occurs when references
and updates of multiple transactions mutually conflict (RW-
Conflict). SSI was proposed to find such a condition and
avoid WRITE SKEW [12][13]. SSI adds a read flag and
write flag to the conventional MVCC algorithm and detects
RW-Conflict. It aborts at least one of the RW-Conflict
transactions and avoids WRITE SKEW. Therefore,
SERIALIZABLE is enabled. SSI enables SERIALIZABLE
with the same performance of SNAPSHOT ISOLATION
[12][13]. Thus, we can prevent anomalies from occurring by
using these concurrency controls on MVCC.

SQL Formula

Tx.1 SQL1
B1[BTs=10] W1[X→X']
C1[CTs=10, Ts=11]

Tx.2
SQL1 B2[BTs=10] R2[X]

SQL2 R2[X] C2

Tx.3
SQL1 B3[BTs=10] R2[X]

SQL2 B3[BTs=11] R2[X'] C3time

SQL1 SQL2

Tx.2

Tx.1 SQL1

SQL1 SQL2

Tx.3

Figure 2. Difference between SNAPSHOT ISOLATION (Tx.2)

and READ COMMITTED (Tx.3)

455

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Problem of scalability

To strictly maintain ACID properties, it is necessary for
transactions to be processed in total order. Scalability is low
in this case. Table III defines D1 as total order, D2 as weak
order, and D3 as the order of transactions for MVCC.

The CTs of MVCC must be different between the
allocation times of the transactions; one of the transactions
must be the reference transaction. That is, multiple update
transactions cannot be committed at the same time due to D3.
Thus, the transactions of MVCC are in total order in the case
of update transactions only, or it is in weak order when
transactions include reference transactions.

As described above, MVCC increases scalability; however,
it is applicable only for transactions including reference
transactions. In the case of update transactions only,
scalability is low because the conditions of the order are the
same as D1. Therefore, we must mitigate the order of update
transactions under D3. ii in order to improve the scalability
for DBMS.

TABLE III. DEFINITION OF MVCC

D1. Total Order

i < j <==> i≦j and i≠j

D2. Weak Order

i ≦ j <==> i<j or i=j

D3. MVCC for write tx.

CTs(Tx.i) < CTs(Tx.j) <==> ⅰ and ⅱ

ⅰ CTs(Tx.i) ≦ CTs(Tx.j)

ⅱ CTs(Tx.i) ≠ CTs(Tx.j)

IV. PROPOSAL OF POMVCC

In this section, we propose POMVCC, which mitigates the
order of update transactions and enables high-scalability. We
also consider a new anomaly caused by POMVCC.

We define DBC as the content of a database, and the

execution order of transactions is shown as (→).

A. Basic idea

Transactions can be controlled in partial order on the basis
of the consistency of a DBC. For example, if the
concurrency control of DBMS exchanges the execution order
of one transaction with another transaction and the result
does not change, these transactions can be executed in non-
order, and consistency is maintained. Thus, we do not need
to update the timestamp per transaction update and can share
one timestamp among multiple update transactions.
Therefore, we propose POMVCC as a new concurrency
control focused on the partial order of transactions.
POMVCC provides the same timestamp to two update
transactions if they have no dependency. This technique
mitigates condition D3. ii, so scalability can increase.

The concept and definition of POMVCC are shown in
Figure 3 and Table IV. By controlling the partial order of
transaction processing, POMVCC eliminates the need to
update the timestamp every time transaction process is ended.
POMVCC updates the timestamp when it detects an anomaly.
For example, in Figure 3, since LOST UPDATE occurred
between Tx.1 and Tx.3, POMVCC will update the
timestamp. Even if the execution order of all transaction
processes within the same timestamp is changed, POMVCC
permits simultaneous execution if the content of the database
is the same.

We show the allowable conditions of transaction
processing on the same timestamp for MVCC and POMVCC
in Table V, which shows that POMVCC has more conditions
that can be executed simultaneously than MVCC. Therefore,
POMVCC can reduce the update frequency of timestamps.
This means that the scalability of POMVCC is better than
that of MVCC. We discuss the difference in isolation levels
between MVCC and POMVCC, as shown in Figure 4.

MVCC POMVCC

Tx.1

W [X → X']

Tx.4
W [Z → Z']

Tx.2
W [Y → Y']

Tx.3

W [X' → X'']

Tx.1

W [X → X']

Tx.4
W [Z → Z']

Tx.2

W [Y → Y']

Tx.3
W [X' → X'']

Tx.3

W [X → X'']

Ts1

Ts2

Ts3

Ts4

Figure 3. Difference between MVCC and POMVCC

TABLE IV. DEFINITION OF POMVCC

D4. POMVCC for write tx.

CTs(Tx.i) ≦ CTs(Tx.j) <==> Ⅰ or Ⅱ

Ⅰ CTs(Tx.i) < CTs(Tx.j)

Ⅱ CTs(Tx.i) = CTs(Tx.j) and
DBC(Tx.i → Tx.j) = DBC(Tx.j → Tx.i)

TABLE V. ALLOWABLE CONDITIONS OF TRANSACTION PROCESSING
 ON SAME TIMESTAMP FOR MVCC AND POMVCC

Formula MVCC POMVCC

R1[X] R2[X] Success Success

R1[X] W2[X] Success Success

W1[X] R2[X] Success Success

W1[X] W2[Y] Failure Success

W1[X] W2[X] Failure Failure

456

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

SERIALIZABLE

MVCC

Snapshot Isolation

Read Committed

Read Uncommitted

RS, LU

FR

WS

Snapshot Isolation

Read Committed

FR
HR

HR

WS,

HR

POMVCC

RS,

LU

Figure 4. Diagram of isolation levels and relationships

B. How to control POMVCC

The trigger to update a timestamp of POMVCC differs
from that of MVCC. MVCC updates a timestamp during the
commit phase of a transaction, but POMVCC updates it
during the abort phase of a transaction. Thus, multiple update
transactions can be executed at the same timestamp on
POMVCC.

The protocol of POMVCC is shown in Figure 5. The
conflict of LOST UPDATE occurs between Tx.1 and Tx.3
on record X. In the case of MVCC, a timestamp is updated at
the commit of Tx.1, but in the case of POMVCC, a
timestamp is not updated. Therefore, Tx.3 refers to old
record X, and conflict occurs. POMVCC updates a
timestamp at the abort of Tx.3. Record X can be updated
when Tx.3 is retried. Because a timestamp is updated at the
abort of a transaction caused by an anomaly, partial order
transaction control is possible.

begin

update

time

Tx.

Tx1

Management Record

Read BTs

X→X'

Val idation
Al locate CTs

commit

Tx2

Tx3

begin

update
X→X'

Val idation
commit

Retry

Update CTs

Read BTs

abort

Tx3'

Read BTs
begin

update
X'→X''

・・・

Figure 5. Concurrency control of POMVCC

C. New anomaly: HISTORICAL READ

The partial order transactions of POMVCC enable highly
scalable concurrency control. However, the execution order
of transactions is limited by an application or user. For
example, consider that the succeeding transaction refers to
the result of the preceding transaction. In this case, the
HISTORICAL READ, in which the succeeding transaction
cannot refer to the result of the preceding transaction, occurs.
It is necessary for POMVCC to provide the result of the
preceding transaction to the succeeding transaction when the
application requires the result of the preceding transaction.

Table VI and Figure 6 provide the definition of
HISTORICAL READ. The Tx.2 cannot refer to record X',
which Tx.1 updates after the commit of Tx.1. This is a new
anomaly. If Tx.1 and Tx.2 are independent transactions, such
an anomaly does not occur. However, when the application

assumes that the execution order is Tx.1 → Tx.2, an

unexpected response occurs. This anomaly of HISTORICAL
READ does not occur on MVCC.

TABLE VI. DEFINITION OF HISTORICAL READ

Anomaly Formula

Historical Read (HR) W1[X → X'] C1 B2 R2[X]

MVCC POMVCC

Tx.1

W [X → X']

Tx.2

R [X']

Tx.1

W [X → X']
Tx.2

R [X]

Ts1

Ts2

Figure 6. Anomaly of HISTORICAL READ

D. How to avoid HISTORICAL READ

HISTORICAL READ is avoidable if the BTs of the
succeeding transaction is larger than the CTs of the
preceding transaction. That is, when the same user (DB
connection) or the same application executes transactions,
the value that is larger than the CTs of the preceding
transaction is assigned to the BTs of the succeeding
transaction. Therefore, HISTORICAL READ can be avoided.

The avoidance method for the same user (connection-
based method) may include false positives. Figure 7 shows
the solution of HISTORICAL READ for the connection-
based approach. In the worst case, timestamps are updated at
every commit. For example, timestamp updates are
unnecessary in the independent transactions. However, in the
connection-based method, timestamps are always updated
during the begin phase of the transactions. As a result,
performance degradation is a concern due to there being
many false-positive cases.

With the avoidance method for the same application
(request-based method), minimum increments of the
timestamp, which would preferably be referred to, are set
when the application issues transactions. This method can

457

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

avoid HISTORICAL READ efficiently because false
positives are excluded. However, the interface of a DBMS,
such as begin and commit, must be modified, which is a
disadvantage of this method. Figure 8 shows the solution of
the connection-based method. POMVCC returns a CTs at the
commit of Tx.1, and a BTs (= CTs) is set at the begin of Tx.2.
As a result, Tx.1.CTs < Tx.2.BTs is established, and Tx.2
can refer to the execution result of Tx.1. We implemented
the request-based method shown in Figure 8.

begin

update

time

Tx.

Tx1

Management Record

Read BTs

X→X'

Val idation
Al locate CTs

commit

Tx2

update
X→X'

Check&Update
BTs

・・・

USER, CTs

BTs ≧ CTs

Cl ient manager

USER, CTs

begin

Figure 7. Solution of HISTORICAL READ on connection-based method

begin

update

time

Tx.

Tx1

Management Record

Read BTs

X→X'

Val idation
Al locate CTs

commit

Tx2

begin(CTs)

update
X→X'

Check&Update
BTs

・・・

CTs

BTs ≧ CTs

Figure 8. Solution of HISTORICAL READ on request-based method

V. IMPLEMENTATION OF MPDB

We developed an in-memory DBMS called “MPDB” to
compare the performance of MVCC and POMVCC. We
implemented MVCC and POMVCC on MPDB and
evaluated their performance. MPDB is an MVCC-based,
lock-free, in-memory DBMS characterized by parallel logs
and mixed PCC/OCC [1][2][3]. In this section, we introduce
the implementation of MVCC and POMVCC on MPDB.

A. Technical issues

From evaluating the breakdown of TPC-C to organize the
DBMS issues on OLTP, buffering (30%), locking (29%) and
logging (21%) accounted for 80% of the whole process [11]
[26]. The buffering manages temporary data on a DBMS to
achieve high-performance by reducing the number of storage
accesses. Locking is mainly used for updating when
maintaining DBMS consistency by transaction processing.
Logging writes log sets to storage to make the transaction
results persistent. We aimed to solve these problems on
MPDB.

The number of CPU cores and memory size have been
increasing. Although the number of cores per CPU has
increased rapidly, the CPU frequency is converging to about
3 GHz [35]. Therefore, we must develop high-parallelism for
improving performance of tps in line with the technical trend.
The memory capacity is also increasing with the momentum
exceeding DB size. The data set of OLTP is often several TB
or less, and in-memory processing that does not acquire data
from storage has become possible. Therefore, we developed
an in-memory DBMS called “MPDB” for sustainable and
high-performance DBMSs.

B. Design overview

MPDB implements MVCC-based architecture using lock-
free on an in-memory DBMS for high-performance and
high-scalability OLTP. We implemented lock-free control to
avoid degradation of scalability on lock control due to the
increased number of CPU cores.

Figure 9 shows a design overview of MPDB. Transaction
processing is organized into three phases on MPDB. The
first phase is the begin processing and the transaction
processing of read and write. The DBMS allocates a
timestamp for reference to the transaction during the begin
phase and the transaction reads/writes the records using a
BTs. The second phase is the validation phase during the
commit phase. The processing details are given in Sections
V.D and VI. The third phase is the durability phase during
the commit phase. The DBMS writes log sets to storage to
make the transaction results persistent.

During in-memory processing, client communication and
log processing increase in proportion to performance, and
interrupt handling becomes a bottleneck. However, load
balancing is easy for client communication. The load of
interrupt handling can be generally distributed by Receive
Side Scaling (RSS) or “irqbalance”. The number of
interrupts can be reduced by changing the interrupt handling
to polling processing. Log processing must manage the log
file sequentially to guarantee the ACID. However, it is not
necessary to manage log files physically in one dimension
along the time series. A one-dimensional log file is sufficient
to produce a logical log file at recovery. Therefore, MPDB
implements a mechanism that allows log processing to be
executed in parallel by the assigned TxID and timestamp to
the transaction log. We implemented asynchronous
input/output (I/O) using “libaio” for efficient log processing
[36].

458

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The group commit may be a cause of hindering the
scalability of log management. We do not implement group
commit since random write performance does not become a
bottleneck due to the appearance of a high-performance
storage such as a solid-state drive or storage class memory.

Ph.1 Begin & Tx. processing

Ph.2 Commit: Validation Ph.

Ph.3 Commit: Durability Ph.

Allocate_CTs (Increment TsPC)

Timestamp management

Allocate_BTs (Ts)

Read / Write record on read-set / write-set

Write / Read validation using write-set / read-set

Release CTs (Increment TsCC)

Asynchronous I/O

Early abort

Abort

Abort

Transaction management

Abort

Figure 9. Design orverview of MPDB. Ts = Timestamp

C. Data structure

We have to construct the data structure considering the
non-uniformity of memory latency by Non-Uniform
Memory Access (NUMA) [37]. We divide the data
allocation into thread areas, i.e., local areas and a global area
in consideration of NUMA on MPDB. Figure 10 shows the
overview of data allocation on MPDB. As a premise, MPDB
allocates threads of transaction processing to CPU cores.

The thread area manages a work area and log area for
transaction processing. Each thread has its own thread area to
execute transactions and references/updates another thread
area when it executes the validation process, but this is
infrequent. Therefore, the thread area should be built in the
local area.

We assigned a local area for each CPU. A local area has
log-management information to perform log processing for
each CPU and is used to expand the thread area.

MPDB assigns common data, such as tables, indexes, and
system information, with no locality in the global area. It
creates the global area by the NUMA option of “—
interleave” to allocate this area and multiple memory to load
balance the memory access.

Figure 11 shows the detailed structure of the tables and B-
tree index on MPDB. We adopted the linked list for all data
structures to implement a lock-free DBMS. MPDB inserts
records to update/delete/insert the records for MVCC. We
define the rows of the table as a record and the record of
update history as a row.

The B-tree index includes nodes and edges. The nodes are
arranged in descending order, and edges are arranged in
ascending order. MPDB enables bidirectional search by
using this index structure. This structure is lock-free since it
is made of the linked list.

MPDB also allows the possibility that the index does not
refer to the latest record to enable early commit. As shown in
Figure 11, transaction processing does not positively change
the record pointer of the leaf edge to the pointer of new
record when delete Row.1’, so that index.col.2 does not
necessarily indicate the latest Row.1’’. We define this
processing method as LATE UPDATE. Therefore, the thread
can shorten the serialization point and improve scalability
during the commit phase. However, the thread changes the
pointer of the record to the latest pointer when referring with
the index on LATE UPDATE. The thread can reduce the
number of chains of the linked list and achieve fast record
access.

C
P

U
…

Memory

Global Area

Index

Common

Local Area

Thread Area
work log

Ts.
log management

Table

Local Area

Figure 10. Overview of data structure on MPDB

Index for col.2

Key Ts. Lower
A 100 ＊

Table Row.1 Row.1' Row.1''

Col.1 1 2 -

Col.2 A A -

Ts. 100 111 132

Next ＊ ＊ -

Prev. - ＊ ＊

update to
either the pointer

Index for col.1

Key Ts. Lower
2 100 ＊

Key Ts. Lower
1 111 ＊

insert & delete
for update

Figure 11. Detailed structure of tables and indexes

D. Transaction management

We now explain the procedure of transaction processing.
The state of the transaction is illustrated in Figure 12. MPDB
manages the four typical states of transactions. The
transaction states can be classified into ACTIVE during the
begin phase, PRE-COMMIT at the validation phase during
the commit phase, COMMIT at the durability phase during
the commit phase and ABORT during the abort phase, as
shown in Figures 9 and 12.

459

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table VII shows the transaction state for each transaction
method on MPDB. MPDB implemented mixed OCC/PCC to
provide six transaction methods. Generally, long transactions
are easily aborted by short transactions; therefore, long
transactions can reduce the frequency of the abort when short
transactions set OCC and long transactions set PCC.

OCC and PCC are illustrated in Figures 13 and 14,
respectively. On OCC, the initial state of the transaction is
ACTIVE and the database performs begin processing in the
first phase and commit processing in the second–fifth phases.
However, on PCC, the initial state of the transaction is PRE-
COMMIT and the database performs begin processing in the
first phase and the commit processing in the second and third
phases. The processing equivalent to write lock is executed
with the third phase on OCC and first phase on PCC. That is,
since threads can execute write lock during transaction
processing on PCC, it is possible to perform record update
reservation earlier than OCC. Because of this, MPDB
enables the coexistence of long and short transactions.

Active

Pre-commit

AbortCommit

B
e

g
in

 P
h

.

C
o

m
m

it
 P

h
.

A
b

o
rt

 P
h

.

Figure 12. States of transaction

Record

Tx.state (Active)

New record

1. Create new record. (Insert for update)
2. Change Tx.state (Active → Pre-commit)

3. Connect the pointer of record to Tx.
write validation (write lock)

4. Check the conflict graph of Tx. for SERIALIZABLE.
read validation

5. Connect the pointer of record to new one.

Figure 13. Tx. processing on OCC

Record

New record

1. Create new record. (Insert for update)
Connect the pointer of record to Tx.
write validation (write lock)

2. Check the conflict graph of Tx. for SERIALIZABLE.
read validation

3. Connect the pointer of record to new one.

Tx.state (Pre-commit)

Figure 14. Tx. processing on PCC

TABLE VII. MEHTODS OF TRANSACTION PROCESSING

ISOLATION BTs. Allocation Tx.state

PCC.RC each SQL
state(pre-commit)

at begin

PCC.SI each Tx.
s tate(pre-commit)

at begin

PCC.SERIALIZABLE each Tx.
state(pre-commit)

at begin

OCC.RC each SQL
state(active) at begin,

state(pre-commit)
at va l idation

OCC.SI each Tx.
state(active) at begin,

s tate(pre-commit)
at va l idation

OCC. SERIALIZABLE each Tx.
s tate(active) at begin,

s tate(pre-commit)
at va l idation

VI. IMPLEMENTATION OF POMVCC

The lock used in parallel processing may degrade
scalability [6]. In this section, we introduce a lock-free
implementation for scalable POMVCC to reduce this
degradation.

A. Implementation

We implemented POMVCC to solve the problem of
critical section. Previously, the critical section is that the
transaction increments a CTs, adapts the CTs to the newest
versions and unlocks it during the commit phase. Therefore,
Tx.2 waits until the end of Tx.1 to allocate the CTs.
Therefore, we divide a timestamp into a BTs and CTs to
solve this problem. This is similar to speculative execution.
A BTs is the timestamp used for referring to a record. This
technique is very common. Table VIII and Figure 15 show
the timestamp management and data structure on POMVCC.

We solve the problem of lock for scalability. Generally,
transactions increment a CTs during the commit phase in
parallel. Therefore, the lock is necessary to obtain the
sequential and unique CTs on MVCC. However, POMVCC
does not require a unique CTs. That is, a transaction does not
increment a CTs during the commit phase on POMVCC. The
transaction manager reads a CTs, and the timestamp manager
updates it, as shown in Figure 15. On POMVCC, timestamp
control is divided into a read process by the transaction
manager and a write process by the timestamp manager for
lock-free.

Finally, the commit phase is divided into pre-commit and
commit. The DBMS must manage committed transactions at
the same timestamp on partial order for consistency.
Therefore, MPDB implements double counters to manage
the state of many transactions at each timestamp. The double
counters are Pre-commit Counter at each Timestamp (Ts.PC)
and Commit Counter at each Timestamp (Ts.CC). The
DBMS can determine the transaction state from the
difference between the Ts.PC and Ts.CC. We show the
commit process as follows. The Tx.1 reads a CTs,

460

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

increments the Ts.PC of the CTs, and adapts the CTs to the
newest versions of record during the pre-commit phase. It
then increments the Ts.CC of the CTs when the log is
completed during the commit phase. Then, Tx.2 does not
wait for Tx.1 to execute the commit process. Therefore,
POMVCC is highly scalable. Strictly, the atomic processing
has critical section for incrementing the Ts.PC or Ts.CC;
however, it is very short. The timestamp manager can
increment a BTs or CTs anytime when it has detected an
anomaly or requirement. For example, if the Ts.PC and
Ts.CC are the same, the timestamp manager updates a RTs.
That is, the record can be referred to by using this timestamp
while maintaining consistency. Table VIII lists the
timestamp-management rules on POMVCC.

TABLE VIII. TIMESTAMP-MANAGEMENT RULES

D5. CTs management

CTs[a] → CTs[a+1] <==> ⅰ or any time

ⅰ DB(Tx.i → Tx.j) ≠ DB(Tx.j → Tx.i)

D6. BTs management

BTs[b] → BTs[b+1] <==> Ⅰ and Ⅱ

Ⅰ BTs[b+1] < CTs[b+1]

Ⅱ Ts.PC[b+1] = Ts.CC[b+1]

Ts. Ts.PC Ts.CC

10 5 5

11 12 8

12 4 0

BTs CTs

10 12

Ts. management

update BTs or CTs

read

write

Tx. management

BTs allocation at begin

CTs allocation at commit

CTs release at commit

CTs incrementation at abort
write

read

Figure 15. Timestamp management and data structure on POMVCC

B. Log management

Table IX lists the general log-management rules. We
define the I/O completion as Completion (Comp). Log
management must complete the transaction processing of all
CTs (10) if it can complete transaction processing of CTs
(11), as shown in Table IX. This rule corresponds to the
general cascading protocol for recovery processing.

As a result of separating timestamps into BTs and CTs,
this rule became unnecessary on MPDB because the BTs
manager guarantees that all readable records persisted, as
shown in Table VIII. Log management does not need to
control the log execution order, so it can maintain high-
scalability.

TABLE IX. LOG-MANAGEMENT RULES

D7. Log management

Comp(Ts[a]) → Comp(Ts[a+1]) <==>
∀a (Logged(Ts[a]) ≦ Logged(Ts[a+1])

C. Interface of request-based approach

Figures 16, 17, 18 and 19 illustrate POMVCC. Figure 16
and 17 show the user interface with which a user requests
begin, commit or abort to the DBMS, and Figure 18 and 19
show the timestamp interface with which the transaction
thread requests any timestamp allocation.

The thread performs the initialization of the data structure
and numbering of a BTs during the begin phase. At this time,
if the user instructs a transaction to use a timestamp, the
timestamp manager increments a CTs up to Ts + 1 and
increments the BTs up to the timestamps at Allocate_BTs.
The timestamp manager stores the transaction-history log
when it increments a CTs.

The thread changes the transaction state from ACTIVE to
PRE-COMMIT and allocates a CTs from the timestamp
manager. When allocating the CTs, the thread increments the
Ts.PC to determine the number of transaction processes in
the CTs. After that, the thread changes the transaction state
from PRE-COMMIT to COMMIT through the validation
phase. If the transaction state is COMMIT, the thread stores
the log and increments the Ts.CC. If the transaction state is
ABORT, the thread decrements the Ts.PC through the abort
phase. After completion of the commit phase, the thread
provides the result and the CTs to the user.

The thread performs the initialization of the data structure
for aborting and incrementing the CTs during the abort phase
and provides the result and CTs to the user because the
thread increments the CTs to avoid the abort due to
refer/update conflict. A transaction must increment a BTs
after incrementing a CTs to avoid conflict. Therefore, the
user gives the CTs during the begin phase during the retry
process. Thus, the transaction can at least avoid the same
conflict problem as the previous one.

Finally, the timestamp manager updates the BTs and CTs
periodically and asynchronously with transaction processing.
This solves the problem in which a user cannot reference
update records even after a long time.

// DBMS aborts the Tx.
AbortTx () {

・・・ abort phase ・・・
if (/*DBMS identifies the cause of Ts. on abort.*/)

CTs = Update_CTs () ;
return (CTs) ;

}

Figure 16. POMVCC interface 1

461

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

// DBMS begins the Tx.
BeginTx (Ts) {

・・・ begin phase ・・・
BTs = Allocate BTs (Ts) ;
return () ;

}

// DBMS commits the Tx.
CommitTx () {

Change Tx.state (Pre-commit) ;
CTs = Allocate CTs () ;
・・・ write validation phase ・・・
・・・ read validation phase ・・・
Change Tx.state (Commit / Abort) ;
if (Tx.state = Commit) { // DBMS can commit the Tx.
・・・ durable phase ・・・
Increment_TsCC (CTs) ;

} else if (Tx.state = Abort) { // DBMS detects the Anomaly.
CTs = AbortTx () ;
Decrement_TsPC (CTs) ;

｝
return (CTs) ; // Ts. for historical read

}

Figure 17. POMVCC interface 2

// Tx. is allocated the BTs. at begin for read.
Allocate BTs (Ts) {

CTs = Read_CTs () ;
while (CTs ≦ Ts) {

CTs = Update_CTs () ;
}
do {

BTs = Update_BTs () ;
} while (BTs < Ts) ;
return (BTs) ;

}

// Tx. is allocated the CTs. at commit
Allocate CTs () {

atomic {
CTs = Read_CTs () ;
Increment_TsPC (CTs) ;

}
return (CTs)

}

// This function updates the CTs.
Update_CTs () {

CTs = Increment_CTs () ;
Log_CTs (CTs-1, Read_TsPC (CTs-1)) ;
return (CTs) ;

}

Figure 18. Ts-management interface 1

// This function checks & updates the BTs.
Update_BTs () {

BTs = Read_BTs () ;
CTs = Read_CTs () ;
// It reads the Ts.Pre-commit Counter (Ts.PC).
PC = Read_TsPC (BTs + 1) ;
// It reads the Ts.Commit Counter (Ts.CC).
CC = Read_TsCC (BTs + 1) ;
if (BTs < CTs - 1 && PC = CC)

BTs = Increment_BTs () ;
return (BTs) ;

}

Figure 19. Ts-management interface 2

VII. EVALUATION OF PROTOTYPE IMPLEMENTATION

In this section, we compare the performance of MVCC and
POMVCC. We implemented MVCC and POMVCC on
MPDB and evaluated their performance. In this experiment,
we used the industry standard benchmark TPC-C and
repeatedly executed the stored procedure calls that model
New Order [34].

A. Experimental Environment

Figure 20 depicts the system configuration. Four blade
servers were used, i.e., symmetric multiprocessors, and had 8
CPUs (80 cores), 1 TB of memory, and 8 ports of an 8-Gb
Fiber Channel (FC). The servers and storage were connected
via an FC switch and communicated with FC communication.

In the OS (CentOS 6.5) settings, FC ports were assigned to
each CPU to distribute the interrupt overhead of FC
communication. Hyper-threading was disabled.

For the MPDB settings, one thread was assigned to one
core. This means that MPDB used a maximum of 80 threads.
One log file was assigned to one CPU to load balance the
logs. The isolation level was SNAPSHOT ISOLATION.

The DB was created on the basis of TPC-C. The number of
warehouses was 16 and the size of the DB was 0.72 GB. The
item, stock, and order_line tables were used in TPC-C.
Indexes were also created for the i_id of the item table,
s_w_id and s_i_id of the stock table, and ol_o_id and
ol_w_id of the order_line table.

Server

BLADE (BS2000)

Blade BS2000

CPU Xeon(R) E7 8870 x 2

Memory 256GB (16GB x 16)

PCIe 2 Port HBA (8Gb)

Storage
Hitachi Unified

Storage VM (HUS-VM)

Cache 54GB Memory

Disk
6.4TB (1.6TB x 4)

Hitachi Accelerated Flash

RAID RAID5 (3D + 1P)

System Configuration

x4

x8

Storage

FC Switch

x8

Figure 20. System Configuration

462

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Workload

The workload shown in Figure 21 was created on the basis
of TPC-C’s New Order. The workload simulates the
repeatedly executing part of New Order. The processing in
Figure 21 was repeated ten times per transaction on average.

1 SELECT i_price, i_name, i_data

INTO :i_price, :i_name, :i_data

FROM item

WHERE i_id = :ol_i_id

2 SELECT s_quantity, s_data, s_dist_...

INTO :s_quantity, :s_data, :s_dist_...

FROM stock

WHERE
s_i_id = :ol_i_id AND

s_w_id = :ol_supply_w_id
3 UPDATE stock

SET s_quantity = :s_quantity

WHERE
s_i_id = :ol_i_id AND
s_w_id = :ol_supply_w_id

4 INSERT

INTO order_l ine (,,,,,)

VALUES (,,,,,,)

While (Repeats 5 ~ 15 times, Ave. 10)

Figure 21. Experiment Workload

C. Experimental Results and Consideration for MPDB

We evaluated MPDB before evaluating POMVCC. We did
not use POMVCC to evaluate the basic performance of
MPDB. MPDB has various mechanisms but the one most
contributing to performance improvement is log
parallelization. Therefore, we verified the effects of
performance and scalability using parallel log processing.
We compared single log processing and parallel log
processing and measured the performance and scalability of
DBMS with increasing CPU for each log processing.

We compared the performance of single log processing
and parallel log processing corresponding to the number of
threads. In Figure 22, the x-axis represents the number of
threads, and the y-axis represents transactional performance
(tps). The performance of parallel log processing increased
as the number of threads increased. However, the
performance of single log processing decreased as the
number of threads increased more than 40 threads. We
confirmed that parallel log processing can perform 5.02
times better than single log processing. We also found that
I/O interrupt is focused on a specific CPU core by analyzing
single log processing with “mpstat” of Linux, as shown in
Figure 23. In this figure, the x-axis represents the id of CPU
core (0–79), and the y-axis represents time. We confirmed
that parallel log processing distributes the load of I/O
interrupt.

We also compared the scalability of single log processing
and parallel log processing corresponding to the number of
threads. In Figure 24, the x-axis represents the number of
threads, and the y-axis represents the performance rate on
Figure 22 when the performance at 10 threads was assumed
as that at 100. In single log processing, the scalability

suddenly deteriorated at 40 threads. However, parallel log
processing maintained scalability degradation at less than
15% even with 80 threads.

We confirmed that if the number of CPUs exceeds 2, it is
necessary to parallelize log processing.

[x-axis: CPU cores]

[y-axis: performance (K tps)]

0

50

100

150

200

250

300

350

10 20 40 60 80

MVCC-8Log

MVCC-1Log

Figure 22. Performance evaluation for log processing

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0:00:06 55 25 26 21 19 3 26 19 14 27 64 36 33 24 18 23 22 11 13 13 54 27
0:00:07 55 30 28 17 18 12 18 13 20 21 63 26 29 22 20 16 15 19 14 21 52 22
0:00:08 54 10 28 17 31 22 24 19 3 25 66 30 29 29 21 17 21 29 22 2 59 32
0:00:09 52 11 24 27 23 26 17 23 6 22 69 35 26 23 28 23 21 19 24 5 62 38
0:00:10 58 29 28 24 22 1 29 22 23 31 76 38 34 26 29 24 25 26 1 23 56 16
0:00:11 60 28 28 28 25 1 27 26 22 23 77 38 34 28 28 26 25 26 5 23 60 24
0:00:12 62 31 31 27 13 24 27 29 21 22 76 40 44 27 22 26 22 5 22 24 63 33
0:00:13 44 19 43 18 66 8 18 34 17 21 53 34 29 19 16 20 18 37 22 36 40 20
0:00:14 60 34 25 30 31 23 25 30 28 22 80 44 38 24 27 26 22 27 26 28 66 38
0:00:15 71 37 38 31 33 29 32 25 30 29 81 41 38 36 30 22 25 29 29 27 71 41
0:00:16 74 38 41 40 34 34 32 39 29 37 84 46 41 37 34 31 30 29 29 31 78 45
0:00:17 76 42 38 43 40 38 32 40 33 32 84 49 43 36 35 32 32 31 32 34 78 47
0:00:18 75 41 41 38 40 35 33 36 33 36 83 46 44 34 37 30 26 33 32 34 74 45

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0:00:06 49 30 27 10 25 23 3 6 22 11 23 30 26 23 14 26 21 8 26 29 25 34
0:00:07 56 27 17 11 22 13 13 16 14 16 18 31 21 18 25 21 16 12 19 22 20 34
0:00:08 45 35 22 23 25 28 23 21 14 29 24 32 30 26 2 26 17 23 30 20 28 34
0:00:09 45 27 29 26 22 19 26 22 23 21 16 24 21 18 5 18 23 20 15 17 20 34
0:00:10 63 38 28 3 25 29 1 1 21 23 29 36 27 25 24 31 24 9 27 30 25 38
0:00:11 66 38 29 4 27 26 2 1 24 24 29 39 33 30 23 33 26 3 30 30 29 38
0:00:12 69 29 27 26 26 9 22 23 31 9 27 25 25 11 29 28 25 25 28 33 24 39
0:00:13 49 13 27 21 26 1 17 8 30 79 16 12 11 9 32 25 18 27 18 17 19 33
0:00:14 69 36 35 26 23 32 27 30 28 27 26 38 36 29 29 38 28 22 27 27 21 34
0:00:15 76 39 33 31 32 31 29 28 26 29 32 45 36 29 32 34 27 27 29 35 31 46
0:00:16 77 42 42 36 33 35 31 35 33 30 36 44 41 38 32 35 35 32 33 37 33 43
0:00:17 79 47 43 38 34 39 34 39 35 34 33 49 43 41 40 38 38 33 35 38 27 45
0:00:18 78 42 40 31 34 35 29 30 31 35 38 44 42 34 39 39 36 27 34 43 33 45

ti
m

e

socket 0 …

ti
m

e

socket 1

MVCC - 8 Log

MVCC - 1 Log

Figure 23. Load of I/O interrupt each CPU core

[y-axis: performance rate (%)]

[x-axis: CPU cores]

0

20

40

60

80

100

120

10 20 40 60 80

MVCC-8Log MVCC-1Log

Figure 24. Scalability evaluation for log processing

463

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Experimental Results and Consideration for

POMVCC

We compared the performance of MVCC (8 logs) and
POMVCC (8 logs) corresponding to the number of threads.
In Figure 25, the x-axis represents the number of threads, and
the y-axis represents tps on increasing conflict rate. The
performance of both MVCC and POMVCC increased as the
number of threads increased. POMVCC ran 1.36–1.60 times
faster than MVCC.

To investigate scalability more precisely, we conducted an
experiment in which the number of warehouses changed
corresponding to the number of threads. That is, the number
of warehouses was ten (DB size was 0.45 GB) when the
number of threads was ten and the one was 80 (DB size was
3.61 GB) when the one was 80. The respective experimental
results show Figures 26 and 27.

In Figure 26, the x-axis represents the number of threads,
and the y-axis represents tps on a fixed conflict rate. The
performance of POMVCC on a fixed conflict rate (Figure
26) is higher than the performance on increasing conflict rate
(Figure 25). POMVCC on a fixed conflict rate was 1.34
times faster than one on increasing rate. However, MVCC
exhibited almost the same performance regarding increasing
conflict rate (Figure 25) and regarding the fixed conflict rate
(Figure 26). Therefore, POMVCC was 1.63-1.74 times faster
than MVCC.

We then compared the scalability of MVCC and
POMVCC corresponding to the number of threads at a fixed
conflict rate. In Figure 27, the x-axis represents the number
of threads, and the y-axis represents the performance rate on
Figure 26 when the performance at 10 threads was assumed
as that at 100. The scalability of both MVCC and POMVCC
slowly decreased as the number of threads increased. The
scalability coefficient of MVCC was 87.98–97.96% and that
of POMVCC was 94.02–98.32%. POMVCC improved by
6.87% compared with MVCC. This experiment suggests that
the scalability coefficient of POMVCC is greater than that of
MVCC.

From these experiments, the scalability coefficients of
POMVCC and MVCC depended on the size of the DB and
number of threads. When the size of the DB was large and
the conflict rate of the transaction was low, the scalability
coefficient of POMVCC was high, and in all experiments,
POMVCC ran faster than MVCC.

0

50

100

150

200

250

300

350

10 20 40 60 80

POMVCC

MVCC

[x-axis: CPU cores]

[y-axis: performance (K tps)]

Figure 25. Performance evaluation regarding increasing conflict rate

0

50

100

150

200

250

300

350

10 20 40 60 80

POMVCC-FIX

MVCC-FIX

[x-axis: CPU cores]

[y-axis: performance (K tps)]

Figure 26. Performance evaluation regarding fixed conflict rate

[y-axis: performance rate (%)]

[x-axis: CPU cores]

0

20

40

60

80

100

120

10 20 40 60 80

POMVCC-FIX MVCC-FIX

Figure 27. Scalability evaluation regarding fixed conflict rate

VIII. CONCLUSION AND FUTURE WORK

We proposed POMVCC, which maintains the protocol of
MVCC and improves performance and scalability of DBMS.
POMVCC is focused on the partial order of transactions. The
conventional technique provides a timestamp to each
transaction, but POMVCC provides a timestamp to multiple
transactions. POMVCC reduces the number of timestamps
that are updated and improves performance and scalability of
DBMS. We discussed the difference in isolation levels
between MVCC and POMVCC, as shown in Figure 4.

We implemented and evaluated POMVCC on an in-
memory DBMS we developed called “MPDB”, which is an
MVCC-based, lock-free, in-memory DBMS that is
characterized by parallel logs and mixed PCC/OCC.

We first compared the performance and scalability of
MPDB corresponding to the number of threads. The results
indicate that the most contributing mechanism to
performance improvement was log parallelization. Parallel
log processing maintains scalability degradation of less than
15% even with 80 threads. We confirmed that if the number
of CPUs exceeds 2, it is necessary to parallelize the log
processing.

We then compared the performance and scalability of
MVCC and POMVCC corresponding to the number of
threads regarding an increasing conflict rate. The
performance of POMVCC was 1.36–1.60 times better than
that of MVCC. We also compared the performance of
MVCC and POMVCC regarding a fixed conflict rate.
POMVCC was 1.63–1.74 times faster than MVCC. The

464

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

scalability coefficient of MVCC was 87.98–97.96% and that
of POMVCC was 94.02–98.32%. The performance of
POMVCC improved by 6.87 % compared with MVCC.

The scalability coefficients of POMVCC and MVCC
depended on the size of the DB and number of threads.
When the size of the DB was large and the conflict rate of
the transaction was low, the scalability coefficient of
POMVCC was high, and in all experiments, POMVCC ran
faster than MVCC.

We implemented POMVCC on MPDB and evaluated it by
using SNAPSHOT ISOLATION, for which POMVCC
performed better than MVCC. However, the performance
trend was unclear because the probability of WRITE SKEW
increased on SERIALIZABLE. This occurs when reference
and update transactions are executed at the same timestamp.
POMVCC increases the number of transactions at the same
timestamp. As a result, the number of WRITE SKEWs
increases. It is also possible that RW-CONFLICT GRAPH
will increase and a large cyclic graph will be created.
Therefore, our future work is to implement and evaluate
POMVCC by using SERIALIZABLE.

REFERENCES

[1] Y. Isoda, A. Tomoda, T. Tanaka, and K. Mogi, “Partial Order
Multi Version Concurrency Control,” DBKDA 2018, The
Tenth International Conference on Advances in Databases,
Knowledge, and Data Applications, May 2018.

[2] Y. Isoda, A. Tomoda, K. Ushijima, T. Tanaka, T. Uemura, T.
Hanai, and et al., “In-Memory Database Engine for Scale-up
System,” Forum on Information Technology '15, D-035, 2015
(in Japanese).

[3] Y. Isoda, K. Ushijima, T. Tanaka, T. Hanai, and K. Mogi,
“Proposal of Multi Version Concurrency Control for Partial
Order Transaction,” Forum on Information Technology '16,
D-015, 2016 (in Japanese).

[4] C. Diaconu, C. Freedman, E. Ismert, P. Larson, P. Mittal, R.
Stonecipher, N. Verma, and M. Zwilling, “Hekaton: SQL
server's memory-optimized OLTP engine,” SIGMOD '13
Proceedings, pp. 1243-1254, 2013.

[5] H. Kimura, “FOEDUS: OLTP Engine for a Thousand Cores
and NVRAM,” SIGMOD '15 Proceedings, pp. 691-706, 2015.

[6] P. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel,
and M. Zwilling, “High-performance concurrency control
mechanisms for main-memory databases,” Proceedings of the
VLDB Endowment, Volume 5 Issue 4, pp. 298-309, 2011.

[7] T. Wang, and R. Johnson, “Scalable logging through
emerging non-volatile memory,” Proceedings of the VLDB
Endowment, Volume 7 Issue 10, pp. 865-876, 2014.

[8] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh, and C.
Bornhövd, “Efficient transaction processing in SAP HANA
database: the end of a column store myth,” SIGMOD '12
Proceedings, pp. 731-742, 2012.

[9] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden,
“Speedy Transactions in Multicore In-Memory Databases,”
SOSP '13 Proceedings, pp. 18-32, Farmington, Pennsylvania,
USA, 2013.

[10] J. Gray, and A. Reuter, “Transaction Processing: Concepts
and Techniques,” Elsevier, 1992.

[11] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker,
“OLTP through the looking glass, and what we found there,”
SIGMOD '08 Proceedings, pp. 981-992, 2008.

[12] M. J. Cahill, U. Röhm, and A. D. Fekete, “Serializable
isolation for snapshot databases,” ACM Transactions on
Database Systems, Volume 34 Issue 4, Article No.20, 2009.

[13] A. Fekete, D. Liarokapis, P. O'Neil, and D. Shasha, “Making
snapshot isolation serializable,” ACM Transactions on
Database Systems, Volume 30 Issue 2, pp. 492-528, 2005.

[14] D. L. Mills, “Internet time synchronization: the network time
protocol,” IEEE Transactions on Communications, Volume
39, Issue 10, October 1991.

[15] P. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel,
and M. Zwilling, “High-performance concurrency control
mechanisms for main-memory databases,” Proceedings of the
VLDB Endowment Volume 5 Issue 4, pp. 298-309, 2011.

[16] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J.
Furman, and et al., “Spanner: Google's Globally Distributed
Database,” ACM Transactions on Computer Systems,
Volume 31 Issue 3, Article No.8, 2013.

[17] Hewlett Packard, “Memory-Driven Computing,” https://news.
hpe.com/content-hub/memory-driven-computing/, November
2018.

[18] H. Lim, D. Han, D. G. Andersen, and M. Kasminsky, “MICA:
A Holistic Approach to Fast In-Memory Key-Value Storage,”
NSDI '14, pp. 429-444, April 2014.

[19] A. Pavlo, “What are we doing with our lives?,” SIGMOD '17
Keynote, http://www.cs.cmu.edu/~pavlo/slides/pavlo-keynote
-sigmod2017.pdf, November 2018.

[20] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P.
Schwarz, “ARIES: a transaction recovery method supporting
fine-granularity locking and partial rollbacks using write-
ahead logging,” ACM Transactions on Database Systems,
Volume 17 Issue 1, pp. 94-162, 1992.

[21] D. A. Menascé, and T. Nakanishi, “Optimistic versus
pessimistic concurrency control mechanisms in database
management systems,” Information Systems Volume 7, Issue
1, pp. 13-27, 1982.

[22] H. T. Kung, and J. T. Robinson, “On optimistic methods for
concurrency control,” ACM Transactions on Database
Systems, Volume 6 Issue 2, pp. 213-226, 1981.

[23] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger, “The
notions of consistency and predicate locks in a database
system,” Communications of the ACM, Volume 19 Issue 11,
pp. 624-633, 1976.

[24] I. Pandis, R. Johnson, N. Hardavellas, and A. Ailamak, “Data-
oriented transaction execution,” Proceedings of the VLDB
Endowment, Volume 3 Issue 1-2, pp. 928-939, 2010.

[25] I. Pandis, P. Tozun, R. Johnson, and A. Ailamaki, “PLP: page
latch-free shared-everything OLTP,” Proceedings of the
VLDB Endowment, Volume 4 Issue 10, pp. 610-621, 2011.

[26] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B.
Falsafi, “Shore-MT: a scalable storage manager for the
multicore era,” EDBT '09 Proceedings, pp. 24-35, 2009.

[27] P. A. Bernstein, V. Hadzilacos, and N. Goodman,
“Concurrency Control and Recovery in Database System,”
1987.

[28] ORACLE, “Oracle Database 12c Release 2,” https://docs.
oracle.com/en/database/oracle/oracle-database/12.2/index.
html, November 2018.

[29] MySQL, “MySQL 5.7 Reference Manual,” https://dev.mysql.
com/doc/refman/5.7/en/, November 2018.

[30] PostgreSQL, “PostgreSQL 9.6.10 Documentation,” https://
www.postgresql.org/docs/9.6/static/index.html, November
2018.

[31] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil, and
P. O'Neil, “A Critique of ANSI SQL Isolation Levels,” ACM
SIGMOD '95 Proceedings, pp. 1-10, San Jose, CA, 1995.

465

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[32] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N.
Hachem, and P. Helland, “The end of an architectural era: (it's
time for a complete rewrite),” VLDB '07 Proceedings, pp.
1150-1160, 2007.

[33] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S.
Zdonik, and et al., “H-store: a high-performance, distributed
main memory transaction processing system,” Proceedings of
the VLDB Endowment, Volume 1 Issue 2, pp. 1496-1499,
2008.

[34] The Transaction Processing Council, “TPC-C Benchmark
(Version 5.11.0),” http://www.tpc.org/tpcc/, November 2018.

[35] J. L. Hennessy, and D. A. Patterson, "Computer Architecture:
A Quantitative Approach," Morgan Kaufmann Publishers.

[36] E. P. C. Jones, D. J. Abadi, and S. Madden, “Low Overhead
Concurrency Control for Partitioned Main Memory
Databases,” SIGMOD '10 Proceedings, pp. 603-614, June
2010.

[37] D. Levinthal, “Tutorial: Intel Core i7 and Intel Xeon 5500
Microarchitecture, Optimization and Performance Analysis,”
2010 IEEE International Symposium on Performance
Analysis of Systems and Software, White Plains, NY, 2010.

