
347

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Visibility Velocity Obstacles (VVO): Visibility-Based

Path Planning in 3D Environments

Oren Gal, Yerach Doytsher

Mapping and Geo-information Engineering

Technion - Israel Institute of Technology

Haifa, Israel

e-mail: {orengal,doytsher}@technion.ac.il

Abstract - In this paper, we present as far as we know for the

first time, a unique method combining visibility analysis in 3D

environments with dynamic motion planning algorithm,

named Visibility Velocity Obstacles (VVO). Our method is

based on two major steps. The first step is based on analytic

visibility boundaries calculation in 3D environments, taking

into account sensors' capabilities including probabilistic

consideration. In the second stage, we generate VVO

transferring visibility boundaries from the position space to the

velocity space, for each object. Each VVO represents velocity's

set of possible future collision and visibility boundaries. Based

on our analysis in velocity space, we plan our trajectory by

selecting future robot's velocity at each time step, tracking

after specific target considering visibility constraints as

integral part of the velocities space. We formulate the tracked

target in the environment as part of our planner and include

visibility analysis for the next time step as part of our planning

in the same search space. For the first time, we define visibility

aspects as part of velocity space, where all the objects are

modeled from visibility point of view. We introduce potential

trajectory planner combining unified 3D visibility analysis for

target tracking as part of dynamic motion planning.

Keywords - Visibility; Motion planning; 3D; Urban

environment; Spatial analysis.

I. INTRODUCTION

Trajectory planning has developed alongside the

increasing numbers of Unmanned Aerial Vehicles (UAVs),

drones unmanned ground vehicles all over the world, with a

wide range of applications such as surveillance, information

gathering, suppression of enemy defenses, air to air combat,

mapping buildings and facilities, etc.

Most of these applications are involved in very

complicated environments (e.g., urban), with complex terrain

for civil and military domains [1].

With these growing needs, several basic capabilities must

be achieved. One of these capabilities is the need to avoid

obstacles such as buildings or other moving objects, while

autonomously navigating in 3D urban environments.

Path planning problems have been extensively studied in

the robotics community, finding a collision-free path in static

or dynamic environments, i.e., moving or static obstacles.

Over the past twenty years, many methods have been

proposed, such as starting roadmap, cell decomposition, and

potential field [6].

In this paper, we present visibility aspects as part of

velocity space, where all the objects are modeled from

visibility point of view. We introduce potential trajectory

planner combining unified 3D visibility analysis for target

tracking as part of dynamic motion planning. In the first part,

we formulate visibility boundaries problem and introduce

analytic solution that in the following sub-section integrated

with sensor's limitations. Later on, we present the VVO

method, demonstrated with visibility boundaries with cars,

pedestrians and buildings visibility boundaries. In the last

part, we suggest pursuer planner using VVO for UAV test

case.

II. RELATED WORK

Path planning becomes trajectory planning when a time

dimension is added for dynamic obstacles [7][8]. Later on, a

vehicle's dynamic and kinematic constraints have been taken

into account, in a process called kinodynamic planning [9].

All of these methods focus solely on obstacle avoidance.

Trajectory planning for air traffic control and ground

vehicles has been well studied [10], based on short path

algorithms using 2D polygons, 3D surfaces [11]. UAVs

navigation has also been explored with vision-based methods

[12], with local planning or a predefined global path [13].

UAV path planning is different from simple robot path

planning, due to the fact that a UAV cannot stop, and must

maintain its velocity above the minimum, as well as not

being able to make sharp turns.

UAV path planning methods usually decompose the path

planning into two steps: first, using some common path

planning method in a polygonal environment [6], then,

considering UAV dynamic and kinematic constraints into the

trajectory [14]. These methods assume decoupling, which

affects the trajectory, as stated by all authors.

However, most of the effort focused on UAV trajectory

planning is related to obstacle avoidance with kinodynamic

constraints, without taking into account visibility analysis as

part of the nature of the trajectory in urban environments.

348

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The visibility problem has been extensively studied over

the last twenty years, due to the importance of visibility in

GIS and Geomatics, computer graphics and computer vision,

and robotics. Accurate visibility computation in 3D

environments is a very complicated task demanding a high

computational effort, which could hardly have been done in

a very short time using traditional well-known visibility

methods [15]. The exact visibility methods are highly

complex, and cannot be used for fast applications due to their

long computation time. Previous research in visibility

computation has been devoted to open environments using

DEM models, representing raster data in 2.5D (Polyhedral

model), and do not address, or suggest solutions for, dense

built-up areas. Most of these works have focused on

approximate visibility computation, enabling fast results

using interpolations of visibility values between points,

calculating point visibility with the Line of Sight (LOS)

method [16]. Other fast algorithms are based on the

conservative Potentially Visible Set (PVS) [17]. These

methods are not always completely accurate, as they may

render hidden objects' parts as visible due to various

simplifications and heuristics.

A vast number of algorithms have been suggested for

speeding up the process and reducing computation time.

Franklin [18] evaluated and approximated visibility for each

cell in a DEM model based on greedy algorithms. Wang et

al. [19] introduced a Grid-based DEM method using

viewshed horizon, saving computation time based on

relations between surfaces and the LOS method. Later on, an

extended method for viewshed computation was presented,

using reference planes rather than sightlines [20].

One of the most efficient methods for DEM visibility

computation is based on shadow-casting routine. The routine

cast shadowed volumes in the DEM, like a light bubble [21].

Extensive research treated Digital Terrain Models (DTM) in

open terrains, mainly Triangulated Irregular Network (TIN)

and Regular Square Grid (RSG) structures. Visibility

analysis in terrain was classified into point, line and region

visibility, and several algorithms were introduced, based on

horizon computation describing visibility boundary [22].

Only a few works have treated visibility analysis in urban

environments. A mathematical model of an urban scene,

calculating probabilistic visibility for a given object from a

specific viewcell in the scene, has been presented by [23].

This is a very interesting concept, which extends the

traditional deterministic visibility concept. Nevertheless, the

buildings are modeled as cylinders, and the main challenges

of spatial analysis and building model were not tackled.

Other methods were developed, subject to computer graphics

and vision fields, dealing with exact visibility in 3D scenes,

without considering environmental constraints. Plantinga and

Dyer [15] used the aspect graph – a graph with all the

different views of an object. Due to their computational

complexity, all of these works are not applicable to a large

scene with near real-time demands, such as UAV trajectory

planning.

III. VISIBILITY BOUNDARIES ANALYSIS

A. Problem Statement

We consider visibility problem in a 3D urban

environment, consisting of static constant objects and

dynamic objects.

Given:

• Static objects:

3D buildings modeled as 3D cubic parameterization
_

max

min

1

(, ,)
of buildN

h

i h

i

C x y z
=

=

• Dynamic objects:

 Moving cars modeled as 3D cubic parameterization,

(, ,)carC x y z

• Pedestrian modeled as cylinder parameterization,

(, ,)pedsC x y z

• Trees modeled with two cylinder parameterization,

(, ,)treeC x y z

• Wind profile vw(z).

• Viewpoint V(x0, y0,z0), in 3D coordinates.

Computes:

Set of all visible points from 𝑉(𝑥0, 𝑦0,𝑧0 ,

 1

[, , ,]
i i i i

N

building car tree peds

i

C C C C
=


.

We extend our previous work [2], developed for a fast

and efficient visibility analysis for buildings in urban

environments, and consider also a basic structure of

cylinders, which allows us to model pedestrians and trees.

Based on our probabilistic visibility computation of dynamic

objects, we test the effect of these by using data gathered

from web-oriented GIS sources to update our estimation and

prediction on these entities.

B. Dynamic Objects – Modeling and Probabilistic Visibility

Dynamic objects such as moving cars and pedestrians,

directly affect visibility in urban environments.

Due to modeling limitations, these entities are usually

neglected in spatial analysis aspects. We focus on three

major dynamic objects in an urban case: moving cars and

pedestrians. Each object is modeled with 3D boxes or 3D

cylinders, which allow us to extend the use of our previous

visibility analysis in urban environments presented for static

objects [2].

1) Moving Car

3D Modeling: As we mentioned earlier, web-cameras in

urban environments can record the moving cars at any

349

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

specific time. Image sources such as web cameras, like other

similar sensors sources, demand an additional stage of

Automatic Target Detection (ATD) algorithms to extract

these objects from the image [31]. In this research we do not

focus on ATD, which must be implemented when shifting

from the research described in the paper toward an

applicable system.

The common car structure can be easily modeled by two

3D boxes, as can be seen in Fig. 1(b), which is similar to the

original car structure presented in Fig. 1(a).

(a)

(b)

Fig. 1. Car Modeling Using 3D Boxes: (a) the Original Car, (b) the

Modeled Car

We define the Car Boundary Points (CBP) as the set of

visible surfaces' boundary points of 3D boxes modeling the

car presented in Fig. 1(b). Each box is modeled as 3D cubic

Ccar(x, y, z) as presented extensively in [2] for a building

model case:

1
(, ,)

1

1 1

350

1

n

car n

x t

x
C x y z y

x

z c

t

n

c c

= 
 

 − 
= =    −  
 = 

−  

=

= +

Car Boundary Points (CBP) - we define CBP of the object

i as a set of boundary points j = 1. . NCBP_bound of the

visible surfaces of the car object, from viewpoint

V(x0, y0,z0), where the maximum surface's number is six and

each surface defined by four points, NCBP_bound ≤ 24.

In Fig. 2, the car is modeled by using two 3D boxes.

Visible surfaces colored in red, CBP marked with yellow

points.

_

_ _ _

1 1 1

2 2 2

1.. 0 0 0

, ,

, ,
(, ,)

..

, ,

CBP bound

CBP bound CBP bound CBP bound

i N

N N N

x y z

x y z
CBP x y z

x y z

=

 
 
 =
 
 
  

Fig. 2. Modeling Car Using 3D Boxes (CBP Marked with Yellow

Points)

Probabilistic Visibility Analysis

Visibility has been treated as Boolean values. Due to

incomplete information and the uncertainties of predicting

the car's location at future times, visibility becomes much

more complicated.

As it is well known from basic kinematics, CBP can be

estimated in future time t + ∆t as:

CBPi(t + ∆t) = CBPi(t) + V(t)∆t + A(t)∆t2

2

Where V(t) is the car velocity vector V(t) = (vxvy)
T, and

the acceleration vector A(t) = (axay)
T . Estimation of a

car's location in the future based on a web camera is not a

simple task. Driver behavior generates multi-decision

modeling, such as car-following behavior, gap acceptance

behavior, or lane-change cases including traffic flow, speed

etc. [32].
Our probabilistic car model is based on microscopic

simulation models that were properly calibrated and

validated using VISSIM simulation. VISSIM is a time-based

microscopic simulation tool that uses various driver

behaviors and vehicle performances to accurately represent

350

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

an urban traffic model. The VISSIM simulation model has

been validated when compared to the data from various real-

world situations [33] and used for the test-bed network by

[34][35], and on driver behavior research defining average

speed and acceleration [32].

The average speed in urban environments is about 45

[km/hr], from a minimum of 40 [km/hr] up to a maximum of

50 [km/hr]. In the situation of a free driving case, which is

the common mode in urban environments [36], the

acceleration of family car can change

between 1 to 3.5 [m
sec2⁄], and on average 2.5 [m

sec2⁄], as

seen in Fig. 3.

Fig. 3. Average Acceleration Rate of a Family Car in an Urban

Environment [32]

As can be seen from several validations of car and driver

estimation, velocity and acceleration are distributed as

normal ones, and lead to normal location distribution:

V(t)~N(μ = 45, σ2 = 10)

A(t)~N(μ = 2.5, σ2 = 1)

CBP(t + ∆t)~ ∑ N

In time step t, where the car's location is taken from a

web-camera, visibility analysis from CBP(t)is an exact one,

based on our previous visibility analysis [2], as seen in Fig. 2

Visibility analysis becomes probabilistic for future time t +
∆t , applying the same visibility analysis for CBP(t + ∆t)

presented in Fig. 4.

Fig. 4. Probabilistic Visibility Analysis for CBP

In Fig. 4, the car's location from a web-camera appears in

the bottom left side. For ∆t = 2[sec], the car's location is

marked by two 3D boxes, where CBP for each of them is the

boundary of visible surfaces marked in red. The probability

that the visible surfaces, which are bounded by CBP, will be

visible in future time is based on the last update taken from

the web application (depicted with arrows in Fig. 4,

computed by using two different random normal PDF values

for V and A based on eq. (4).

2) Pedestrians

3D Modeling: Pedestrian modeling can be done in high

resolution, but due to ATD algorithms capabilities,

pedestrians are usually bounded by a 3D cylinder and not as

an exact detailed model [31]. For this reason, we model

pedestrians as 3D cylinders, which is somewhat conservative

but still applicable.

Pedestrian can be easily modeled by 3D cylinder, as seen

in Fig. 5 (marked in red), which is similar to the output from

ATD methods tested on a web-camera output recognizing

walkers in urban environments.

We extend our previous visibility analysis concept [2] and

include new objects modeled as cylinders as continuous

curves parameterizationCPeds(x, y, z).

Cylinder parameterization can be described as:

sin()

(, ,) cos()Peds

r

C x y z r

c





 
 

=  
 
 

_ max

0 2

1

0 peds

c c

c h

  

= +

 

Fig. 5. Modeling Pedestrians in Urban Scene Using Cylinders

(Colored in Red)

351

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We define the visibility problem in a 3D environment for

more complex objects as:

co s co s 0 0 0'(,) ((,) (, ,)) 0
n t n tz zC x y C x y V x y z − =

where 3D model parameterization is C(x, y)z=const, and the

viewpoint is given as V(x0, y0,z0). Extending the 3D cubic

parameterization, we also consider the cylinder case.

Integrating eq. (5) to (6) yields:

sincos

sin cos 0

0

x

y

z

r Vr

r r V

c V



 

 − 
  

−  − =  
   −   

As can be noted, these equations are not related to Z axis,

and the visibility boundary points are the same for each x-y

cylinder profile.

The visibility statement leads to complex equation, which

does not appear to be a simple computational task. This

equation can be efficiently solved by finding where the

equation changes its sign and crosses zero value; we used

analytic solution to speed up computation time and to avoid

numeric approximations. We generate two values of θ

generating two silhouette points in a very short time

computation. Based on an analytic solution to the cylinder

case, a fast and exact analytic solution can be found for the

visibility problem from a viewpoint.

We define the solution presented in eq. (8) as x-y-z

coordinates values for the cylinder case as Pedestrian

Boundary Points (PBP). PBP are the set of visible

silhouette points for a 3D cylinder modeling the pedestrian,

as presented in Fig. 6:

_

_ _ _

1 1 1

1.. 2 0 0 0

, ,
(, ,)

, ,PBP bound

PBP bound PBP bound PBP bound

i N
N N N

x y z
PBP x y z

x y z= =

 
=  
  

(a)

 (b)

Fig. 6. PBP for a Cylinder using Analytic Solution marked as blue

points, Viewpoint Marked in Red: (a) 3D View (Visible Boundaries

Marked with Red Arrows); (b) Topside View

C. Visibility Analysis Considering Sensor's Stochastic

Character

In this section, we extend our visibility model by

exploring and including sensors' sensing capabilities and

physical constraints. Our visibility analysis is based on the

fact that sensors are located at specific visibility points.

Sensors are commonly treated as deterministic detectors,

where a target can only be detected or undetected. These

simplistic sensing models are based on the disc model

[37][38].

We study sensors' visibility-based placement effected by

taking into account the stochastic character of target

detection. We present a single sensor model, including noisy

measurement, and define the necessary condition for

visibility analysis with false alarm and detection probabilities

for each visibility point's candidate.

1) Single Visibility Sensing Model

Most of the physical signals are based on energy vs.

distance from single source model. Different kind of sensors

such as: radars, lasers, acoustics, etc., are based on this signal

character. Like other signal models presented in the literature

[39][40][41] we use signal decay model as follows:

352

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

L(d) = {

L0

(
d
d0

)k
, if d > d0

L0, if d ≤ d0

where L0 is the original energy emitted by the target, k is the

decaying factor (typical values from 2 to 5), and d0 is a

constant determined by the size of the target and the sensor.

We model the sensor's noise Ni located at visibility point

Vi , using zero-mean normal distribution, Ni~N(0, σ2) .

Sensor signal energy including noise effect, Si , can be

formulated as:

Si = L(di) + Ni
2

In practice, Si parameters are set by empiric datasets.

2) Necessary Condition for Visibility

Nowadays, detection systems use more and more data

fusion methods [42][43]. In order to use multi sensors

benefits, fusion and local decision-making using several

sensors' data is a very common capability. As with other

distributed data fusion methods, we assume that each sensor

sends the energy measurement to a Local Decision Making

Module (LDMM). Similar to other well known fusion

methods [41], the LDMM integrates and compares the

average sensors' measurements n against detection threshold

τ.

Detection probability, denoted by PD , is the probability

that a target is correctly detected. Supposing that n sensors

take part in the data fusion applied in the LDMM, detection

probability is given by:

PD = P(
1

n
∑(L(di) + Ni

2) > τ)

n

i=1

PD = 1 − P(∑ (Ni
σ

)
2

≤
nτ−∑ L(di)n

i=1
σ2)n

i=1

PD=1 − Xn(
nτ−∑ L(di)n

i=1

σ2)

Where Ni σ~N(0,1)⁄ and Xn denote the distribution

function. In the same way, false alarm rate probability is the

probability of making a positive detection decision when no

target is present. False alarm rate probability, denoted by PF,

is given by:

PF = P(
1

n
∑ Ni

2 > τ) = 1 − P(∑ (
Ni

σ
)

2

≤
nτ

σ2)

n

i=1

n

i=1

PF = 1 − Xn(
nτ

σ2
)

Conditions Necessary for Visibility: Given two real

numbers, 𝑎 ∈ (0,1) and 𝑏 ∈ (0,1) . Visibility Point

𝑉𝑖(𝑥, 𝑦, 𝑧) can be defined as visible point if and only if

𝑃𝐹(𝑉𝑖) ≤ 𝑎 and 𝑃𝐷(𝑉𝑖) ≥ 𝑏.

We integrate our unique concept of probabilistic

visibility into the velocity space. We transform the

visibility's boundaries from location to velocity space.

IV. VISIBILITY VELOCITY OBSTACLES (VVO)

The visibility velocity obstacle represents the set of all

velocities from a viewpoint, occluded with other objects in

the environment. It essentially maps static and moving

objects into the robot’s velocity space considering visibility

boundaries.

The VVO of an object with circular visibility boundary

points such as the pedestrians case, PBP, that is moving at a

constant velocity vb, is a cone in the velocity space at point

A. In Fig. 7, the position space and velocity space of A are

overlaid to illustrate the relationship between the two spaces.

The VVO is generated by first constructing the Relative

Velocity Cone (RVC) from A to the boundaries of the object,

i.e., PBP, then translating RVC by vb.

Each point in VVO represents a velocity vector that

originates at A. Any velocity of A that penetrates VVO is a

occluded velocity that based on the current situation, would

result in a occlusion between A and the pedestrian at some

future time. Fig. 7 shows two velocities of A: one that

penetrates VVO, hence a occluded velocity, and one that

does not. All velocities of A that are outside of VVO are

visible from the current robot's position as the obstacle

denotes as B, stays on its current course. The visibility

velocity obstacle thus allows determining if a given velocity

is occluded, and suggesting possible changes to this velocity

for better visibility. If PBP is known to move along a curved

trajectory or at varying speeds, it would be best represented

by the nonlinear visibility velocity obstacle case discussed

next.

Fig. 7. Visibility Velocity Obstacles

VVO

A

PBP

𝑣𝑏

𝑣𝑏

353

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The VVO consists of all velocities of A at t0 predicting

visibility's boundaries related to obstacles at the environment

at any time t>t0. Selecting a single velocity, va, at time t = t0

outside the VVO, guarantees visibility to this specific

obstacle at time t. It is constructed as a union of its temporal

elements, VVO(t), which is the set of all absolute velocities

of A, va, that would allow visibility at a specific time t.

Referring to Fig. 8, va that would result in occlusion with

point p in B at time t > t0, expressed in a frame centered at

A(t0), is simply:

va =
VBPi

t − t0

where r is the vector to point p in the blocker’s fixed frame,

and visibility boundaries denoted as Visibility Boundary

Points (VBP). The set, VVO(t) of all absolute velocities of A

that would result in occlusion with any point in B at time t >

t0 is thus:

VVO(t) =
VBPi(t)

t − t0

Clearly, VVO(t) is a scaled B for two dimensional case

with circular object, located at a distance from A that is

inversely proportional to time t. The entire VVO is the union

of its temporal subsets from t0, the current time, to some set

future time horizon th:

VVO(t) = ⋃
VBPi(t)

t − t0

th

t=t0

The presented VVO generate a warped cone in a case of

2D circular object. If VBP(t) is bounded over t = (t0, ∞),

then the apex of this cone is at A(t0).We extend our analysis

to 3D general case, where the objects can be cubes, cylinders

and circles. The mathematical analysis with visibility

boundaries is based on VBP presented in the previous part

for different kind of objects such as buildings, cars and

pedestrians.

We transform the visibility's boundaries into the velocity

space, by moving the VBP to the velocity space, in the same

analysis presented for 2D circle boundary's.

Following that, we present 3D extension for VBP case,

transformed to the velocity space.

Given two objects, VBP1, VBP2 will create a VVO

representing VBP2 (and vice-versa) such that VBP1 wishes

to choose a guaranteed collision-free velocity for the time

interval τ, and visibility boundary in velocity space.

The Nonlinear Visibility Velocity Obstacle (NVVO)

accounts for a general trajectory of the object, while

assuming a constant velocity of the robot. It applies to the

scenario shown in Fig. 8, where, at time t0 , a point A

attempts to plan visible trajectory related an object, PBP, that

is following a general known trajectory, c(t), and at time t0 is

located at c(t0). PBP represents the set of points that define

the geometry of the visibility boundaries of the object, grown

by the radius of the robot. In case of pedestrians where PBP

is a circle, then c(t) represents the trajectory followed by its

center.

Fig. 8. Nonlinear Visibility Velocity Obstacles (NVVO), based on

Nonlinear Velocity Obstacles (NLVO) (source [44])

Our method, based on visibility boundaries

transformation from position to velocity space, can be

formulated as homothetic transformation [44] that is

centered at A(t0) and having the ratio)/(1 0ttk −= :

0

),(

1
),)((

0 tt
krtcHv ktAa

−
=+=

.

The set, NVVO(t) of all absolute velocities of A that would

result in occlusion with objects B at time t> t0 is thus:

0

),(

1
),)(()(

0 tt
kBtcHtNVVO ktA

−
== ,

where  represents the Minkowski sum. Clearly,

NVVO(t) is a scaled B, located at a distance from A that is

inversely proportional to time t. To emphasize the

geometric shape of the NVVO(t), we rewrite it as:

00

)(
)(

tt

B

tt

tc
tNVVO

−


−
=

NVVO(t)

354

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The entire NVVO is the union of its temporal subsets

from t0, the current time, to some set time horizon th:


httt tt

B

tt

tc
NVVO

 −


−
=

0 00

)(

Truncating the NVVO at th allows focusing the analysis

till limited future time, time horizon. In case of cars,

buildings and pedestrians where visibility boundaries can be

expressed by geometric operations of 3D boxes, where

VVO for the linear and NVVO for the non linear case

analyzed in the same concept and formulation presented so

far, as can be seen in Fig. 9.

Fig. 9. Visibility Velocity Obstacle for visibility boundaries consist

of 3D boxes

V. PURSUER PLANNER USING VVO

Our planner, similar to previous work [45] is a local one,

generating one step ahead every time step reaching toward

the goal, which is a depth first A* search over a tree. We

extend previous planners, which take into account kinematic

and dynamic constraints [9][14] and present a local planner

for UAV as case study with these constraints, which for the

first time generates fast and exact visible trajectories based

on VVO, tracking after a target by choosing the optimal

next action based on velocity estimation.

The fast and efficient visibility analysis of our method,

allows us to generate the most visible trajectory from a start

state startq to the goal state goalq in 3D urban environments,

which can be extended to real performances in the future.

We assume knowledge of the 3D urban environment model,

and by using Visibility Velocity Obstacles (VVO) method

to avoid occlusion, exploring maximum visible node in the

next time step and track a specific target.

At each time step, the planner computes the next eighth

Attainable Velocities (AV), as detailed in the next sub-

section. The nodes, which are not occluded, i.e., nodes

outside Visibility Velocity Obstacles, are explored. The

planner computes the cost for these visible nodes and

chooses the node with the optimal cost according to mission

type. In our case, the optimal cost related to the node with

minimum velocities difference between the robot and the

tracked target.

1) Attainable Velocities

Based on the dynamic and kinematic constraints, UAVs

velocities at the next time step are limited. At each time step

during the trajectory planning, we map the AV, the

velocities set at the next time step t + , which generate the

optimal trajectory, as is well-known from Dubins theory

[28].

We denote the allowable controls as (, ,)s zu u u u= as

U , where V U .

We denote the set of dynamic constraints bounding

control's rate of change as (, ,) 's zu u u u U=  .

Considering the extremal controllers as part of the

motion primitives of the trajectory cannot ensure time-

optimal trajectory for Dubins airplane model [28], but is still

a suitable heuristic based on time-optimal trajectories of

Dubin - car and point mass models.

We calculate the next time step's feasible velocities

~

()U t + , between (,)t t + :

~

() { | () '}U t U u u u t U + =  =  

Integrating
~

()U t + with UAV model yields the next

eight possible nodes for the following combinations:

~

min

,
~ ~

max max max

~ max

() ()

() () tan , () tan () tan

, ()()

s
s s s

z s s s

z z z

U t u u t a

U t U t u u t u t u a

u u t aU t

 



 

  



 
+  + 

  
+ = + = − +  

    −+   
 

At each time step, we explore the next eight AV at the

next time step as part of our tree search, as explained in the

next sub-section.

2) Tree Search

Our planner uses a depth first A* search over a tree that

expands over time to the goal. Each node (,)q q


,where

VVO

A

𝑣𝑏

CBP(t)

355

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(, , ,)q x y z = , consist of the current UAVs position and

velocity at the current time step. At each state, the planner

computes the set of AV,
~

()U t + , from the current UAV

velocity, ()U t , as shown in Fig. 10. We ensure the

visibility of nodes by computing a set of Visibility Velocity

Obstacles (VVO).

In Fig. 10, nodes inside VVO, marked in red, are

occluded. Nodes out of VVO are further evaluated; visible

nodes are colored in blue. The safe node with the lowest

cost, which is the next most visible node, is explored in the

next time step. This is repeated while generating the most

visible trajectory, as discussed in the next sub-section.

Attainable velocities profile is similar to a trunked cake

slice, as seen in Figure 10, due to the Dubins airplane model

with one time step integration ahead. Simple models

attainable velocities, such as point mass, create rectangular

profile [4].

3) Cost Function

Our search is guided by minimum invisible parts from

viewpoint V to the 3D urban environment model, with

minimal difference between robot's velocity 𝑣𝑎 and tracked

target 𝑣𝑡𝑐𝑘 .

The cost function is computed for each visible

node (𝑞, 𝑞̇) ∋ 𝑉𝑉𝑂 , i.e., node outside VVO, considering

UAV velocities at the next time step:

𝑤(𝑞(𝑡 + 𝜏)) = 𝑎𝑏𝑠(𝑣𝑎(𝑞(𝑡 + 𝜏)

− 𝑣𝑡𝑐𝑘(𝑞(𝑡 + 𝜏))

Fig. 10. Tree Search Method

4) Planner Pseudo-Code

The Pseudo-Code of the UAV Planner is as follows in

Fig. 11:

Fig. 11. UAV Planner Pseudo-Code

VI. CONCLUSIONS

This paper proposes an online motion planning

algorithm in 3D environments for tracking target, taking

into account visibility analysis. The planner is based on

local search and includes dynamic and kinematic constraints

as complete part of the planner. Visibility boundaries, which

are based on analytic solution for several kind of objects in

3D urban environments, also include uncertainty and

probabilistic factors. Each VVO represents velocity's set of

possible future collision and visibility boundaries. Based on

our analysis in velocity space, we plan our trajectory by

selecting future robot's velocity at each time step, tracking

after specific target considering visibility constraints as

integral part of the velocities space. We formulate the

tracked target in the environment and include visibility

analysis for the next time step as part of our planning in the

same search space.

REFERENCES

[1] O. Gal and Y. Doytsher, "Motion Planning in 3D
Environments Using Visibility Velocity Obstacles," in Proc.
of the Tenth International Conference on Advanced
Geographic Information Systems, Applications, and Services,
Athens, Greece, pp: 60-65, 2018

[2] O. Gal and Y. Doytsher, "Fast and Accurate Visibility
Computation in a 3D Urban Environment," in Proc. of the

0t t= . best startq q=

1. While ()best goalq q do:

 1.1. Calculate AV nodes from bestq ,

~
8 8

1 1()i iAV U t = == + .

 1.2. For each node iq AV check:

if 𝑞̇𝑖 ∈ ⋃ 𝑉𝑉𝑂𝑗

𝑛=𝑁𝑜𝑛𝑗

𝑗=1

iq is illegal.

 Else

 Calculate node cost ()iw q

 1.3. If all nodes are illegal
 STOP! No trajectory to the goal
 Else
 1.3.1. Find node with minimal cost

min { | min ()}i iq q w q= .

 1.3.2. Update minbestq q=

 1.3.3. t t dt= +

 End

356

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fourth International Conference on Advanced Geographic
Information Systems, Applications, and Services, Valencia,
Spain, pp: 105-110, 2012

[3] O. Gal and Y. Doytsher, "Fast Visibility Analysis in 3D
Procedural Modeling Environments," in Proc. of the, 3rd
International Conference on Computing for Geospatial
Research and Applications, Washington DC, USA, 2012

[4] P. Fiorini and Z. Shiller, "Motion Planning in Dynamic
Environments Using Velocity Obstacles," Int. J. Robot.
Res.17, pp. 760–772, 1998

[5] Office of the Secretary of Defense, Unmanned Aerial
Vehicles Roadmap, Tech. rep., December 2002

[6] J.C. Latombe, "Robot Motion Planning," Kluwer Academic
Press, 1990

[7] M. Erdmann and T. Lozano-Perez, "On Multiple Moving
Objects," Algorithmica, 2, 477–521, 1987

[8] T. Fraichard, "Trajectory Planning in a Dynamic Workspace:
A ’State-Time Space’ Approach," Advanced Robotics, 13:75–
94, 1999

[9] S.M. LaValle and J. Kuffner, "Randomized Kinodynamic
Planning," In Proc. IEEE Int. Conf. on Robotics and
Automation, Detroit, MI , USA, pp: 473–479, 1999

[10] Z.H. Mao, E. Feron, and K. Bilimoria, "Stability and
Performance of Intersecting Aircraft Flows Under
Decentralized Conflict Avoidance Rules," IEEE Transactions
on Intelligent Transportation Systems, 2: 101–109, 2001

[11] J. Bellingham, A. Richards, and J. How, "Receding Horizon
Control of Autonomous Aerial Vehicles," in Proceedings of
the IEEE American Control Conference, Anchorage, AK,
USA, pp. 3741–3746, 2002

[12] B. Sinopoli, M. Micheli, G. Donata, and T. Koo, "Vision
Based Navigation for an Unmanned Aerial Vehicle," in Proc.
IEEE Int’l Conf. on Robotics and Automation, 2001

[13] J. Sasiadek and I. Duleba, "3D Local Trajectory Planner for
UAV," Journal of Intelligent and Robotic Systems, 29: 191–
210, 2000

[14] S.A. Bortoff, "Path Planning for UAVs," In Proc. of the
American Control Conference, Chicago, IL, USA, pp: 364–
368, 2000

[15] H. Plantinga and R. Dyer, "Visibility, Occlusion, and Aspect
Graph," The International Journal of Computer Vision, 5,137-
160, 1990

[16] Y. Doytsher and B. Shmutter, "Digital Elevation Model of
Dead Ground," Symposium on Mapping and Geographic
Information Systems (Commission IV of the International
Society for Photogrammetry and Remote Sensing), Athens,
Georgia, USA, 1994

[17] F. Durand, "3D Visibility: Analytical Study and
Applications," PhD thesis, Universite Joseph Fourier,
Grenoble, France, 1999

[18] W.R. Franklin, "Siting Observers on Terrain," in Proc. of 10th
International Symposium on Spatial Data Handling. Springer-
Verlag, pp. 109–120, 2002

[19] J. Wang, G.J. Robinson, and K. White, "A Fast Solution to
Local Viewshed Computation Using Grid-based Digital
Elevation Models," Photogrammetric Engineering & Remote
Sensing, 62, 1157-1164, 1996

[20] J. Wang, G.J. Robinson, and K. White, "Generating
Viewsheds without Using Sightlines," Photogrammetric
Engineering & Remote Sensing, 66, 87-90, 2000

[21] C. Ratti, "The Lineage of Line: Space Syntax Parameters
from the Analysis of Urban DEMs'," Environment and
Planning B: Planning and Design, 32,547-566, 2005

[22] L. De Floriani and P. Magillo, "Visibility Algorithms on
Triangulated Terrain Models," International Journal of
Geographic Information Systems, 8, 13-41, 1994

[23] B. Nadler, G. Fibich, S. Lev-Yehudi, and D. Cohen-Or, "A
Qualitative and Quantitative Visibility Analysis in Urban
Scenes," Computers & Graphics, 5, 655-666, 1999

[24] S.M. LaValle, "Planning Algorithms,"
Cambridge,U.K.:Cambridge Univ. Pr., 2006

[25] M. Hwangbo, J. Kuffner, T. Kanade, "Efficient Two-phase
3D Motion Planning for Small
Fixed-wing UAVs," In proceeding of: 2007 IEEE
International Conference on Robotics and
Automation, ICRA 2007, 10-14 April 2007, Roma, Italy

[26] http://www.asctec.de/uav-
applications/research/products/asctec-hummingbird/

[27] A. Bhatia, M. Graziano, S. Karaman, R. Naldi, E. Frazzoli,
"Dubins Trajectory Tracking using Commercial Off-The-
Shelf Autopilots," AIAA Guidance, Navigation and Control
Conference and Exhibit 18 - 21 August 2008, Honolulu,
Hawaii.

[28] H. Chitsaz and S.M. LaValle, "Time-Optimal Paths for a
Dubins Airplane," in Proc. IEEE Conf. Decision and Control.,
USA, pp. 2379–2384, 2007

[29] S. Zlatanova, A. Rahman, and S. Wenzhong, "Topology for
3D Spatial Objects," International Symposium and Exhibition
on Geoinformation, pp. 22-24, 2002

[30] W.R. Franklin and C. Ray, "Higher isn’t Necessarily Better:
Visibility Algorithms and Experiments," In T. C. Waugh & R.
G. Healey (Eds.), Advances in GIS Research: Sixth
International Symposium on Spatial Data Handling, pp. 751–
770. Taylor & Francis, Edinburgh, 1994

[31] Y. Song, "The research of a new Auto Target Recognition
directed Image compression," in 3th Int. Congress on Image
and Signal Processing (CISP), 16-18 Oct, China, 2010

[32] J. Archer, "Methods for the Assessment and Prediction of
Traffic Safety at Urban Intersections and their Application in
Micro-simulation Modeling," Centre for Traffic Simulation
Research, CTR, Sweden. Technical Report, 2010

[33] M. Fellendorf and P. Vortisch, "Validation of the Microscopic
Traffic Flow Model VISSIM in Different Real world
Situations," 79th Annual meeting of Transportation Research
Board, UK, 2001

[34] B. Park and J. D. Schneeberger, "Microscopic Simulation
Model Calibration and Validation: Case Study of VISSIM
Simulation Model for a Coordinated Actuated Signal
System," Transportation Research Record 1856 , Paper No.
03-2531

[35] D. Parker and T. Lajunen, "Are Aggressive People
Aggressive Drivers? A Study of the Relationship between
Self-Reported General Aggressiveness Driver Anger and
Aggressive Driving," Accident Analysis and Prevention,
33(2), 243-255, 2001

[36] R. Wiedemann and U. Reiter, "Microscopic Traffic
Simulation: The Simulation System MISSION," Background
and Actual State. Project ICARUS (V1052), Final Report,
Brussels CEC.2: Appendix A, 1992

[37] K. Chakrabarty, S. Iyengar, H. Qi and E. Cho, "Grid
Coverage for Surveillance and Target Location in Distributed
Sensor Networks," IEEE Trans. Comput, vol. 51, no. 12, 2002

[38] D. Tian and N.D. Georganas, "A coverage-preserved node
scheduling scheme for large wireless sensor networks," In
WSNA, 2002

[39] M.F. Duarte and Y.H. Hu, "Vehicle classification in
distributed sensor networks," Journal of Parallel and
Distributed Computing, vol. 64, no. 7, 2004

[40] D. Li and Y.H. Hu, "Energy based collaborative source
localization using acoustic micro-sensor array," EUROSIP J.
Applied Signal Processing, vol. 4, 2003

[41] P. Varshney, "Distributed Detection and Data Fusion,"
Spinger-Verlag, 1996

357

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[42] T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan and K.K.
Saluja, "Sensor deployment strategy for target detection," In
WSNA, 2002

[43] T. Clouqueur, K.K. Saluja and P. Ramanathan, "Fault
tolerance in collaborative sensor networks for target
detection," IEEE Trans. Comput, vol. 53, no. 3, 2004

[44] Z. Shiller, R. Prasanna, J, Salinger, "A Unified Approach to
Forward and Lane-Change Collision Warning for Driver
Assistance and Situational Awareness," SAE Technical Paper
2008-01-0204, 2008, https://doi.org/10.4271/2008-01-0204

[45] O. Gal and Y. Doytsher. ”Patrolling Strategy Using
Heterogeneous Multi Agents in Urban Environments Using
Visibility Clustering”, Journal of Unmanned System
Technology, ISSN 2287-7320, 2016

