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Abstract - In this paper, we present as far as we know for the 

first time, a unique method combining visibility analysis in 3D 

environments with dynamic motion planning algorithm, 

named Visibility Velocity Obstacles (VVO). Our method is 

based on two major steps. The first step is based on analytic 

visibility boundaries calculation in 3D environments, taking 

into account sensors' capabilities including probabilistic 

consideration. In the second stage, we generate VVO 

transferring visibility boundaries from the position space to the 

velocity space, for each object. Each VVO represents velocity's 

set of possible future collision and visibility boundaries. Based 

on our analysis in velocity space, we plan our trajectory by 

selecting future robot's velocity at each time step, tracking 

after specific target considering visibility constraints as 

integral part of the velocities space. We formulate the tracked 

target in the environment as part of our planner and include 

visibility analysis for the next time step as part of our planning 

in the same search space. For the first time, we define visibility 

aspects as part of velocity space, where all the objects are 

modeled from visibility point of view. We introduce potential 

trajectory planner combining unified 3D visibility analysis for 

target tracking as part of dynamic motion planning.   

 
 

Keywords - Visibility; Motion planning; 3D; Urban 

environment; Spatial analysis.  

I.  INTRODUCTION 

Trajectory planning has developed alongside the 

increasing numbers of Unmanned Aerial Vehicles (UAVs), 

drones unmanned ground vehicles all over the world, with a 

wide range of applications such as surveillance, information 

gathering, suppression of enemy defenses, air to air combat, 

mapping buildings and facilities, etc. 

Most of these applications are involved in very 

complicated environments (e.g., urban), with complex terrain 

for civil and military domains [1].  

With these growing needs, several basic capabilities must 

be achieved. One of these capabilities is the need to avoid 

obstacles such as buildings or other moving objects, while 

autonomously navigating in 3D urban environments. 

Path planning problems have been extensively studied in 

the robotics community, finding a collision-free path in static 

or dynamic environments, i.e., moving or static obstacles. 

Over the past twenty years, many methods have been 

proposed, such as starting roadmap, cell decomposition, and 

potential field [6]. 

In this paper, we present visibility aspects as part of 

velocity space, where all the objects are modeled from 

visibility point of view. We introduce potential trajectory 

planner combining unified 3D visibility analysis for target 

tracking as part of dynamic motion planning. In the first part, 

we formulate visibility boundaries problem and introduce 

analytic solution that in the following sub-section integrated 

with sensor's limitations. Later on, we present the VVO 

method, demonstrated with visibility boundaries with cars, 

pedestrians and buildings visibility boundaries. In the last 

part, we suggest pursuer planner using VVO for UAV test 

case.  

II. RELATED WORK 

Path planning becomes trajectory planning when a time 

dimension is added for dynamic obstacles [7][8]. Later on, a 

vehicle's dynamic and kinematic constraints have been taken 

into account, in a process called kinodynamic planning [9]. 

All of these methods focus solely on obstacle avoidance. 

Trajectory planning for air traffic control and ground 

vehicles has been well studied [10], based on short path 

algorithms using 2D polygons, 3D surfaces [11]. UAVs 

navigation has also been explored with vision-based methods 

[12], with local planning or a predefined global path [13]. 

UAV path planning is different from simple robot path 

planning, due to the fact that a UAV cannot stop, and must 

maintain its velocity above the minimum, as well as not 

being able to make sharp turns. 

UAV path planning methods usually decompose the path 

planning into two steps: first, using some common path 

planning method in a polygonal environment [6], then, 

considering UAV dynamic and kinematic constraints into the 

trajectory [14]. These methods assume decoupling, which 

affects the trajectory, as stated by all authors.  

However, most of the effort focused on UAV trajectory 

planning is related to obstacle avoidance with kinodynamic 

constraints, without taking into account visibility analysis as 

part of the nature of the trajectory in urban environments. 
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The visibility problem has been extensively studied over 

the last twenty years, due to the importance of visibility in 

GIS and Geomatics, computer graphics and computer vision, 

and robotics. Accurate visibility computation in 3D 

environments is a very complicated task demanding a high 

computational effort, which could hardly have been done in 

a very short time using traditional well-known visibility 

methods [15]. The exact visibility methods are highly 

complex, and cannot be used for fast applications due to their 

long computation time. Previous research in visibility 

computation has been devoted to open environments using 

DEM models, representing raster data in 2.5D (Polyhedral 

model), and do not address, or suggest solutions for, dense 

built-up areas. Most of these works have focused on 

approximate visibility computation, enabling fast results 

using interpolations of visibility values between points, 

calculating point visibility with the Line of Sight (LOS) 

method [16]. Other fast algorithms are based on the 

conservative Potentially Visible Set (PVS) [17]. These 

methods are not always completely accurate, as they may 

render hidden objects' parts as visible due to various 

simplifications and heuristics. 

A vast number of algorithms have been suggested for 

speeding up the process and reducing computation time. 

Franklin [18] evaluated and approximated visibility for each 

cell in a DEM model based on greedy algorithms. Wang et 

al. [19] introduced a Grid-based DEM method using 

viewshed horizon, saving computation time based on 

relations between surfaces and the LOS method. Later on, an 

extended method for viewshed computation was presented, 

using reference planes rather than sightlines [20].  

One of the most efficient methods for DEM visibility 

computation is based on shadow-casting routine. The routine 

cast shadowed volumes in the DEM, like a light bubble [21]. 

Extensive research treated Digital Terrain Models (DTM) in 

open terrains, mainly Triangulated Irregular Network (TIN) 

and Regular Square Grid (RSG) structures. Visibility 

analysis in terrain was classified into point, line and region 

visibility, and several algorithms were introduced, based on 

horizon computation describing visibility boundary [22]. 

Only a few works have treated visibility analysis in urban 

environments. A mathematical model of an urban scene, 

calculating probabilistic visibility for a given object from a 

specific viewcell in the scene, has been presented by [23]. 

This is a very interesting concept, which extends the 

traditional deterministic visibility concept. Nevertheless, the 

buildings are modeled as cylinders, and the main challenges 

of spatial analysis and building model were not tackled. 

Other methods were developed, subject to computer graphics 

and vision fields, dealing with exact visibility in 3D scenes, 

without considering environmental constraints. Plantinga and 

Dyer [15] used the aspect graph – a graph with all the 

different views of an object. Due to their computational 

complexity, all of these works are not applicable to a large 

scene with near real-time demands, such as UAV trajectory 

planning.  

III. VISIBILITY BOUNDARIES ANALYSIS 

A. Problem Statement 

We consider visibility problem in a 3D urban 

environment, consisting of static constant objects and 

dynamic objects. 

Given: 

• Static objects:  

3D buildings modeled as 3D cubic parameterization
_
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• Dynamic objects:  

     Moving cars modeled as 3D cubic parameterization, 

     
( , , )carC x y z

 
• Pedestrian modeled as cylinder parameterization, 

     
( , , )pedsC x y z

 
• Trees modeled with two cylinder parameterization, 

( , , )treeC x y z
 

• Wind profile vw(z). 

• Viewpoint V(x0, y0,z0), in 3D coordinates. 
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We extend our previous work [2], developed for a fast 

and efficient visibility analysis for buildings in urban 

environments, and consider also a basic structure of 

cylinders, which allows us to model pedestrians and trees. 

Based on our probabilistic visibility computation of dynamic 

objects, we test the effect of these by using data gathered 

from web-oriented GIS sources to update our estimation and 

prediction on these entities. 

B. Dynamic Objects – Modeling and Probabilistic Visibility 

Dynamic objects such as moving cars and pedestrians, 

directly affect visibility in urban environments. 

Due to modeling limitations, these entities are usually 

neglected in spatial analysis aspects. We focus on three 

major dynamic objects in an urban case: moving cars and 

pedestrians. Each object is modeled with 3D boxes or 3D 

cylinders, which allow us to extend the use of our previous 

visibility analysis in urban environments presented for static 

objects [2]. 

 

1) Moving Car 

 

3D Modeling: As we mentioned earlier, web-cameras in 

urban environments can record the moving cars at any 
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specific time. Image sources such as web cameras, like other 

similar sensors sources, demand an additional stage of 

Automatic Target Detection (ATD) algorithms to extract 

these objects from the image [31]. In this research we do not 

focus on ATD, which must be implemented when shifting 

from the research described in the paper toward an 

applicable system. 

The common car structure can be easily modeled by two 

3D boxes, as can be seen in Fig. 1(b), which is similar to the 

original car structure presented in Fig. 1(a). 

 

 

 
(a) 

                                                
(b) 

Fig. 1. Car Modeling Using 3D Boxes: (a) the Original Car, (b) the 

Modeled Car  

We define the Car Boundary Points (CBP) as the set of 

visible surfaces' boundary points of 3D boxes modeling the 

car presented in Fig. 1(b). Each box is modeled as 3D cubic 

Ccar(x, y, z)  as presented extensively in [2] for a building 

model case: 
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Car Boundary Points (CBP) - we define CBP of the object 

i as a set of boundary points  j = 1. . NCBP_bound  of the 

visible surfaces of the car object, from viewpoint 

V(x0, y0,z0), where the maximum surface's number is six and 

each surface defined by four points, NCBP_bound ≤ 24. 

In Fig. 2, the car is modeled by using two 3D boxes. 

Visible surfaces colored in red, CBP marked with yellow 

points. 
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Fig. 2. Modeling Car Using 3D Boxes (CBP Marked with Yellow 

Points) 

Probabilistic Visibility Analysis  

 

Visibility has been treated as Boolean values. Due to 

incomplete information and the uncertainties of predicting 

the car's location at future times, visibility becomes much 

more complicated. 

As it is well known from basic kinematics, CBP can be 

estimated in future time t + ∆t as: 

 

CBPi(t + ∆t) = CBPi(t) + V(t)∆t + A(t)∆t2

2
                              

 

Where V(t) is the car velocity vector V(t) = (vxvy  )
T, and 

the acceleration vector  A(t) = (axay  )
T . Estimation of a 

car's location in the future based on a web camera is not a 

simple task. Driver behavior generates multi-decision 

modeling, such as car-following behavior, gap acceptance 

behavior, or lane-change cases including traffic flow, speed 

etc. [32]. 
Our probabilistic car model is based on microscopic 

simulation models that were properly calibrated and 

validated using VISSIM simulation. VISSIM is a time-based 

microscopic simulation tool that uses various driver 

behaviors and vehicle performances to accurately represent 
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an urban traffic model. The VISSIM simulation model has 

been validated when compared to the data from various real-

world situations [33] and used for the test-bed network by 

[34][35], and on driver behavior research defining average 

speed and acceleration [32]. 

The average speed in urban environments is about 45 

[km/hr], from a minimum of 40 [km/hr] up to a maximum of 

50 [km/hr]. In the situation of a free driving case, which is 

the common mode in urban environments [36], the 

acceleration of family car can change 

between 1 to 3.5 [m
sec2⁄ ], and on average 2.5 [m

sec2⁄ ], as 

seen in Fig. 3. 

 

Fig. 3. Average Acceleration Rate of a Family Car in an Urban 

Environment [32] 

As can be seen from several validations of car and driver 

estimation, velocity and acceleration are distributed as 

normal ones, and lead to normal location distribution: 

V(t)~N(μ = 45, σ2 = 10) 

A(t)~N(μ = 2.5, σ2 = 1) 

CBP(t + ∆t)~ ∑ N 

 

 

In time step t, where the car's location is taken from a 

web-camera, visibility analysis from CBP(t)is an exact one, 

based on our previous visibility analysis [2], as seen in Fig. 2 

Visibility analysis becomes probabilistic for future time t +
∆t , applying the same visibility analysis for CBP(t + ∆t) 

presented in Fig. 4. 

 

Fig. 4. Probabilistic Visibility Analysis for CBP 

In Fig. 4, the car's location from a web-camera appears in 

the bottom left side. For ∆t = 2[sec], the car's location is 

marked by two 3D boxes, where CBP for each of them is the 

boundary of visible surfaces marked in red. The probability 

that the visible surfaces, which are bounded by CBP, will be 

visible in future time is based on the last update taken from 

the web application (depicted with arrows in Fig. 4, 

computed by using two different random normal PDF values 

for V and A based on eq. (4). 

2) Pedestrians 

3D Modeling: Pedestrian modeling can be done in high 

resolution, but due to ATD algorithms capabilities, 

pedestrians are usually bounded by a 3D cylinder and not as 

an exact detailed model [31]. For this reason, we model 

pedestrians as 3D cylinders, which is somewhat conservative 

but still applicable. 

Pedestrian can be easily modeled by 3D cylinder, as seen 

in Fig. 5 (marked in red), which is similar to the output from 

ATD methods tested on a web-camera output recognizing 

walkers in urban environments. 

We extend our previous visibility analysis concept [2] and 

include new objects modeled as cylinders as continuous 

curves parameterizationCPeds(x, y, z). 

Cylinder parameterization can be described as: 
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Fig. 5. Modeling Pedestrians in Urban Scene Using Cylinders 

(Colored in Red) 
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We define the visibility problem in a 3D environment for 

more complex objects as: 

 

co s co s 0 0 0'( , ) ( ( , ) ( , , )) 0
n t n tz zC x y C x y V x y z − =

 
 

 

where 3D model parameterization is C(x, y)z=const, and the 

viewpoint is given as V(x0, y0,z0). Extending the 3D cubic 

parameterization, we also consider the cylinder case. 

Integrating eq. (5) to (6) yields: 
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As can be noted, these equations are not related to Z axis, 

and the visibility boundary points are the same for each x-y 

cylinder profile. 

The visibility statement leads to complex equation, which 

does not appear to be a simple computational task. This 

equation can be efficiently solved by finding where the 

equation changes its sign and crosses zero value; we used 

analytic solution to speed up computation time and to avoid 

numeric approximations. We generate two values of θ 

generating two silhouette points in a very short time 

computation. Based on an analytic solution to the cylinder 

case, a fast and exact analytic solution can be found for the 

visibility problem from a viewpoint. 

We define the solution presented in eq. (8) as x-y-z 

coordinates values for the cylinder case as Pedestrian 

Boundary Points (PBP). PBP are the set of visible 

silhouette points for a 3D cylinder modeling the pedestrian, 

as presented in Fig. 6: 
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(a)                                                                 

 
 (b) 

Fig. 6. PBP for a Cylinder using Analytic Solution marked as blue 

points, Viewpoint Marked in Red: (a) 3D View (Visible Boundaries 

Marked with Red Arrows); (b) Topside View 

 

C. Visibility Analysis Considering Sensor's Stochastic 

Character 

In this section, we extend our visibility model by 

exploring and including sensors' sensing capabilities and 

physical constraints. Our visibility analysis is based on the 

fact that sensors are located at specific visibility points. 

Sensors are commonly treated as deterministic detectors, 

where a target can only be detected or undetected. These 

simplistic sensing models are based on the disc model 

[37][38]. 

We study sensors' visibility-based placement effected by 

taking into account the stochastic character of target 

detection. We present a single sensor model, including noisy 

measurement, and define the necessary condition for 

visibility analysis with false alarm and detection probabilities 

for each visibility point's candidate. 

 

1) Single Visibility Sensing Model 

Most of the physical signals are based on energy vs. 

distance from single source model. Different kind of sensors 

such as: radars, lasers, acoustics, etc., are based on this signal 

character. Like other signal models presented in the literature 

[39][40][41] we use signal decay model as follows: 
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L(d) = {

L0

(
d
d0

)k
, if d > d0

L0, if d ≤ d0

 

 

where L0 is the original energy emitted by the target, k is the 

decaying factor (typical values from 2 to 5), and d0  is a 

constant determined by the size of the target and the sensor. 

We model the sensor's noise Ni located at visibility point 

Vi , using zero-mean normal distribution, Ni~N(0, σ2) . 

Sensor signal energy including noise effect, Si , can be 

formulated as: 

 

Si = L(di) + Ni
2 

 

In practice, Si parameters are set by empiric datasets.  

 
2) Necessary Condition for Visibility  

Nowadays, detection systems use more and more data 

fusion methods [42][43]. In order to use multi sensors 

benefits, fusion and local decision-making using several 

sensors' data is a very common capability. As with other 

distributed data fusion methods, we assume that each sensor 

sends the energy measurement to a Local Decision Making 

Module (LDMM). Similar to other well known fusion 

methods [41], the LDMM integrates and compares the 

average sensors' measurements n against detection threshold 

τ.     

Detection probability, denoted by PD , is the probability 

that a target is correctly detected. Supposing that n sensors 

take part in the data fusion applied in the LDMM, detection 

probability is given by: 

 

PD = P(
1

n
∑(L(di) + Ni

2) > τ)

n

i=1

 

 

PD = 1 −  P(∑ (Ni
σ

)
2
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nτ−∑ L(di)n
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PD=1 − Xn(
nτ−∑ L(di)n

i=1

σ2 ) 

 

Where Ni σ~N(0,1)⁄  and Xn  denote the distribution 

function. In the same way, false alarm rate probability is the 

probability of making a positive detection decision when no 

target is present. False alarm rate probability, denoted by PF, 

is given by: 

 

PF = P(
1

n
∑ Ni

2 > τ) = 1 − P(∑ (
Ni

σ
)

2

≤
nτ

σ2)

n

i=1

n

i=1

 

PF = 1 − Xn(
nτ

σ2
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Conditions Necessary for Visibility: Given two real 

numbers, 𝑎 ∈ (0,1)  and 𝑏 ∈ (0,1) . Visibility Point 

𝑉𝑖(𝑥, 𝑦, 𝑧)  can be defined as visible point if and only if  

𝑃𝐹(𝑉𝑖) ≤ 𝑎 and 𝑃𝐷(𝑉𝑖) ≥ 𝑏. 

 

We integrate our unique concept of probabilistic 

visibility into the velocity space. We transform the 

visibility's boundaries from location to velocity space. 

 

IV. VISIBILITY VELOCITY OBSTACLES (VVO) 

The visibility velocity obstacle represents the set of all 

velocities from a viewpoint, occluded with other objects in 

the environment. It essentially maps static and moving 

objects into the robot’s velocity space considering visibility 

boundaries.  

The VVO of an object with circular visibility boundary 

points such as the pedestrians case, PBP, that is moving at a 

constant velocity vb, is a cone in the velocity space at point 

A. In Fig. 7, the position space and velocity space of A are 

overlaid to illustrate the relationship between the two spaces. 

The VVO is generated by first constructing the Relative 

Velocity Cone (RVC) from A to the boundaries of the object, 

i.e., PBP, then translating RVC by vb. 

Each point in VVO represents a velocity vector that 

originates at A. Any velocity of A that penetrates VVO is a 

occluded velocity that based on the current situation, would 

result in a occlusion between A and the pedestrian at some 

future time. Fig. 7 shows two velocities of A: one that 

penetrates VVO, hence a occluded velocity, and one that 

does not. All velocities of A that are outside of VVO are 

visible from the current robot's position as the obstacle 

denotes as B, stays on its current course. The visibility 

velocity obstacle thus allows determining if a given velocity 

is occluded, and suggesting possible changes to this velocity 

for better visibility. If PBP is known to move along a curved 

trajectory or at varying speeds, it would be best represented 

by the nonlinear visibility velocity obstacle case discussed 

next. 

 
 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Visibility Velocity Obstacles 

 

VVO 

A 

PBP 

𝑣𝑏 
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The VVO consists of all velocities of A at t0 predicting 

visibility's boundaries related to obstacles at the environment 

at any time t>t0. Selecting a single velocity, va, at time t = t0 

outside the VVO, guarantees visibility to this specific 

obstacle at time t. It is constructed as a union of its temporal 

elements, VVO(t), which is the set of all absolute velocities 

of A, va, that would allow visibility at a specific time t. 

Referring to Fig. 8, va  that would result in occlusion with 

point p in B at time t > t0, expressed in a frame centered at 

A(t0), is simply: 

va =
VBPi

t − t0

 

                                              

where r is the vector to point p in the blocker’s fixed frame, 

and visibility boundaries denoted as Visibility Boundary 

Points (VBP). The set, VVO(t) of all absolute velocities of A 

that would result in occlusion with any point in B at time t > 

t0 is thus: 

 

VVO(t) =  
VBPi(t)

t − t0

 

                                         

Clearly, VVO(t) is a scaled B for two dimensional case 

with circular object, located at a distance from A that is 

inversely proportional to time t. The entire VVO is the union 

of its temporal subsets from t0, the current time, to some set 

future time horizon th: 

 

VVO(t) =  ⋃
VBPi(t)

t − t0

th

t=t0

 

                                           

The presented VVO generate a warped cone in a case of 

2D circular object. If VBP(t) is bounded over t = (t0, ∞), 

then the apex of this cone is at A(t0).We extend our analysis 

to 3D general case, where the objects can be cubes, cylinders 

and circles. The mathematical analysis with visibility 

boundaries is based on VBP presented in the previous part 

for different kind of objects such as buildings, cars and 

pedestrians. 

 

We transform the visibility's boundaries into the velocity 

space, by moving the VBP to the velocity space, in the same 

analysis presented for 2D circle boundary's. 

Following that, we present 3D extension for VBP case, 

transformed to the velocity space. 

Given two objects, VBP1, VBP2 will create a VVO 

representing VBP2 (and vice-versa) such that VBP1 wishes 

to choose a guaranteed collision-free velocity for the time 

interval τ, and visibility boundary in velocity space.  

The Nonlinear Visibility Velocity Obstacle (NVVO) 

accounts for a general trajectory of the object, while 

assuming a constant velocity of the robot. It applies to the 

scenario shown in Fig. 8, where, at time t0 , a point A 

attempts to plan visible trajectory related an object, PBP, that 

is following a general known trajectory, c(t), and at time t0 is 

located at c(t0). PBP represents the set of points that define 

the geometry of the visibility boundaries of the object, grown 

by the radius of the robot. In case of pedestrians where PBP 

is a circle, then c(t) represents the trajectory followed by its 

center. 

 

 

Fig. 8. Nonlinear Visibility Velocity Obstacles (NVVO), based on 

Nonlinear Velocity Obstacles (NLVO) (source [44]) 

 
Our method, based on visibility boundaries 

transformation from position to velocity space, can be 

formulated as homothetic transformation [44] that is 

centered at A(t0) and having the ratio )/(1 0ttk −=  :  
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The set, NVVO(t) of all absolute velocities of A that would 

result in occlusion with objects B at time t> t0 is thus: 

 

  

0
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1
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where   represents the Minkowski sum.  Clearly, 

NVVO(t) is a scaled B, located at a distance from A that is 

inversely proportional to time t.  To emphasize the 

geometric shape of the NVVO(t), we rewrite it as: 
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The entire NVVO is the union of its temporal subsets 

from t0, the current time, to some set time horizon th: 

  


httt tt

B

tt

tc
NVVO

 −


−
=

0 00

)(  

 

Truncating the NVVO at th allows focusing the analysis 

till limited future time, time horizon. In case of cars, 

buildings and pedestrians where visibility boundaries can be 

expressed by geometric operations of 3D boxes, where 

VVO for the linear and NVVO for the non linear case 

analyzed in the same concept and formulation presented so 

far, as can be seen in Fig. 9.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Visibility Velocity Obstacle for visibility boundaries consist 

of 3D boxes 

 

 

V. PURSUER PLANNER USING VVO  

Our planner, similar to previous work [45] is a local one, 

generating one step ahead every time step reaching toward 

the goal, which is a depth first A* search over a tree. We 

extend previous planners, which take into account kinematic 

and dynamic constraints [9][14] and present a local planner 

for UAV as case study with these constraints, which for the 

first time generates fast and exact visible trajectories based 

on VVO, tracking after a target by choosing the optimal 

next action based on velocity estimation.  

The fast and efficient visibility analysis of our method, 

allows us to generate the most visible trajectory from a start 

state startq  to the goal state goalq in 3D urban environments, 

which can be extended to real performances in the future. 

We assume knowledge of the 3D urban environment model, 

and by using Visibility Velocity Obstacles (VVO) method 

to avoid occlusion, exploring maximum visible node in the 

next time step and track a specific target. 

At each time step, the planner computes the next eighth 

Attainable Velocities (AV), as detailed in the next sub-

section. The nodes, which are not occluded, i.e., nodes 

outside Visibility Velocity Obstacles, are explored. The 

planner computes the cost for these visible nodes and 

chooses the node with the optimal cost according to mission 

type. In our case, the optimal cost related to the node with 

minimum velocities difference between the robot and the 

tracked target. 

 

1) Attainable Velocities  

 

Based on the dynamic and kinematic constraints, UAVs 

velocities at the next time step are limited. At each time step 

during the trajectory planning, we map the AV, the 

velocities set at the next time step t + , which generate the 

optimal trajectory, as is well-known from Dubins theory 

[28]. 

We denote the allowable controls as ( , , )s zu u u u= as 

U , where V U . 

We denote the set of dynamic constraints bounding 

control's rate of change as ( , , ) 's zu u u u U=  . 

Considering the extremal controllers as part of the 

motion primitives of the trajectory cannot ensure time-

optimal trajectory for Dubins airplane model [28], but is still 

a suitable heuristic based on time-optimal trajectories of 

Dubin - car and point mass models. 

We calculate the next time step's feasible velocities
 

~

( )U t + , between ( , )t t + : 

~

( ) { | ( ) '}U t U u u u t U + =  =     

Integrating 
~

( )U t + with UAV model yields the next 

eight possible nodes for the following combinations: 

 
~

min

,
~ ~

max max max

~ max

( ) ( )

( ) ( ) tan , ( ) tan ( ) tan

, ( )( )

s
s s s

z s s s

z z z

U t u u t a

U t U t u u t u t u a

u u t aU t

 



 

  



 
+  + 

  
+ = + = − +  

    −+   
 

 

 

 

At each time step, we explore the next eight AV at the 

next time step as part of our tree search, as explained in the 

next sub-section. 

 

2) Tree Search 

 

Our planner uses a depth first A* search over a tree that 

expands over time to the goal. Each node ( , )q q


,where 

VVO 

A 

𝑣𝑏 

CBP(t) 
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( , , , )q x y z = , consist of the current UAVs position and 

velocity at the current time step. At each state, the planner 

computes the set of AV, 
~

( )U t + , from the current UAV 

velocity, ( )U t , as shown in Fig. 10. We ensure the 

visibility of nodes by computing a set of Visibility Velocity 

Obstacles (VVO).  

In Fig. 10, nodes inside VVO, marked in red, are 

occluded. Nodes out of VVO are further evaluated; visible 

nodes are colored in blue. The safe node with the lowest 

cost, which is the next most visible node, is explored in the 

next time step. This is repeated while generating the most 

visible trajectory, as discussed in the next sub-section. 

Attainable velocities profile is similar to a trunked cake 

slice, as seen in Figure 10, due to the Dubins airplane model 

with one time step integration ahead. Simple models 

attainable velocities, such as point mass, create rectangular 

profile [4].     

 

3) Cost Function 

Our search is guided by minimum invisible parts from 

viewpoint V to the 3D urban environment model, with 

minimal difference between robot's velocity 𝑣𝑎 and tracked 

target 𝑣𝑡𝑐𝑘 .  

The cost function is computed for each visible 

node  (𝑞, 𝑞̇) ∋ 𝑉𝑉𝑂 , i.e., node outside VVO, considering 

UAV velocities at the next time step: 

  

𝑤(𝑞(𝑡 + 𝜏)) = 𝑎𝑏𝑠(𝑣𝑎(𝑞(𝑡 + 𝜏)

− 𝑣𝑡𝑐𝑘(𝑞(𝑡 + 𝜏)) 
 

 

 
 

 

Fig. 10. Tree Search Method 

 

 

4) Planner Pseudo-Code 

 

The Pseudo-Code of the UAV Planner is as follows in 

Fig. 11: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Fig. 11. UAV Planner Pseudo-Code 

 

VI. CONCLUSIONS 

This paper proposes an online motion planning 

algorithm in 3D environments for tracking target, taking 

into account visibility analysis. The planner is based on 

local search and includes dynamic and kinematic constraints 

as complete part of the planner. Visibility boundaries, which 

are based on analytic solution for several kind of objects in 

3D urban environments, also include uncertainty and 

probabilistic factors. Each VVO represents velocity's set of 

possible future collision and visibility boundaries. Based on 

our analysis in velocity space, we plan our trajectory by 

selecting future robot's velocity at each time step, tracking 

after specific target considering visibility constraints as 

integral part of the velocities space. We formulate the 

tracked target in the environment and include visibility 

analysis for the next time step as part of our planning in the 

same search space. 
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