
323

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Novel Training Algorithm based on Limited-Memory quasi-Newton Method with
Nesterov’s Accelerated Gradient in Neural Networks and its Application to

Highly-Nonlinear Modeling of Microwave Circuit

Shahrzad MAHBOUBI† and Hiroshi NINOMIYA††

Graduate school of Electrical and Information Engineering, Shonan Institute of Technology
Email: 18T2012@sit.shonan-it.ac.jp†, ninomiya@info.shonan-it.ac.jp††

Abstract—This paper describes a novel algorithm based on
Limited-memory quasi-Newton method incorporating Nesterov’s
accelerated gradient for faster training of neural networks.
Limited-memory quasi-Newton is one of the most efficient and
practical algorithms for solving large-scale optimization prob-
lems. Limited-memory quasi-Newton is also the gradient-based
algorithm using the limited curvature information without the ap-
proximated Hessian such as the normal quasi-Newton. Therefore,
Limited-memory quasi-Newton attracts attention as the training
algorithm for large-scale and complicated neural networks. On
the other hand, Nesterov’s accelerated gradient method has
been widely utilized as the first-order training algorithm for
neural networks. This method accelerated the steepest gradient
method using the inertia term for the gradient vector. In this
paper, it is confirmed that the inertia term is effective for the
acceleration of Limited-memory quasi-Newton based training of
neural networks. The acceleration of the proposed algorithm is
demonstrated through the computer simulations compared with
the conventional training algorithms for a benchmark problem
and a real-world problem of the microwave circuit modeling.

Keywords–Neural networks; training algorithm; Limited-
memory quasi-Newton method; Nesterov’s accelerated gradient
method; highly-nonlinear function modeling.

I. INTRODUCTION

This paper extends our previous work [1], presented at
the IARIA FUTURE COMPUTING 2018, on acceleration
of Limited-memory quasi-Newton based training of neural
networks.

Neural networks have been recognized as a useful tool for
function approximation problems. Especially, neural networks
can efficiently approximate functions with highly-nonlinear
input-output properties [2]. For example, neural networks can
be utilized as the microwave circuit modeling in which the
network is trained from Electro-Magnetic (EM) data over a
range of geometrical parameters and trained networks become
models providing fast solutions of the EM behavior it learned
[3]-[6]. Generally, EM behaviors for geometrical behaviors are
highly-nonlinear [3]. This is useful for modeling where formu-
las are not available or original models are computationally too
expensive.

Training is the most important step in developing a neural
network model. Gradient-based algorithms are popularly used
for the training and can be divided into two categories: first-
order methods and second or approximated second order
methods [2]. The formers are popularly used for this purpose
[8]-[14]. The typical first-order training is the steepest gradient
descant method so-called Backpropagation (BP) [2]. BP was
accelerated by the momentum (inertia) term [8]. This technique

was referred to as Classical Momentum method (CM). A
simple modification to improve the performance of CM was
introduced as Nesterov’s Accelerated Gradient method (NAG)
[7][8]. On the other hand, the training algorithms need strate-
gies to determine stepsize or learning rate and the efficiency
of training is highly dependent on the stepsize. Adaptive
gradient method (AdaGrad) [9] and Resilient Mean Square
backpropagation (RMSprop) [12] were introduced for the
neural network training with the adaptive stepsize. Moreover,
the combination algorithm of the momentum acceleration and
the adaptive stepsize was Adam [14]. The recent developments
of training were mostly based on the stochastic strategies
such as the minibatch methods in which the gradients were
calculated using the portion of all training samples. However,
stochastic strategies are not suitable for the neural network
training with highly-nonlinear properties [15]. Therefore, the
full batch strategies are focused on this paper. Note that to
the best of author’s knowledge, the convergence for the non-
convex problems such as the neural network training was only
discussed for Adam of full batch strategies [16].

Adam is the most popular and effective first-order algo-
rithm. With the progress of AI and IoT technologies, how-
ever, the characteristics between inputs and desired outputs
of the training samples have become more complex. For
such scenarios, neural networks need to deal with highly-
nonlinear functions. Under such circumstances, the first order
methods converge too slowly and optimization error cannot be
effectively reduced within finite time in spite of its advantage
[17]. The second and approximated second order methods
are represented by Newton and quasi-Newton (QN) methods,
respectively. Particularly, the QN training, which is one of
the most effective optimization [18] is widely utilized as
the robust training algorithm for highly-nonlinear function
approximations [3]-[6]. However, the QN iteration includes
the product matrix (the approximated Hessian) and vector, that
is QN needs the massive computer resources of memories as
the scale of neural network becomes larger. QN incorporat-
ing Limited-memory scheme so-called Limited-memory QN
(LQN) is effective for solving large-scale problems whose
Hessian matrices cannot be computed at a reasonable cost or is
not sparse [18][19]. Furthermore, the momentum acceleration
of QN was introduced as Nesterov’s accelerated quasi-Newton
method (NAQ) [17]. It was shown that the inertia term was
effective to reduce the number of iterations of QN and to
accelerate its convergence speed.

In this paper, the acceleration technique of LQN is pro-
posed using Nesterov’s accelerated gradient [1]. First of all,

324

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a novel algorithm is derived from the detailed consideration
of the derivation process of NAQ. The proposed algorithm,
which is referred to as Limited-memory NAQ (LNAQ), is
accelerated incorporating the momentum acceleration scheme
of NAQ into LQN. The proposed training is demonstrated
through the computer simulations. The effectiveness of the
inertia term is confirmed by the comparison of LNAQ with
LQN using a benchmark problem of highly-nonlinear function
approximation. Finally, it is shown that the proposed algo-
rithm is efficient and practical for the real-world problem of
microwave circuit modeling.

The contents of this paper is structured as follows: Section
II shows the related works. Section III Introduces the formu-
lation of training and conventional gradient-based algorithms
such as BP, CM, NAG, AdaGrad, RMSprop, Adam and LQN.
Section VI proposes the novel algorithm - LNAQ, which is
the acceleration method of LQN by introducing momentum
coefficient. Section V provides simulation results in order to
demonstrate the validity of the proposed LNAQ. Section VI
concludes this paper and describes the future works.

II. RELATED WORK

Recently, the neural networks having deep and huge stric-
tures have attracted enormous research attentions in pattern
recognition, computer vision, and speech recognition [20].
First-order techniques such as CM, NAG, Adagrad, RMSprop,
and Adam [7]-[9][12][14], have been used mostly for training
of deep neural networks. On the other hand, neural network
techniques have been recognized as useful tool for modeling
and design optimaization problems in analog and microwave
circuits design of CAD [3]-[6][21]-[43] in which their I/O
characteristics are strongly nonlinear. For example, EM be-
havior modeling [3]-[6], analog integrated circuits (IC) [23]-
[26], oscillation [27][28], antenna applications [29], nonlinear
microwave circuit optimization [30]-[32], waveguide filters
[33]-[36], low-pass filters [17][36]-[38][49], power amplifier
modeling [39]-[42], vias and interconnects [43], have been
studied. Neural networks can be used for developing new
models whose formula are not available or original models
are computationally too expensive. In these studies, the neural
networks with deep structure are not necessarily utilized. Suit-
able training algorithms for these purposes are approximated
second-order methods such as QN and Levenberg-Marquardt
method (LM). These methods produce models with lower
training error and have faster speed of training than first-
order methods [5]. LM method is a modified version of the
Gauss-Newton method (GN). Particularly, LM can be thought
of as a combination of the strong convergence ability of
Steepest Gradient method and the rapid convergence speed
of GN [44]-[46]. However, LM needs to solve the system of
linear equations in each iteration [19]. On the contrary QN
iterates approximating the inverse matrix of Hessian [18][19].
Therefore, QN did not need the matrix solution in each
iteration, but had to handle the variable-metric matrix. As a
result, these algorithms were unsuitable for training large-scale
neural networks with much small errors. That is, for modeling
of large-scale problems with highly-nonlinearity, the matrix
handing has not reasonable cost [18]. Therefore, LQN was
used for the training [18][19]. The main idea of LQN is to use
curvature information from only the most recent iterations to
construct the Hessian approximation. Curvature information

from earlier iteration, which is less likely to be relevant to
the actual behavior of the Hessian at the current iteration, is
discarded in the interest of saving memory [18].

On the other hand, the acceleration algorithm of QN was
proposed as NAQ in [17]. This method can have realized
introducing momentum coefficient into QN and drastically im-
proved the convergence speed of the QN. As far as the author’s
best knowledge, NAQ was the first acceleration technique of
QN using the momentum term.

III. FORMULATION OF TRAINING AND GRADIENT-BASED
TRAINING METHODS

A. Formulation of training
Let dp, op, and w ∈ RD be the p-th desired, output,

and weight vectors, respectively. The error function E(w) is
defined as the mean squared error (MSE) of

E(w) =
1

|Tr|
∑
p∈Tr

Ep(w), Ep(w) =
1

2
∥dp − op∥2, (1)

where T r denotes a training data set {xp,dp}, p ∈ Tr and |Tr|
is the number of training samples. Among the gradient-based
algorithms, (1) is minimized by

wk+1 = wk + vk+1, (2)

where k is the iteration count and vk+1 is the update vector. A
simple gradient descent algorithm that is the original BP [2]
has

vk+1 = −αk∇E(wk), (3)

where αk is the stepsize and ∇E(wk) is the gradient vector
at wk.

B. First-order training methods
This section introduces the conventional first-order training

methods.

1) Classical Momentum method (CM)

CM is a technique for accelerating BP that accumulates a
previous update vector in directions of persistent reduction in
the training [8]. The update vector of CM is given by

vk+1 = µvk − αk∇E(wk), (4)

where 0 ≤ µ ≤ 1 denotes the momentum coefficient.

2) Nesterov’s Accelerated Gradient method (NAG)

NAG has been the subject of much recent studies in
machine learning [7][8][17]. Arguing that NAG can be viewed
as a simple modification of CM, and can sometimes provide a
distinct improvement in performance for acceleration of neural
network training [8]. CM computes the gradient vector from
the current position wk, whereas NAG first performs a partial
update to wk, computing wk + µvk, and then computes the

325

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

gradient at wk +µvk. NAG have better convergence rate than
CM [7]. NAG update can be written as

vk+1 = µkvk − αk∇E(wk + µvk), (5)

where ∇E(wk + µvk) means the gradient of E(w) at
wk+µvk and is referred to as Nesterov’s accelerated gradient
vector.

3) Adaptive Gradient method (AdaGrad)

AdaGrad [9] is the first-order gradient-based training al-
gorithms with an adaptive stepsize. The update vector of
AdaGrad is given by

vk+1,i = − α√∑k
s=1(∇E(ws)i)2

∇E(wk)i. (6)

Here vk+1,i and ∇E(wk)i are the i-th elements of vk+1

and ∇E(wk), respectively. α is a global stepsize shared by
all dimensions. The recommended value of α is α = 0.01
[9][10][11].

4) Resilient Mean Square backpropagation method (RMSprop)

RMSprop [12] was a mini-batch version of Rprop [10].
The update vector of RMSprop is

vk+1,i = − α√
θk,i + λ

∇E(wk)i, (7)

where λ = 10−8 and

θk,i = γθk−1,i + (1− γ)(∇E(wk)i)
2. (8)

θk,i is the parameter of k-th iteration and i-th element. γ and
the global stepsize of α are set to 0.9 and 0.001, respectively
in [12].

5) Adam

Adam is the most popular and effective gradient-based
training algorithm with less memory requirement [14]. Adam
was realized by combining RMSprop with CM. The update
vector of Adam can be written as

vk+1,i = −α m̂k,i

(
√
θ̂i,k + λ)

, (9)

where

m̂k,i =
mi,k

(1− γk1)
, (10)

and

θ̂k,i =
θk,i

(1− γk2)
. (11)

Here, mk,i and θk,i are given by

mk,i = γ1mk−1,i + (1− γ1)∇E(wk)i, (12)

and

θk,i = γ2θk−1,i + (1− γ2)(∇E(wk)i)
2, (13)

where λ = 10−8 and γk1 and γk2 denote the k-th power
of γ1 and γ2, respectively. α is the global stepsize and the
recommended value is α = 0.001 [14]. mk,i and θk,i are i-th
elements of the gradient and the squared gradient, respectively.
The hyper-parameters 0 ≤ γ1, γ2 < 1 control the exponential
decay rates of these running averages. The running average
themselves are estimates of the first (the mean) moment and the
second raw (the uncentered variance) moment of the gradient.
γ1 and γ2 are chosen to be 0.9 and 0.999, respectively in [14].
All operations on vectors are element-wise.

Note that the recent developments of the training algorithm
such as AdaGrad, RMSprop and Adam were based on the
stochastic strategies. These strategies are not suitable for the
training of highly-nonlinear function modeling [5][15]. There-
fore, we focus on the methods using the curvature information
and the full batch strategy in this paper.

C. Limited-memory quasi-Newton method (LQN)
QN method is the efficient optimization algorithm using the

curvature information and commonly used as training method
for highly-nonlinear function problems. The update vector of
QN is defined as

vk+1 = αkck, (14)

where

ck = −Hk∇E(wk), (15)

ck is the direction vector and Hk is a symmetric positive def-
inite matrix. Hk is iteratively given by the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) formula of (16) as the approximated
inverse matrix of Hessian [18][19].

Hk+1 = Hk − (Hkyk)s
T
k + sk(Hkyk)

T

sTk yk

+

(
1 +

yT
kHkyk

sTk yk

)
sks

T
k

sTk yk
,

(16)

where

sk = wk+1 −wk, (17)

yk = ∇E(wk+1)−∇E(wk) + ξksk = ϵk + ξksk, (18)

and ξk is defined as

ξk = ω ∥ ∇E(wk) ∥ +max{−ϵTk sk/∥ sk ∥2, 0}, (19)

{
ω = 2 if ∥ ∇E(wk) ∥2> 10−2,

ω = 100 if ∥ ∇E(wk) ∥2< 10−2.
(20)

326

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Here, ξk was introduced to guarantee the numerical stability
and the global convergence [47]. For the purpose of reducing
the amount of computer resources used in QN, a sophisticated
technique incorporating the limited-memory scheme is widely
utilized for the calculation of vk+1 as LQN. Specifically, this
method is useful for solving problems whose Hk in (16) cannot
be computed at a reasonable cost. That is, instead of storing
D×D matrix of Hk, only 2×t×D elements have to be stored.
Furthermore, the product of the matrix and vector can be
changed to only the inner product of stored vectors. Here, D is
the dimension of w and t(≪ D) is a hyper-parameter defined
by user. That is, si and yi vectors between i = k and i = k−t
are stored in LQN. As a result, the computational resources
of memory and calculation costs are drastically reduced when
t ≪ D [18]. The LQN scheme is illustrated in Algorithms 1
and 2. In Algorithm 1, αk is derived using the line search in
which Armijo’s condition of (21) is utilized.

E(wk + αkck) ≤ E(wk) + χαk∇E(wk)
Tck, (21)

where 0 < χ < 1 and χ = 0.001 in this paper.

Algorithm 1: Limited-memory quasi-Newton (LQN)
1. k = 1;

2. w1 = rand[−0.5, 0.5](uniform random numbers);
3. Calculate ∇E(w1);
4. While(k < kmax)

(a) Calculate the direction vector ck using Algorithm 2;
(b) Calculate stepsize αk using Armijo’s condition;
(c) Update wk+1 = wk + αkck;
(d) Calculate ∇E(wk+1);
(e) k = k + 1;

5. return wk;

Algorithm 2: Direction Vector of LQN

1. ck = −∇E(wk);

2. for i : k, k − 1, . . . , k −min(k, (t− 1));
(a) βi = sTi ck/s

T
i yi;

(b) ck = ck − βiyi;

3. if k > 1, ck = (sTk yk/y
T
k yk)ck;

4. for i : k −min(k, (t− 1)), . . . , k − 1, k;
(a) τ = yT

i ck/y
T
i si;

(b) ck = ck − (βi − τ)si;

5. return ck;

IV. PROPOSED ALGORITHM - LIMITED-MEMORY
NESTEROV’S ACCELERATED QUASI-NEWTON METHOD

(LNAQ)
NAQ training was derived from the quadratic approxima-

tion of (1) around wk + µvk whereas QN used the approx-
imation of (1) around wk [17]. NAQ drastically improved
the convergence speed of QN using the gradient vector at
wk + µvk of ∇E(wk + µvk) called Nesterov’s accelerated

gradient vector [7][17]. This means that the inertia term of µvk

was effective to accelerate the QN. First of all, the derivation
of NAQ is briefly introduced as follows:

Let ∆w be the vector ∆w = w − (wk + µkvk), the
quadratic approximation of (1) around wk + µkvk is defined
as

E (w) ≃ E (wk + µkvk) +∇E (wk + µkvk)
T
∆w

+
1

2
∆wT∇2E (wk + µkvk)∆w,

(22)

where ∇2E (wk + µkvk) is Hessian of E(w). The minimizer
of this quadratic function is explicitly given by

∆w = −∇2E (wk + µkvk)
−1 ∇E (wk + µkvk) . (23)

Then the new iterate is defined as

wk+1 = (wk + µkvk)

−∇2E (wk + µkvk)
−1 ∇E (wk + µkvk) .

(24)

This iteration is considered as Newton method with the mo-
mentum term µvk. Here Hessian ∇2E (wk + µvk) is approxi-
mated by B̂k+1 and the rank-2 updating formula of this matrix
is derived. Let pk and qk be

pk = wk+1 − (wk + µvk), (25)

qk = ∇E(wk+1)−∇E(wk + µvk), (26)

and the secant condition is defined as

qk = B̂k+1pk. (27)

The suitable rank-2 updating formula for B̂k+1 is derived as
follows. The matrix B̂k+1 is defined using arbitrary vectors t
and u and constants a and b as

B̂k+1 = B̂k + attT + buuT. (28)

Substitute (28) into the secant condition (27),

qk =
(
B̂k + attT + buuT

)
pk =

B̂kpk + at
(
tTpk

)
+ bu

(
uTpk

)
.

(29)

Since tTpk and uTpk are scalars, both of conditions t = qk

and u = −B̂kpk are necessary to the secant condition of (27).
Furthermore scalars a and b are given by a

(
tTpk

)
= 1 and

b
(
uTpk

)
= 1, respectively. As a result, the rank-2 updating

formula for NAQ is defined as

B̂k+1 = B̂k +
qkq

T
k

qT
k pk

− B̂kpkp
T
k B̂k

pT
k B̂kpk

. (30)

327

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Next, it is shown that B̂k+1 of (30) is the symmetric positive
definite matrix under the Definition: B̂k is the symmetric
positive definite matrix. Here the following conditions are
guaranteed for the above:
(a): B̂k+1 of (30) satisfies the secant condition qk = B̂k+1pk.
(b): If B̂k is symmetry, B̂k+1 is also symmetry.
(c): If B̂k is the positive definite matrix, B̂k+1 is also the
positive definite matrix.
Proof of (a):

From (30) the secant condition qk = B̂k+1pk:

B̂k+1pk =

(
B̂k +

qkq
T
k

qT
k pk

− B̂kpkp
T
k B̂k

pT
k B̂kpk

)
pk

= B̂kpk +
qkq

T
k

qT
k pk

pk − B̂kpkp
T
k B̂k

pT
k B̂kpk

pk = qk

(31)

2

Proof of (b): This is clear from (30).

2

Proof of (c):
First, qT

k pk > 0 will be shown. When the stepsize αk is
calculated by the exact line search, that is,

dE (wk+1) /dαk = −∇E (wk+1)
T
Ĥk∇E (wk + µvk) = 0.

(32)

As a result,

qT
k pk = αk∇E (wk + µvk)

T
Ĥk∇E (wk + µvk) > 0,

(33)

is derived. It is guaranteed in (33) that Ĥk is the positive
definite matrix because it is the inverse matrix of B̂k, and
∇E (wk + µvk) ̸= 0.

Second, the positive definiteness of B̂k+1, that is, let
r ̸= 0 be an arbitrary vector, rTB̂k+1r > 0 will be shown.
Because B̂k is the positive definite matrix, it can be divided
as B̂k = CCT using an arbitrary non-singular matrix C. Let
t = CTr (̸= 0) and u = CTpk (̸= 0), it is shown that

rTB̂k+1r =

(
tTt
) (

uTu
)
−
(
tTu

)2
uTu

+

(
rTqk

)2
qT
k pk

≥ 0, (34)

with the Cauchy-Schwarz inequality [18] and the condition
of (33). In (34) the equal condition is satisfied, if and only
if
(
tTt
) (

uTu
)
−
(
tTu

)2
= 0 and rTqk = 0. The former

equation holds when t = ψu with the arbitrary scalar ψ (̸= 0).
When t = ψu, then r = ψpk. Therefore, the later equation
is transformed as rTqk = ψpT

k qk = 0. This contradicts (33).
Then the equal condition of (34) is not satisfied. As a result,
B̂k+1 holds rTB̂k+1r > 0, namely positive definiteness.

2

Applying the Sherman-Morrison-Woodbury formula [18] to
(30), the update formula of the inverse Hessian approximation
Ĥk+1

(
= B̂−1

k+1

)
is given by

Ĥk+1 = Ĥk − (Ĥkqk)p
T
k + pk(Ĥkqk)

T

pT
k qk

+

(
1 +

qT
k Ĥkqk

pT
k qk

)
pkp

T
k

pT
k qk

.

(35)

From the above, it is confirmed that the NAQ has a similar
convergence property with QN because B̂k+1 updated by (35)
holds symmetry and positive definiteness and Ĥk+1 is the
inverse matrix of B̂k+1. The update vector vk+1 of NAQ can
be obtained as follow.

vk+1 = µkvk + αkĉk, (36)

ĉk = −Ĥk∇E(wk + µkvk). (37)

The momentum coefficient of µ was usually selected from
value close to 1 such as {0.8, 0.85, 0.9, 0.95} and fixed during
iteration [8][17].

The limited-memory scheme can be straightly applied to
the update of (36) in NAQ. The detail of the limited memory
scheme is derived as follows. In the first, the update formula
of (35) is transformed as

Ĥk+1 = Ĥk − (Ĥkqk)p
T
k + pk(Ĥkqk)

T

pT
k qk

+

(
1 +

qT
k Ĥkqk

pT
k qk

)
pkp

T
k

pT
k qk

=

(
I− qkp

T
k

pT
k qk

)T

Ĥk

(
I− qkp

T
k

pT
k qk

)
+

pkq
T
k

pT
k qk

(38)

= ĜT
k ĤkĜk +

pkp
T
k

pT
k qk

, (39)

where

Ĝk =

(
I− pkp

T
k

pT
k qk

)
. (40)

Then Ĥk is given by

Ĥk = ĜT
k−1Ĥk−1Ĝk−1 +

pk−1p
T
k−1

pT
k−1qk−1

. (41)

Substitute (41) into (39),

Ĥk+1 = ĜT
k Ĝ

T
k−1Ĥk−1Ĝk−1ĜkĜ

T
k

pk−1p
T
k−1

pT
k−1qk−1

Ĝ

+
pkp

T
k

pT
k qk

.

(42)

328

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

By repeating this operation until k = 1, the update formula of
Ĥk+1 is retransformed as

Ĥk+1 = (Ĝ1 . . . Ĝk−1Ĝk)
TĤ1(Ĝ1 . . . Ĝk−1Ĝk)

+(Ĝ2 . . . Ĝk−1Ĝk)
Tp1p

T
1

pT
1 q1

(Ĝ2 . . . Ĝk−1Ĝk) + . . .

+(Ĝk−1Ĝk)
Tpk−2p

T
k−2

pT
k−2qk−2

(Ĝk−1Ĝk)+

ĜT
k

pk−1p
T
k−1

pT
k−1qk−1

Ĝk +
pkp

T
k

pT
k qk

,

(43)

where Ĥ1 is an initial positive definite symmetric matrix. Since
the inverse Hessian approximation Ĥk will generally be dense,
so that the cost of storing and manipulating it is prohibitive
when the number of variables is large [18]. To circumvent this
problem, we apply the limited-memory scheme of LQN with
the user defined parameter of t to (43). The limited-memory
formula of (43) between k − th and (k − t) − th iteration is
derived as

Ĥk+1 = (Ĝk−t+1 . . . Ĝk−1Ĝk)
TĤ0

k(Ĝk−t+1 . . . Ĝk−1Ĝk)

+(Ĝk−t+2 . . . Ĝk−1Ĝk)
Tpk−t+1p

T
k−t+1

pT
k−t+1qk−t+1

(Ĝ2 . . . Ĝk−t+2Ĝk)

+ . . .+ (Ĝk−1Ĝk)
Tpk−2p

T
k−2

pT
k−2qk−2

(Ĝk−1Ĝk)+

ĜT
k

pk−1p
T
k−1

pT
k−1qk−1

Ĝk +
pkp

T
k

pT
k qk

.

(44)

By substituting (44) into (37), the search vector ĉk of proposed
LNAQ is calculated [1]. Here, Ĝk is defined by the identity
matrix and the inner products. Therefore, the search vector
of LNAQ can be obtained by performing a sequence of inner
products and vector summations of pairs {pi,qi| i : k − t +
1, . . . , k − 1, k}. After the new iterate wk+1 is computed, the
oldest vector pair in the set of pairs {pi,qi} is deleted and
replaced by the new pairs {pk,qk}. As a result, we can derive
a recursive procedure to compute ĉk. The LNAQ scheme is
illustrated in Algorithms 3 and 4. Here, Armijo’s condition of
(45) for LNAQ is used for the line search.

E(wk+µvk+αkĉk) ≤ E(wk+µvk)+χ̂αk∇E(wk+µvk)
Tĉk,
(45)

where 0 < χ̂ < 1 and χ̂ = 0.001 in this paper. Furthermore,
in order to guarantees the numerical stability and the global
convergence of LNAQ, (46) and (47) are added to qk similarly
to LQN [47].

ξ̂k = ω ∥ ∇E(wk + µvk) ∥ +max{−ϵTk pk/∥ pk ∥2, 0},
(46)

and

{
ω = 2 if ∥ ∇E(wk + µvk) ∥2> 10−2,

ω = 100 if ∥ ∇E(wk + µvk) ∥2< 10−2.
(47)

As a result, qk is rewritten as

qk = ∇E(wk+1)−∇E(wk+µvk)+ξ̂kpk = ϵk+ξ̂kpk. (48)

Algorithm 3: The proposed LNAQ
1. k = 1;

2. w1 = rand[−0.5, 0.5](uniform random numbers);
3. While(k < kmax)

(a) Calculate ∇E(wk + µvk);
(b) Calculate the direction vector ĉk using Algorithm 4;
(c) Calculate stepsize αk using Armijo’s condition;
(d) Update wk+1 = wk + µvk + αkĉk;
(e) Calculate ∇E(wk+1);
(f) k = k + 1;

4. return wk;

Algorithm 4: Direction Vector of LNAQ

1. ĉk = −∇E(wk + µvk);

2. for i : k, k − 1, . . . , k −min(k, (t− 1));
(a) β̂i = pT

i ĉk/p
T
i qi;

(b) ĉk = ĉk − β̂iqi;

3. if k > 1, ĉk = (pT
k qk/q

T
k qk)ĉk;

4. for i : k −min(k, (t− 1)), . . . , k − 1, k;
(a) τ̂ = qT

i ĉk/q
T
i pi;

(b) ĉk = ĉk − (β̂i − τ̂)pi;

5. return ĉk;

In Algorithm 3, two times calculations of the gradient vectors
of ∇E(wk+µvk) and ∇E(wk+1) were needed within a train-
ing loop whereas LQN needs one derivation of the gradient.
This is a disadvantage of LNAQ, but the algorithm can further
shorten the iteration counts to cancel out the effect of this
shortcoming [1]. The simulation results will show the above
fact.

V. SIMULATION RESULTS

Computer simulations are conducted in order to demon-
strate the validity of the proposed LNAQ. In the simulations
the feedforward neural networks with a hidden layer and an
arbitrary number of hidden layer’s neurons were used. Each
neuron has a sigmoid function as sig(x) = 1/(1 + exp(−x)).
The performance of LNAQ is compared with conventional
algorithms such as BP [2], CM [8], NAG [8], AdaGrad [9],
RMSprop [12], Adam [14] and LQN [18] for two benchmark
problems. Benchmark problems used here are a function
approximation problem of Levy function [48] and a microwave
circuit modeling problem of low-pass filter [17][36]-[38][49].
Ten independent runs were performed with different starting
values of w, which are initialized by uniform random numbers
within [−0.5, 0.5]. Each hyper-parameter of AdaGrad, RM-
Sprop and Adam is set to the default value of each original

329

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

paper, respectively. These adaptive methods are mainly utilized
in the stochastic (mini-batch) mode. However, the problems
in this paper need the full batch method [15]. Therefore, the
full batch scheme is applied to all algorithms. The momentum
coefficient of µ used in CM, NAG and LNAQ are 0.8, 0.85,
0.9 and 0.95 as [8][17]. The simulations were performed on
the computer, which has Intel Core i7-8700 3.2GHz processor
and 8GB memory. Each trained neural network was estimated
by the average, best and worst of E (w), the average of
computational time (s) and the average of iteration counts
(k). Each element of the input and desired vectors of Tr is
normalized within [−1.0, 1.0] in the simulations.

A. Levy function approximation problem
Levy function (Rn → R1) shown in (49) is used for

the first function approximation problem. The Lavy function
is a multimodal function with highly-nonlinear characteristic.
Therefore, the function usually used as a benchmark problem
for the multimodal function optimization [48].

f(x1 . . . xn) =
π

n

{
n−1∑
i=1

[(xi − 1)2(1 + 10 sin2(πxi+1))]

+10 sin2(πx1) + (xn − 1)2

}
, xi ∈ [−4, 4], ∀i,

(49)

Figure 1. Levy Function f(x1, x2).

where n denotes the input dimension. In Figure 1, Levy
function with n = 2 dimensions of (49) is shown. From the
figure, we can obtain the highly-nonlinear characteristic of the
function. In this simulation the dimension of input vector x
is set to n = 5. The inputs and an output are x1, · · · , x5
and f(x1, · · · , x5), respectively. The trained network has a
hidden layer with 50 hidden neurons. Therefore, the structure
of neural network is 5-50-1 and the dimension of w is 351.
The number of training data is |Tr| = 5000, which are
generated by uniformly random number in xi ∈ [−4, 4].
Maximum number of iteration is set to kmax = 2 × 104.
Here, we verified LNAQ from the viewpoints of two kinds
of comparisons. First one is the comparison with LQN for
iteration and computer time. Second, the proposed LNAQ is
compared with the conventional algorithms for the training

errors.

1) Comparison of LQN and LNAQ

Here, we compare LNAQ and LQN with respect to iteration
count (k) and the computational time (s) for several memories.
The range of storage memory t is from 10 to 100 at intervals
of 10. The terminate conditions are set to E(w) ≤ 1.0×10−4.
For function approximation problems, the small MSE of E(w)
is very important, because the trained network with the small
E(w) can become an accurate neural network model. There-
fore, the average iteration counts and computational times until
E(w) ≤ 1.0 × 10−4 within kmax = 2 × 104 are obtained

10 20 30 40 50 60 70 80 90 100
0

4000

8000

12000

16000

20000

Memory (t)

Ite
ra

tio
n

co
un

t (
k)

LQN
LNAQ (0.8)
LNAQ (0.85)
LNAQ (0.9)
LNAQ (0.95)

Figure 2. The average of iteration count vs memories.

10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

Memory (t)

T
im

e
(s

)

LQN
LNAQ (0.8)
LNAQ (0.85)
LNAQ (0.9)
LNAQ (0.95)

Figure 3. The average of calculation time vs memories.

in this comparison. Figure 2 shows the average of iteration
count (k) vs memories (t) for LQN and LNAQ. From this
figure, it can be seen that LNAQ converges with less iteration
count than LQN regardless of µ. Therefore, LNAQ has the

330

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. Summary of Levy function.

Algorithm µ Memory E(w)(×10−3) Time Time / Iteration
Ave/Best/Worst (s) (ms)

BP - - 38.8 / 30.6 / 52.0 487 24.35
CM 0.9 - 32.4 / 0.31 / 54.8 806 40.30

0.95 - 47.5 / 13.4 / 54.8 854 42.70
NAG 0.9 - 55.0 / 54.8 / 55.7 802 40.10

0.95 - 55.0 / 54.8 / 56.2 738 36.90
AdaGrad - - 52.5 / 52.3 / 53.1 488 24.40
RMSprop - - 43.0 / 33.2 / 54.1 487 24.35

Adam - - 1.20 / 0.16 / 10.2 487 24.35
LQN - 30 0.0710 / 0.0338 / 0.167 732 36.60

- 40 0.0679 / 0.0302 / 0.143 732 36.60
LNAQ 0.9 30 0.0174 / 0.00517 / 0.0448 1,210 60.50

0.95 30 0.0295 / 0.00578 / 0.145 1,230 61.50
LNAQ 0.9 40 0.0205 / 0.00529 / 0.0407 1,220 61.00

0.95 40 0.0256 / 0.00585 / 0.0583 1,250 62.50

0 10000 20000
10−5

10−4

10−3

10−2

10−1

100

BP
CM (0.9)
CM (0.95)
NAG (0.9)
NAG (0.95)

AdaGrad
RMSprop
Adam
LQN 30
LQN 40

LNAQ 30 (0.9)
LNAQ 30 (0.95)
LNAQ 40 (0.9)
LNAQ 40 (0.95)

T
ra

in
in

g
E

rr
or

 (
E

(w
))

Iteration count (k)

Figure 4. The average training errors vs iteration count of Levy function.

ability to significantly reduce the iteration counts compared to
LQN. Furthermore, it is shown that the decrease of iteration is
hardly seen in memory (t) larger than 40 and the momentum
coefficients µ closer to 1, that is µ = 0.9 and 0.95 converge
faster. However, LNAQ requires two calculations of gradient in
one iteration. That is, it takes time to compare with LQN in one
iteration. Therefore, it is necessary to compare the calculation
time until the training end. Figure 3 shows the average of
calculation times (s) vs memories (t) for LQN and LNAQ.
From Figure 3, it can be seen that LNAQ is inferior to LQN
in terms of calculation time, when the storage memory of (t)
is small. However, when t increases, it is easy to conclude that
LNAQ is faster than LQN. From these figures, it is confirmed
that memories of t = 30 or 40 and coefficients of µ = 0.9 and
0.95 are recommended.

2) Comparison of LNAQ and conventional algorithms

In these simulations, the proposed LNAQ is compared with
BP, CM, NAG, AdaGrad, RMSprop, Adam and LQN. The
storage amount of memories is experimentally set to t = 30
and 40 from the above results. The momentum coefficients µ
of CM, NAG and LNAQ are set to µ = 0.9 and 0.95. Here, the
terminate condition is set to kmax = 2× 104. This means that
the iteration continues after E(w) ≤ 1.0×10−4. The summary
of results is shown in Table 1 and the average of training
errors of BP, CM, NAG, AdaGrad, RMSprop, Adam, LQN and
LNAQ for the iteration count is illustrated in Figure 4. From
Figure 4 and Table 1, The conventional algorithms based on
the first order methods such as BP, CM, NAG, AdaGrad and
RMSprop could not converge to small training errors. From
Table 1, it is confirmed that Adam, LQN and LNAQ converge
to small errors depending on the initial value. In comparing
of the average training errors, LQN and LNAQ can obtain
the small average errors compared with Adam. Especially,
the average error of LNAQ (t = 30, µ = 0.9) is smallest
and almost the same as the worst error. These results show
the robustness with respect to the initial value. On the other
hand, the calculation time of LQN is faster than the one of
LNAQ for the same iteration count (kmax = 2 × 104). This
is caused by the drawback namely two times calculations of
the gradients of LNAQ. However, LNAQ can reach the small
training error (E(w) ≤ 1.0×10−4) faster than LQN. This fact
can be confirmed in Figure 4.

B. Microwave circuit modeling of low-pass filter
Neural networks can be trained using measured or simu-

lated microwave device data such as EM and physical data
[3]-[6]. The trained neural networks can be used as models
of microwave devices in place of CPU-intensive EM/physics
models to significantly speed up circuit design while maintain-
ing EM/physics-level accuracies [3][5]. Neural network based
modeling has been used to model a variety of microwave
circuit components at both device and circuit levels. In this
simulation, we applied LNAQ to develop a neural network
model of the microstrip low-pass filter (LPF) [17][36]-[38]
illustrated in Figure 5. The dielectric constant and height of

331

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. Summary of LPF.

Algorithm µ Memory E(w)(×10−3) Time Time/ Iteration
Ave/Best/Worst (s) (ms)

BP - - 22.4 / 19.6 / 24.3 143 2.86
CM 0.9 - 23.7 / 9.56 / 29.2 264 5.28

0.95 - 24.0 / 6.41 / 29.2 277 5.54
NAG 0.9 - 106 / 16.3 / 832 248 4.96

0.95 - 26.2 / 15.5 / 29.2 247 4.94
AdaGrad - - 25.3 / 24.8/ 25.6 142 2.84
RMSprop - - 26.6 / 26.2 / 27.0 144 2.88

Adam - - 5.54 / 4.66 / 6.35 142 2.84
LQN - 30 6.89 / 5.81 / 7.68 246 4.92

- 40 7.08 / 6.42 / 7.81 247 4.94
LNAQ 0.9 30 2.15 / 1.59 / 3.13 378 7.56

0.95 30 1.63 / 1.36 / 2.06 377 7.54
LNAQ 0.9 40 1.97 / 1.57 / 2.80 380 7.60

0.95 40 1.49 / 1.23 / 1.93 377 7.54

the substrate of LPF are 9.3mm and 1mm, respectively. The
length D ranges 12-20mm at intervals of 1mm. The frequency
range was 0.1 to 4.5GHz. Each set of contains 221 samples.
The inputs of the neural network, x1 and x2 are frequency f
and length D in which training data Tr and test data Te are
set to D = [12, 14, 16, 18, 20] mm and [13, 15, 17, 19] mm,
respectively. The outputs, o1 and o2 are the magnitudes of
S-parameters, |S11| and |S21|, respectively. These data are
obtaining by the standard software of sonnet [49]. Training
data is illustrated in Figure 6. As shown in Figure 6, there
are many irregularly aligned poles in S-parameters and the
modeling of the poles is the most important in microwave
circuit problems. Therefore the microwave circuit modeling
is a strong nonlinear problem and needs very small training
and testing errors. The number of hidden neurons is 45.
Therefore, the structure of neural network is 2-45-2 and the
dimension of w is 227. The maximum iteration count is set
to kmax = 5 × 104. The purposed LNAQ is also compared
with BP, CM, NAG, AdaGrad, RMSprop, ADAM and LQN.
Memories (t) are selected 30 and 40 for both of LQN and
LNAQ. The coefficients of µ for CM, NAG and LNAQ are
set to 0.9 and 0.95. The summary of results is shown in Table
2 and the training errors for iteration counts are illustrated in
Figure 7. From Table 2 and Figure 7, the first-order methods
such as BP, CM, NAG, AdaGrad and RMSprop could not
obtain the small training errors for the practical methods.
Adam can obtain the small training errors compared with
LQN for this problem. In comparison of Adam with LNAQ,
LNAQ need more computational time than Adam because of
two calculations of gradient and the complex procedure for
the calculation of the direction. However, the proposed LNAQ
can converge to smaller value of training error than Adam and
LQN. Especially, the average training error of LNAQ (t = 40
and µ = 0.95) can converge to 1.49 × 10−3. Furthermore,
LNAQ can obtain the small difference between the best and
the worst errors. This means that LNAQ is also robust with
respect to the initial value for this problem.

For measuring accuracy of modeling, the outputs of the

D

Figure 5. Layout of LPF.

Figure 6. Training data set for LPF.

trained neural model for D = [13, 15, 17, 19] mm, which are
not included in training are compared with the test data of
|S11| and |S21|. The trained models are selected from neural
networks trained by Adam and LNAQ (t = 40 and µ = 0.95)
with the smallest training errors 4.66×10−3 and 1.23×10−3,
respectively. The test errors Etest(w) obtained by Adam and
LNAQ are 3.15×10−3 and 0.656×10−3, respectively. Figure
8 and 9 shows the comparison of the test data of D = 13

332

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0 10000 20000 30000 40000 50000
10−3

10−2

10−1

Iteration count (k)

T
ra

in
in

g
E

rr
or

 (
E

(w
))

BP
CM (0.9)
CM (0.95)
NAG (0.9)
NAG (0.95)

AdaGrad
RMSprop
Adam
LQN 30
LQN 40

LNAQ 30 (0.9)
LNAQ 30 (0.95)
LNAQ 40 (0.9)
LNAQ 40 (0.95)

Figure 7. The average training errors vs iteration count of LPF.

mm and 17 mm with the model outputs trained by Adam and
LNAQ, respectively. It can be seen from Figure 8 of the model
trained by Adam that there are multiple large gaps between the
model outputs and test data. They are prominent in places of
pole. On the other hand, it can be confirmed that the neural
model trained by LNAQ and the test data are showing good
match between them from Figure 9.

VI. CONCLUSION

In this paper, we proposed a novel training algorithm
called LNAQ, which was developed based on Limited-memory
method of QN incorporating the momentum acceleration
scheme and Nesterov’s accelerated gradients vector. The effec-
tiveness of the proposed LNAQ was demonstrated through the
computer simulations compared with the conventional algo-
rithms such as BP, CM, NAG, AdaGrad, RMSprop, Adam and
LQN. For highly-nonlinear problem, the first-order methods
such as BP, CM, NAG, AdaGrad and RMSprop could not
obtain desired small training errors for the function approxima-
tion and the microwave circuit modeling problems. Only Adam
could get small errors depending on the problem and the initial
value of w. On the other hand, the curvature information-
based method such as LQN and LNAQ could obtain the
small errors for a function approximation problem. For a real-
world problem of microwave circuit modeling the efficient and
practical models could be trained by only LNAQ. Furthermore,
the effectiveness of the momentum coefficient for QN with the
limited memory scheme was demonstrated through the results
of the training errors for iteration. This means that LNAQ
can reduce training errors earlier than other method. LNAQ
may take time to obtain a solution compared to other methods
because of its drawback. Depending on the problem, however,
it may be the only algorithm that can get a practical model
that cannot be obtained by the other methods. This is very
important issue for modeling of highly-nonlinear problems.

In the future the momentum parameters µ will be studied.
This parameter was analytically determined for the first-order
method of NAG in [7] for the convex problems whereas
the fixed values were used in [8][16] for the neural training
problems of the non-convex problems in the same way as

Figure 8. Example of comparison between test data and neural model
trained by Adam.

Figure 9. Example of comparison between test data and neural model
trained by LNAQ.

this paper. Therefore, the analytical studies of the momentum
parameter for the second-order method of LNAQ will be
done in the future. Furthermore, the validity of the proposed
algorithm for more highly-nonlinear function approximation
problems and the much huge scale problems including deep
networks will be demonstrated.

ACKNOWLEDGMENT

The authors thank to Prof. Q.J. Zhang at Carleton Uni-
versity, Canada, for his support of microwave circuit models.
This work was supported by Japan Society for the Promotion
of Science (JSPS), KAKENHI (17K00350).

REFERENCES
[1] S. Mahboubi and H. Ninomiya, ”A novel training algorithm based

on limited-memory quasi-Newton method with Nesterov’s accelerated
gradient for neural networks,” IARIA / FUTURE COMPUTING’18, pp.
1−3, Feb. 2018.

333

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[2] S. Haykin, ”Neural Networks and Learning Machines 3rd,” Pearson,
2009.

[3] Q. J. Zhang, K. C. Gupta, and V. K. Devabhaktuni, ”Artifical neural
networks for RF and microwave design-from theory to practice,” IEEE
Trans. Microwave Theory and Tech., vol.51, pp.1339−1350, Apr. 2003.

[4] H. Ninomiya , ”A hybrid global/local optimization technique for robust
training and its application to microwave neural network models,”
J.Signal Procassing, 14, 3, pp.213−222, 2010.

[5] H. Kabir, L. Zhang, M. Yu, P. H. Aaen, J. Wood, and Q. J. Zhang,
”Smart modeling of microwave devices,” IEEE Microwave Magazine,
vol.11, no.3, pp.105−118, May. 2010.

[6] H. Ninomiya, S. Wan, H. Kabir, X. Zhang and Q. J. Zhang, ”Ro-
bust training of microwave neural network models using combined
global/local optimization techniques,” IEEE MTT-S International Mi-
crowave Symposium (IMS) Digest, pp.995−998, Jun, 2008.

[7] Y. Nesterov, ”Introductory Lectures on Convex Optimization: A Basic
Course,” 2004.

[8] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, ”On the importance
of initialization and momentum in deep learning,” ICML’13, 2013.

[9] D. John, H. Elad, and S.Yoram, ”Adaptive subgradient methods for
online learning and stochastic optimization,” The Journal of Machine
Learning Research, pp.2121−2159, Jul. 2011.

[10] S. Ruder, ”An overview of gradient descent optimization algorithm,”
arXiv preprint arXiv:1609.04747. 2016.

[11] M. D. Zeiler, ”ADADELTA: An adaptive learning rate method,” arXiv
preprint arXiv:1212.5701. 2012.

[12] T. Tieleman and G. Hinton, ”Lecture 6.5 - RMSProp,” COURSERA:
Neural Networks for Machine Learning. Technical report, 2012.

[13] M. Riedmiller and H. Braun, ”Rprop - A fast adaptive learning
algorithm,” ISCIS VII, 1992.

[14] P. D. Kinguma and J. Ba, ”Adam: A method for stochastic optimiza-
tion,” ICLR’15, vol.5, May. 2015.

[15] H. Ninomiya, ”Dynamic sample size selection based quasi-Newton
training for highly nonlinear function approximation using multilayer
neural networks,” IEEE&INNS IJCNN’13, pp.1932−1937, Aug. 2013.

[16] A. Basu, S. De, A. Mukherjee, and E. Ullah, ”Convergence guarantees
for RMSProp and ADAM in non-convex optimization and their compar-
ison to Nesterov acceleration on autoencoders.”, arXiv:1807.06766v1,
Jul. 2018.

[17] H. Ninomiya, ”A novel quasi-Newton optimization for neural network
training incorporating Nesterov’s accelerated gradient,” IEICE NOLTA
Journal, vol.E8-N, no.4, pp.289−301, Oct. 2017.

[18] J. Nocedal and S. J. Wright, ”Numerical Optimization Second Edition,”
Springer, 2006.

[19] W. Forst and D. Hoffmann, ”Optimization - Theory and Practice,”
Springer, 2010.

[20] I. Goodfellow, Y. Bengio, and A. Courville. ”Deep learning (adaptive
computation and machine learning series),” Adaptive Computation and
Machine Learning series, 2016.

[21] J. Wood and D. E. Root, eds,”Fundamentals of Nonlinear Behavioral
Modeling for RF and Microwave Design,” ARTECH HOUSE, 2005.

[22] Q. J. Zhang, J, Bandler, S. Koziel H. Kabir, and L, Zhang, ”ANN and
space mapping for microwave modeling and optimization,” IEEE MTT-S
International, pp.980−983, May. 2010.

[23] R. M. Hassani, D, Haerle, and R. Grosu, ”Efficient modeling of complex
analog integrated circuits using neural networks,” IEEE PRIME’12,
pp.1−4, Jun. 2016.

[24] J. Michel and Y. Herve, ”VHDL-AMS behavioral model of an analog
neural networks based on a fully parallel weight perturbation algorithm
using incremental on-chip learning,” IEEE International Symposium on
Industrial Electronics, vol.1, pp. 211−216, May. 2004.

[25] A. Jafari, S. Sadri, and M. Zekri, ”Design optimization of analog
integrated circuits by using artificial neural networks,” IEEE SoCPaR,
Nov. 2010.

[26] R. M. Hasani, D. Haerle, C. F. Baumgartner, A. R. Lomuscio, and
R. Grosu, ”Compositional neural-network modeling of complex analog
circuits,” IEEE IJCNN’17, pp.2235−2242, May. 2017.

[27] M. Kraemer, D. Dragomirescu, and Robert Plana, ”A novel technique
to create behavioral models of differential oscillators in VHDL-AMS,”
SM2ACD, Oct. 2008.

[28] M. Kraemer, D. Dragomirescu, and R. Plana, ”Nonlinear behavioral
modeling of oscillators in VHDL-AMS using artificial neural networks,”
IEEE RFIC, pp.689−692, Jun. 2008.

[29] J. P. Garcia, F. Q. Pereira, D. C. Rebenaque, J. L. G. Tornero, and A.
A. Melcon, ”A neural-network method for the analysis of multilayered
shielded microwave circuits,” Proc.IEEE Trans. Microwave Theory
Tech., vol.54, no.1, pp.309−320, Jan. 2006.

[30] V. Rizzoli, A. Costanzo, D. Masotti, A. Lipparini, and F. Mastri,
”Computer-aided optimization of nonlinear microwave circuits with the
aid of electromagnetic simulation,” IEEE Trans. Microwave Theory
Tech., vol.52, no.1, pp.362−377, Jan. 2004.

[31] V. Rizzoli, A. Neri, D. Masotti, and A. Lipparini, ”A new family of
neural network-based bidirectional and dispersive behavioral models for
nonlinear RF/microwave subsystems,” Int. J. RF Microwave Comput.-
Aided Eng., vol.12, no.1, pp.51−70, Jan. 2002.

[32] G. L. Creech, B. J. Paul, C. D. Lesniak, T. J. Jenkins, and M. C.
Calcatera, ”Artificial neural networks for fast and accurate EM-CAD
of microwave circuits,” IEEE Trans. Microwave Theory Tech., vol.45,
no.5, pp.794−802, May. 1997.

[33] Y. Wang, M. Yu, H. Kabir, and Q. J. Zhang, ”Effective design of cross-
coupled filter using neural networks ad coupling matrix,” IEEE MTT-S
Int. Microwave Symp. Dig., pp.1431−1434, Jun. 2006.

[34] H. Kabir, Y. Wang, M. Yu, and Q. J. Zhang, ”Neural network inverse
modeling and applications to microwave filter design,” IEEE Trans.
Microwave Theory Tech., vol.56, no.4, pp.867−879, Apr. 2008.

[35] M. M. Vai, S. Wu, B. Li, and S. Prasad, ”Reverse modeling of
microwave circuits with bidirectional neural network models,” IEEE
Trans. Microwave Theory Tech., vol.46, pp.1492−1494, Oct. 1998.

[36] H. Ninomiya, ”Microwave neural network models using improved
online quasi-Newton training algorithm,” Journal of Signal Processing,
vol.15, no.6, pp.483−488, Nov. 2011.

[37] H. Sharma and Q. J. Zhang, ”Transient electromagnetic modeling using
recurrent neural network,” IEEE MTT-SIMS Digest, pp.1597−1600, Jun.
2005.

[38] W. J. R. Hoefer and P. P. M. So, ”The MEFiSTo-2D Theory,” Victoria,
BC, Canada: Faustus Scientific Corporation, 2001.

[39] T. Liu, S. Boumaiza, and F. M. Ghannouchi, ”Dynamic behavioral
modeling of 3G power amplifier using real-valued time delay neu-
ral networks,” IEEE Trans. Microwave Theory Tech., vol.52, no.3,
pp.1025−1033, Mar. 2004.

[40] M. Isaksson, D. Wisell, and D. Ronnow, ”Wide-band modeling of power
amplifiers using radial-basis function neural networks,” IEEE Trans.
Microwave Theory Tech., vol. 53, no. 11, pp. 3422−3428, Nov. 2005.

[41] B. O’Brien, J. Dooley, and T. J. Brazil, ”RF power amplifier behavioral
modeling using a globally recurrent neural network,” IEEE MTT-S Int.
Microwave Symp. Dig, pp.1089−1092, Jun. 2006.

[42] J. Wood, D. E. Root, and N. B. Tufillaro, ”A behavioral modeling
approach to nonlinear model-order reduction for RF/microwave ICs
and systems,” IEEE Trans. Microwave Theory Tech., vol.52, no.9,
pp.2274−2284, Sep. 2004.

[43] P. M. Watson and K. C. Gupta, ”EM-ANN models for microstrip vias
and interconnects in dataset circuits,” IEEE Trans. Microwave Theory
Tech., vol.44, no.12, pp.2495−2503, Dec. 1996.

[44] S. Roweis, ”Levenberg-marquardt optimization,” Notes, University Of
Toronto, 1996.

[45] M. K. Transtrum and J. P. Sethna. ”Improvements to the Levenberg-
Marquardt algorithm for nonlinear least-squares minimization,” arXiv
preprint arXiv:1201.5885, Jan. 2012.

[46] M. I. A. Lourakis, ”A brief description of the Levenberg-Marquardt
algorithm implemented by levmar,” Foundation of Research and Tech-
nology, pp.1−6, Feb. 2005.

[47] D. H. Li and M. Fukushima, ”A modified BFGS method and its global
convergence in nonconvex minimization,” Journal of Computational
and Applied Mathematics, vol.129, pp.15−35, 2001.

[48] D. Gao, N. Ruan, and W. Xing, editors, ”Advances in Global Optimiza-
tion,” Springer Proceedings in Mathematics & Statistics, 2014.

334

International Journal on Advances in Software, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[49] Sonnet, Full-wave 3D Planar Electromagnetic Field Solver Software for
High Frequency EM Simulation, Sonnet Software, Inc.

