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Abstract—Functional Size Measurement is widely used, especially
to quantify the size of applications in the early stages of
development, when effort estimates are needed. However, the
measurement process is often too long or too expensive, or
it requires more knowledge than available when development
effort estimates are due. To overcome these problems, early
size estimation methods have been proposed, to get approximate
estimates of functional measures. In general, early estimation
methods adopt measurement processes that are simplified with
respect to the standard process, in that one or more phases
are skipped. So, the idea is that you get –at a fraction of
the cost and time required for standard measurement– size
estimates affected by some estimation error, instead of accurate
measures performed following the longer and more expensive
standard measurement process. In this paper, we consider some
methods that have been proposed for estimating the COSMIC
(Common Software Measurement International Consortium) size
of software during the modeling stage. We apply the most recent
methodologies for estimation accuracy, to evaluate whether early
model-based estimation is accurate enough for practical usage.
The contribution of the paper is twofold: on the one hand we
provide a reliable evaluation of the accuracy that can be obtained
when estimating the functional size of software applications based
on UML models; on the other hand, we get indications concerning
the effectiveness and expressiveness of recently proposed accuracy
estimation methods.

Keywords–Functional size measurement; COSMIC Function
Points; Measurement process; Functional size estimation; Accuracy
estimation.

I. INTRODUCTION

Functional Size Measurement (FSM) is widely used.
Among the reasons for the success of FSM is that it can
provide measures of size in the early stages of software
development, when they are most needed for cost estimation.
However, FSM requires that the functional requirements of
the application to be measured are available in a complete and
quite detailed form. Often, this is not possible in the very early
stages of development. Therefore, to get measures also when
requirements are still incomplete or still defined at a coarse
level of detail, size estimation models have been proposed.

When applying a size estimation method, the method –
being applied to incomplete or not thoroughly detailed soft-
ware specifications– requires less time and effort than the
standard measurement process. However, the size estimates
so obtained contain some estimation error. In general, we
are ready to accept a relatively small estimation error in

exchange of being able to get size estimates without having to
apply the standard measurement process. On the contrary, an
excessively large estimation error would defeat the very reason
for measuring. Hence, we are interested in knowing the likely
accuracy of measure estimates. To this end, we need reliable
methods to evaluate the accuracy of estimates [1].

Unfortunately, it has been shown that the most popular
estimate accuracy statistic, the Mean Magnitude of Relative
Errors (MMRE) is flawed, in that it is a biased estimator
of central tendency of the residuals of a prediction system
because it is an asymmetric measure [2][3][4]. So, MMRE and
similar indicators are not suitable for providing practitioners
who are potentially interested in applying estimate methods
with reliable information upon which they can base informed
decisions.

Luckily, sound estimate evaluation methods have been pro-
posed recently (as described in Section III). It is thus possible
to apply such new methods to size estimation methods.

There are different types of FSM and many estimation
methods. Here, we concentrate on the COSMIC FSM [5]
–one of the most widely used methods– and on model-
based COSMIC size estimation [6]. The main purpose of this
paper is the evaluation of the actual accuracy of model-based
COSMIC size estimation method: to this end, we use the new
sound evaluation methods (described in Section III), together
with more traditional statistical tools. There is no specific
reason why the COSMIC FSM –among the many functional
size measurement methods– is addressed here. The proposed
method can be applied to evaluate the accuracy of estimating
functional size expressed in other measurement methods, e.g.,
IFPUG Function Point Analysis.

It should be noted that the paper does not aim at introduc-
ing new COSMIC size estimation methods; rather, the goal
of the paper is (re)evaluating the accuracy of the formerly [6]
proposed ones. However, by applying these new evaluation
methods, as a side effect we also get some indications on their
expressiveness.

The paper is structured as follows. Section II briefly
illustrates the COSMIC FSM, and model-based simplified
COSMIC measurement methods. Section III illustrates the
methods used for evaluating the accuracy of estimates. Sec-
tion IV describes the application of the accuracy evaluation
methods to model-based simplified COSMIC measurement,
while Section V illustrates and discusses the results of the

186

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



analysis. Section VI deals with threats to the validity of
the study. Section VII accounts for related work. Finally,
Section VIII draws conclusions and briefly sketches future
work.

II. COSMIC FUNCTIONAL SIZE MEASUREMENT AND
MODEL-BASED COSMIC ESTIMATION

COSMIC measurement is based on the analysis of the
specification of functional user requirements (FUR). The FUR
can be described in various ways, including the Unified
Modeling Language (UML): functional size measurement of
UML models was widely studied [7][8][9], also when FUR
concern real-time applications [10]. During the initial stage
of development, UML models are built, progressively in-
corporating more knowledge concerning the software to be
developed: this results in progressively more complete and
detailed specifications. More specifically, the UML modeling
process can be seen as organized in the phases described in
Figure 1. The more complete and detailed the UML model,
the more elements needed for COSMIC measurement become
available. Figure 1 shows the relationship between the UML
diagrams that are made available by each modeling phase
and the COSMIC measurement elements. During the initial
UML modeling phases –i.e., before the complete and detailed
FUR specifications are available– it is often the case that size
measures are needed anyway. In such cases –not being possible
to measure the COSMIC size of the application– we can think
of estimating the COSMIC size, based on the information that
is present in the available UML diagrams.

Figure 1. UML modeling process and COSMIC measurement process
phases.

Specifically, del Bianco et al. proposed a few families of
statistical models that can be used to estimate COSMIC size
based on information derived from UML diagrams [6]. These
models are described in Table I.

A first family of COSMIC size estimation models requires
only the knowledge of the number of functional processes
(FPrs). These models have form ECFP = f(#FPr) where ECFP
is the estimated size in CFP (COSMIC Function Points), and
#FPr is the number of functional processes. As shown in
Figure 1, the statistical model can be built after the completion
of phase a), when class or component diagrams properly
specifying the user interfaces are delivered.

Another family of COSMIC size estimation models re-
quires also that the number of Data Groups (#DG) is known.

These models can be built after phase b), when UML diagrams
fully describing the involved classes are delivered. The models
found by del Bianco et al. involve the parameter AvDGperFPr,
namely the average number of data groups per functional
process, which requires that both the functional process and
the data groups (i.e., classes in UML diagrams) are known.

Figure 1 shows that potentially one could use also the
knowledge of the number of data groups involved in each
functional process, which is available after phase c). However,
no statistically significant models of this type were found.

Finally, we observe that after phase d), i.e., when the
complete UML models of FUR are available, the standard
COSMIC measurement process is applicable, and proper
COSMIC measures –instead of estimates– can be achieved.

TABLE I. COSMIC SIZE ESTIMATION MODELS.

Name Formula
avg1 ECFP = 7.3 #FPr
reg1 ECFP = −16.5 + 6.698 #FPr
avg2 ECFP = AvDGperFPr 1.8 #FPr
reg2 ECFP = −64.6 + 7.63 #FPr + 9.71 AvDGperFPr
log2 ECFP = 1.588 #FPr1.00357 AvDGperFPr1.0312

It is expected that models based on more information are
more accurate than models based on less information.

In [6], the accuracy of the models given in Table I was eval-
uated based on the traditional indicators MMRE and Pred(25)
(the fraction of applications for which the absolute relative
estimation error is less than 0.25). The evaluation of accuracy
performed in [6] indicated that models using both #FPr and
AvDGperFPr (that is, models avg2, reg2 and log2) are more
accurate than models based only on #FPr (that is, models avg1
and reg1). However, it has been shown that indicators based
on the magnitude of relative errors are biased [11]. Hence, we
repeat here (in Section IV) the analysis of accuracy using more
reliable methods (described in Section III).

III. A METHOD FOR EVALUATING THE ACCURACY OF
ESTIMATES

Let us first define the problem of evaluating estimates.

We measured the value of interest from n software ap-
plications; in our case the value of interest is the size of
applications, measured in CFP. Accordingly, we have a set
Y = {yi} (with i ∈ [1, n]) of observations, where yi is the
actual size of the ith application, expressed in CFP.

A new estimation method P is proposed: for the n known
applications, method P yields n estimates ŷi with i ∈ [1, n],
and we need to evaluate the accuracy of these estimates, that
is, how close to the actual yi is the corresponding estimate ŷi.

In general, there are several estimation methods that can be
used to carry out an estimation. Hence, the problem is not just
to evaluate the accuracy of a method or model, but to compare
a given method or model against other methods and models.
In industrial environments, the goal is usually to compare a
new method against the method currently used, to evaluate
whether it could be convenient to abandon the latter in favor
of the former.
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A. The Mean Magnitude of Relative Errors
The most popular way of evaluating estimation accuracy

has been the MMRE, the mean of the magnitude of absolute
errors, which is defined as

MMRE =
1

n

∑
i=1..n

|yi − ŷi|
yi

(1)

where yi− ŷi is the estimation error (also named the residual).
MMRE has been shown to be a biased estimator of central

tendency of the residuals of a prediction system, because it
is an asymmetric measure [2], [3], [4]. In practice, MMRE is
biased towards prediction systems that under-estimate [11].

B. The Mean Absolute Residual and the Standardized Accu-
racy

Shepperd and MacDonell [11] proposed that the accuracy
of a given estimation method P be measured via the Mean
Absolute Residual (MAR):

MAR =
1

n

∑
i=1..n

|yi − ŷi| (2)

Unlike MMRE, MAR is not biased [11], therefore it is
preferable to MMRE.

When we need to compare a new model P with a model
P0, we have MARP (the MAR of P ) and MARP0 (the MAR
of P0). Based on these MAR values, Shepperd and MacDonell
propose to compute a Standardized Accuracy measure (SA) for
estimation method P :

SA = 1− MARP

MARP0
(3)

Values of SA close to 1 indicate that P outperforms P0,
values close to zero indicate that P ’s accuracy is similar to
P0’s accuracy, negative values indicate that P is worse than
P0, hence it should be rejected.

C. Baselines
When a new estimation model P is proposed, we should

first establish if it is a “good enough” model, independent
of possible alternative models. To this end, we compare the
proposed model with a “baseline” model P0. If there is an
estimation model that is in use and is generally believed to
be “good enough,” the problem is establishing if P is more
accurate than such model, which will act as the baseline or
reference model P0. If no reference model is available, the
problem is to establish if P satisfies some minimum accuracy
conditions. To this end, we use as a baseline some fairly trivial
model, that requires little or no knowledge of the phenomena
being estimated.

In any case, if the estimates obtained using P are less
accurate than the estimates provided by the baseline P0, we
can conclude that P does not yield any improvement, at least
as far as accuracy is concerned, and can be rejected, if accuracy
is the only acceptance criterion. Of course we may find that P
is slightly less accurate than P0, but is much faster and cheaper
than P0, thus it could be preferable when estimates are needed
as soon as possible or the estimation budget is tight.

The random model
When no obvious baseline model exists, Shepperd and

MacDonell suggest to use as a referenced model random
estimation, based solely on the known (actual) values of
previously measured applications. A random estimation ŷi is
obtained by picking at random yj , with j 6= i. Of course, in
this way there are n − 1 possible estimates for yi; therefore,
to compute the MAR of the random model rnd we need to
average all these possible values. Shepperd and MacDonell
suggest to make a large number of random estimates (typically
1000), and then take the mean MARrnd. Langdon et al.
showed that this is not necessary, since the average of the
random estimates can be computed exactly [12].

So, a first evaluation consists in computing

SA = 1− MARP

MARrnd

. (4)

Achieving a value substantially greater than zero is clearly
a sort of necessary condition that the estimation method P
must satisfy, otherwise we could simply guess (instead of
estimating using P ) and get similarly accurate estimates, or
even better ones.

Shepperd and MacDonell observed also that the value
of the 5% quantile of the random estimate MARs can be
interpreted like α for conventional statistical inference, that
is, any accuracy value that is better than this threshold has a
less than one in twenty chance of being a random occurrence.
Accordingly, MARP should be compared with the 5% quan-
tile of the random estimate MARs, rather than with MARrnd,
to be reasonably sure that P is actually more accurate than
rnd.

The constant model
Lavazza and Morasca [13] observed that the comparison with
random estimation is not very effective in supporting the
evidence that P is a good estimation model. Instead, they
proposed to use a “constant model” (CM), where the estimate
of the size of the ith application is given by the average of the
sizes of the other applications, that is

ŷi =
1

n− 1

∑
j∈Y−{yi}

yj (5)

So, we can compute the MARCM of these estimates, and
then compute SA, but this time comparing P with CM :

SA = 1− MARP

MARCM
. (6)

Again, we require that SA is substantially greater than zero,
to deem P acceptable.

Lavazza and Morasca [13] found that in real cases
MARCM is quite close to the 5% quantile of random MARs.
However, computing MARCM is much easier and faster than
computing the 5% quantile of random MARs, thus CM can
generally be preferred to rnd.

D. Statistical Significance
To establish if the estimates yielded by a method are

significantly better than the estimations provided by another
method, we need to test the statistical significance of the
absolute errors achieved with different estimation methods [2].
To check for statistical significance we used the Wilcoxon
Signed Rank Test [14].
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The Wilcoxon Signed Rank test can be safely applied also
to not normally distributed data, since it makes no assumptions
about data distributions.

Via the Wilcoxon test we tested the following Null Hy-
pothesis: “The absolute errors yielded by a model Pi are
significantly less than those provided by a model Pj”.

E. Size Effect

Suppose that we have two estimation methods P1 and P2,
and MARP2 < MARP1 (hence, SA = 1 − MARP2

MARP1
> 0).

We can conclude that P2 is more accurate than P1. Anyway,
suppose that we are using P1 and we are considering the
possibility of switching to using P2, which involves some
effort, because P2 requires some activity or data or programs
that P1 does not require. We would like to know if the
improvement that P2 offers in terms of accuracy is possibly
so inconsequential as to not be worth the effort.

To judge the effect size, Shepperd and MacDonell suggest
using Glass’s ∆ [15] or Hedges’s g, which might be preferred
when the sample size is small [16]. The effect size –which
is scale-free– can be interpreted in terms of the categories
proposed by Cohen [17] of small (≈ 0.2), medium (≈ 0.5)
and large (≈ 0.8).

F. Estimate Comparison Based on Individual Absolute Resid-
uals

Given a dataset and two models P1 and P2, following
Shepperd and MacDonell we state that P1 is more accurate
than P2 if SAP1 > SAP2, i.e., if MARP1 < MARP2 .
However, this is not the only criterion that can be used to
compare the performances of P1 and P2. Let 〈ŷ1,P1, .., ŷn,P1〉
and 〈ŷ1,P2, .., ŷn,P2〉 be the estimates provided by the two
models. We may say that P1 is more accurate than P2 if and
only if there are at least dn+1

2 e distinct values of i such that
|yi − ŷi,P1| < |yi − ŷi,P2|, that is, if P1 provides smaller
absolute residuals than P2 in the majority of cases.

The probability that P1 provides better results than P2 in
the majority of estimates is measured by the IARA (Individual
Absolute Residual Assessment) indicator [13]. The IARA
index is defined as the number of estimates for which the
residuals of P1 are less than those of P2 divided by the total
number of estimates. The statistical significance of IARA can
be tested via the binomial test.

IV. EXPERIMENTAL EVALUATION

The five size estimation models given in Table I were
applied to the applications in the dataset that was used to derive
the models [6]. As baseline models we also estimated the size
of the applications in the dataset using the constant and random
models.

While carrying out the analysis, we realized that model
ECFP = 7.3 #FPr is similar to the Average Functional Process
(AFP) estimation method proposed by COSMIC [18]. In fact,
the AFP estimation model is ECFP = MSFP×#Fpr, where
MSFP is the mean size of functional processes. Therefore, we
computed MSFP and applied the AFP method as well.

A. The dataset
The dataset we used to evaluate the accuracy of the

considered models included data from 23 projects of differ-
ent nature. More specifically, we used data from 5 projects
proposed by the COSMIC consortium to illustrate the counting
process, 7 projects from academia, 10 Web-based Management
Information Systems (from the same company) and a project
management tool. Additional information on the dataset (in-
cluding the actual data) can be found in [6].

Some descriptive statistics of the dataset are given in
Table II.

TABLE II. Descriptive statistics of the dataset

Size[CFP] #FPr AvDGperFPr
Mean 174.1 24.3 4.1
Median 116.0 19.0 3.8
Min 31.0 7.0 2.1
Max 514.0 74.0 8.2
StDev 139.8 16.8 1.5

B. Analysis of errors: Mean Absolute Error
The MARs of the estimates obtained using the models

mentioned above are given in Table III, together with the
MARs of the constant model (MARCM ) and the random
model (MARrnd).

In Table III, column rnd 5% gives the value of the 5%
quantile of the random estimate MARs. This practice is
suggested by Shepperd and MacDonell [11] because the 5%
quantile can be interpreted like α for conventional statistical
inference, that is, any accuracy value that is better than this
threshold has a less than one in twenty chance of being a
random occurrence. Therefore, to have reasonable confidence
that a given model is actually predicting and not guessing,
we expect a value of MAR that is lower than this threshold
value. We have that both AFP and the UML-based estimation
methods yield MAR values that are well below the proposed
threshold, hence we can regard them as not due to chance.

TABLE III. MEAN ABSOLUTE RESIDUALS OF MODELS.

Name Formula MAR
rnd – 146
rnd 5% – 106
CM – 114
AFP ECFP = MSFP #FPr 52
avg1 ECFP = 7.3 #FPr 54
reg1 ECFP = −16.5 + 6.698 #FPr 48
avg2 ECFP = AvDGperFPr1.8 #FPr 27
reg2 ECFP = −64.6 + 7.63 #FPr + 9.71 AvDGperFPr 40
log2 ECFP = 1.588 #FPr1.00357 AvDGperFPr1.0312 25

Note that here we do not explicitly compute SA. Instead,
we give the values of MAR needed for the computation. The
reason is that with 8 methods there are 28 possible comparison
among methods, hence 28 values of SA. Listing all these SA
values could create confusion, while to compare two methods’
accuracies, we just need to compare their MARs: the model
featuring the smaller MAR is likely the best.

C. Distribution of Estimation Errors
In the following sections we shall see that MAR is a quite

synthetic indicator, which “hides” important information. To
get a deeper insight into estimation errors, in this section
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the distribution of errors (alias residuals), absolute errors and
relative absolute errors are given.

Figure 2 illustrates the boxplots of the errors yielded
by each one of the evaluated models. The blue diamonds
indicate the mean error for each model. It is interesting to
note that AFP and avg1 tend to overestimate, reg1 tends to
underestimate, while all the other model neither overestimate
nor underestimate.

Figure 2. Estimation residuals of the evaluated models.

Figure 3 illustrates the boxplots of the absoluter errors
yielded by each one of the evaluated models. The blue dia-
monds indicate the MARs. Also from this figure we get some
interesting result. For instance, the MAR of reg2 is larger than
the MARs of avg2 and log2, but the distributions of absolute
errors are very similar: the distribution of reg2 is even better
than the other two, except for three outliers, which feature
absolute errors larger than 150 CFP.

Figure 3. Absolute estimation errors of the evaluated models.

Figure 3 illustrates the boxplots of the relative absolute
errors yielded by each one of the evaluated models. The blue
diamonds indicate the MMREs.

Relative absolute errors are useful to assess the importance
of errors. As a matter of facts, the boxplots show that some
models yield some errors that are close to 100%.

Figure 4. Relative absolute estimation errors of the evaluated models.

D. Analysis of errors: Wilcoxon Signed Rank Test
Table III provides a first piece of evidence: AFP and model-

based COSMIC size estimation are definitely more accurate
than both the random and constant models.

Table III also confirms that the constant model is more
accurate than the random model, as demonstrated by Lavazza
and Morasca [13]. For this reason, in the remainder of the
paper the random model is no longer used.

To establish if the estimations of one method were signifi-
cantly better than the estimations provided by another method,
we tested the statistical significance of the absolute errors
achieved with the two estimation methods [2]. Namely, we
compared the absolute residuals provided by every pair of
methods via Wilcoxon Sign Rank Test.

The results are given in Table IV, where in each cell the
sign “>” (respectively, “<”, “=”) indicates that the absolute
residuals of the model on the cell’s row are larger (resp.,
smaller, equal) than the absolute residuals of the model on
the cell’s column.

TABLE IV. COMPARISON OF ABSOLUTE RESIDUALS USING WILCOXON
SIGN RANK TEST.

const AFP avg1 reg1 avg2 reg2 log2
const > > > > > >
AFP < < > > > >
avg1 < > > > > >
reg1 < < < = > >
avg2 < < < = = =
reg2 < < < < = =
log2 < < < < = =

The results provided by Wilcoxon Sign Rank Test confirm
the results given in Section IV-B in that the constant model is
less accurate than all other models and AFP is more accurate
than avg1 but less accurate than model-based size estimation
methods. However, Wilcoxon Sign Rank Test provides further
insights with respect to MAR:

• There is no sufficient evidence to conclude that log2
is more accurate than avg2: this fact could be guessed,
based on the fact that MARlog2 (25) and MARavg2

(27) are quite close.
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• Somewhat surprisingly, there is no evidence that either
avg2 (which has MARavg2 = 27) or log2 (which has
MARlog2 = 25) is more accurate than reg2 (which
has MARreg2 = 40).

• Similarly, There is no evidence that avg2 (which has
MARreg2 = 27) is more accurate than reg1 (which
has MARreg1 = 48).

These results are interesting, in that by just looking at the
MAR values we could have concluded that some model (e.g.,
avg2) is more accurate than another model (e.g., reg2), while –
according to Wilcoxon Sign Rank Test– there is no statistically
significant evidence of this fact. The explanation of why MAR
can be somewhat misleading in this case is given in Figure 5,
where the boxplots of the absolute residuals of models avg2
and reg2 are given: it is easy to see that reg2 has a greater
MAR because of three applications, whose size estimation
error is quite large. Apart from these three applications, the
distributions are similar: accordingly, the MARs of avg2 and
reg2 are not significantly different.

Figure 5. Absolute residuals of models avg2 and reg2.

E. Analysis of errors: Effect Size
Now, as recommended by Shepperd and MacDonell (see

Section III-E) we evaluate the effect size. To this end, we
computed Hedges’s g for all model pairs. The results are given
in Table V. where the value for the ith row and jth column is
Hedges’s g for the pair of models indicated on the ith row and
jth column. For instance, the value on row avg1 and column
reg1 is 0.09: this indicates that using reg1 instead of avg1
involves a negligible effect.

TABLE V. Effect size (Hedges’s g).

CM AFP avg1 reg1 avg2 reg2 log2
CM – 0.80 0.79 0.82 1.32 0.98 1.36
AFP -0.80 – -0.03 0.07 0.55 0.21 0.60
avg1 -0.79 0.03 – 0.09 0.60 0.24 0.64
reg1 -0.82 -0.07 -0.09 – 0.40 0.13 0.44
avg2 -1.32 -0.55 -0.60 -0.40 – -0.29 0.07
reg2 -0.98 -0.21 -0.24 -0.13 0.29 – 0.34
log2 -1.36 -0.60 -0.64 -0.44 -0.07 -0.34 –

Table V essentially confirms the findings given in the
previous sections. It is easy to see that all model-based size
estimation methods appear definitely preferable with respect

to the constant model. AFP and avg1 appear essentially
equivalent. All models involving two independent variables
appear better than those based on one independent variable.
Models avg2 and log2 appear preferable to the other model-
based estimation methods, with log2 only marginally better
than avg2.

F. Analysis of errors: IARA
The accuracy of the size estimation models was evaluated

via the IARA index described in Section III-F. Specifically,
the IARA index was computed for every pair of models. The
results are given in Table VI. For instance, the value on row
AFP and column reg1 indicates the ratio between the number
of estimates for which reg1 was more accurate than AFP and
the total number of estimates: 0.62 indicates that reg1 was
more accurate than AFP in 62% of the estimates. Although
this is a quite straightforward indication, the F in parenthesis
indicates that the binomial test fails (i.e., its p-value is not
< 0.05), hence the indication is not reliable.

TABLE VI. Comparison of models via IARA indexes

AFP avg1 reg1 avg2 reg2 log2
AFP 0.24(F) 0.62(F) 0.67(F) 0.81(S) 0.71(S)
avg1 0.76(S) 0.62(F) 0.71(S) 0.81(S) 0.76(S)
reg1 0.38(F) 0.38(F) 0.52(F) 0.67(F) 0.48(F)
avg2 0.33(F) 0.29(F) 0.48(F) 0.52(F) 0.48(F)
reg2 0.19(F) 0.19(F) 0.33(F) 0.48(F) 0.48(F)
log2 0.29(F) 0.24(F) 0.52(F) 0.52(F) 0.52(F)

It can be observed that few of the indexes in Table VI
are marked “S” for success (i.e., p-value < 0.05). This is
largely due to the fact that the dataset used for the evaluation
is relatively small. However, it is interesting to note that the
IARA index provides indications that are consistent with the
Wilcoxon test. In fact, the Wilcoxon signed rank test found that
reg2 is not significantly worse than avg2 and log2, although
its MAR (40) is larger that avg2 and log2 MARs (27 and
25, respectively). The IARA index tells us that both avg2 and
log2 provide more accurate estimates than reg2 only in 52%
of cases.

The IARA index appears to add a new dimension to the
analysis, complementing the indications (often quite rough)
given by the MAR.

V. DISCUSSION OF RESULTS

The results of the empirical investigation described in
Section IV support consideration concerning a few aspects:
the accuracy of model-based methods for estimating the size
of software applications expressed in CFP; the practical ap-
plication of the proposed evaluation methods; the evaluations
that can be obtained by directly observing the results yielded
by estimation method, without performing statistical analyses.

A. Evaluation of estimation models
With reference to Figure 1, at the end of phase a), we know

the number of Functional Processes (#FPr), thus models AFP,
avg1 and reg1 are applicable. At the end of phase b), the other
models are also applicable.

According to the analysis of experimental data, we have
that the models that are applicable at the end of phase b) are
–to different extents– more accurate than the models that are
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applicable at the end of phase a). This was expected, since
by progressing from phase a) to phase b), more information
concerning the application is made available through UML
models, and we can exploit this information to achieve more
accurate size estimates. However, having reliable empirical
evidence that progressing through application modeling phases
enable the construction of progressively more accurate models
of the functional size is quite important. It also indicates that
collecting measures of COSMIC elements (especially #FPr
and #DG, hence AvDGperFPr) and building several statistical
models of COSMIC size is useful to get a progressively more
accurate notion of the size of the application being built.
Actually, the effect size indicators (see Table V) suggest that
the models available at the end of phase b) allow only for a
medium-small improvement over the best models available at
the end of phase a), especially as far as reg1 is concerned.
However, to achieve this moderate improvement, all you have
to do is counting data groups (i.e., classes in UML models):
since this counting is very easy (it can even be automated)
building more accurate models at the end of phase b) is not
only possible, but most probably always convenient.

B. On the practical application of the proposed indicators
The practical application of the proposed method depends

largely on how easily practitioners can derive the indica-
tors mentioned in the sections above. Luckily, the proposed
technique are supported by open-source tools, and can be
automated quite easily. Specifically, the language and program-
ming environment R [19] supports the computation of all of
the proposed indicators; you just need to install the ‘effsize’
package [20] to compute Hedges’s g.

So, once the actual and estimated values are available,
computing the indicators described in Section III (as well
as plots given in Section V-C below) can be completely
automatic, and quite fast.

In conclusion, the proposed indicators are easily obtained
and are also fairly easy to interpret; therefore, practitioners
should have no difficulty to assess the accuracy of estimation
methods as proposed.

C. Direct observation of residuals
The proposed approach is statistically sound and appears

to provide reliable indications. Moreover, as discussed in
Section V-B, it can be automated. Nonetheless, one should not
forget that in general the direct observation of the estimates and
their comparison with actuals can provide quite enlightening
indications.

For instance, suppose that you are interested in evaluating
the accuracy of the avg2 and log2 models. To this end, you
could look at a plot like the one in Figure 6. In Figure 6, the
x axis reports the actual size of applications (in CFP), and the
y axis reports the estimated size (in CFP); applications appear
as small circles, estimates obtained using avg2 appear as green
crosses, and estimates obtained via log2 appear as red xs.

By looking at Figure 6, appreciating the accuracy of the
estimation models is easy. It is also easy to compare the esti-
mates yielded by avg2 and log2. For instance, it can be noticed
that log2 estimates are always smaller than avg2 estimates: this
observation may be very relevant for a practitioner who has to
choose whether to use avg2 or log2.

Figure 6. avg2 and log2 estimates vs. actuals.

As is often the case, there are many relatively small
applications. In our case, it is difficult to assess the estimates
of applications in the [50,150] CFP range. To overcome
this difficulty, you can draw another plot that accounts for
the applications smaller than 150 CFP only. Such plot is
shown in Figure 7: the plot confirms that log2 estimates are
always smaller than avg2 estimates also for relatively small
applications.

Figure 7. avg2 and log2 estimates vs. actuals (detail on applications smaller
than 150 CFP).

VI. THREATS TO VALIDITY

Like in any empirical study, we have to deal with some
threats to the validity of our analysis.

We see no construction issues with our analysis, since all
the used techniques are statistically sound; in fact, they have
been proposed to correct the problems with previous indicators,
such as MMRE.

The main problem we face is probably the generalizability
of results. In fact, our results derive from the analysis of
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a dataset that collects data from only 21 applications. It is
possible that other datasets could support somewhat different
conclusions. However, the fact that our dataset includes several
industrial applications, and that the size of the dataset is not
excessively small (especially in the context of empirical soft-
ware engineering studies) supports the hypothesis the results
presented here are sufficiently representative in general. Also,
the logical coherence of the results –namely the fact that the
more information is available from UML models, the more
accurate is size estimation– supports the hypothesis the results
presented here are valid.

VII. RELATED WORK

The accuracy evaluation techniques used in this paper are
being increasingly used by researchers that need to evaluate
the accuracy of new effort estimation proposals. For instance,
Sarro et al. used the Mean Absolute Error and the Standardized
Accuracy to assess the accuracy of a bi-objective effort esti-
mation algorithm that combines confidence interval analysis
and assessment of mean absolute error [21]. To establish if
the estimations of one method were significantly better than
the estimations provided by another method, they tested the
statistical significance of the absolute errors achieved with
different estimation methods via the Wilcoxon Signed Rank
Test, as we did in Section IV.

The techniques used here are becoming quite popular, but
there are also several alternative proposal, actually too many
to be mentioned here. As an example of an alternative to SA,
Tofallis proposed to use the logarithm of the accuracy ratio:
log prediction

actual [22]. As an example of an alternative to Hedges’s
g, Vargha and Delaney proposed the A12 statistic, a non-
parametric effect size measure: given a performance measure
M, A12 indicates the probability that running algorithm A
yields higher M values than running another algorithm B [23].
Finally, a quite different but interesting proposal is StatREC, a
Graphical User Interface statistical toolkit designed to provide
a variety of graphical tools and statistical hypothesis tests to
facilitate strategies for an intelligent decision-making [24].

Concerning the assessment of accuracy of functional size
estimation methods, to the best of the author’s knowledge, very
little work has been done. In general, some evaluation is done
when a method is proposed, as in [25], where the NESMA
estimated method is proposed and its accuracy is evaluated
on the training set. A noticeable exception is [26], where
several early estimation methods for Function Point measures
are evaluated via an empirical study.

The method used in this paper was partly applied to
evaluate the accuracy of measure conversions (from IFPUG
Function Points to COSMIC Function Points) in [27].

VIII. CONCLUSION

In this paper, the accuracy of a set of model-based methods
to estimate the COSMIC size of software applications has
been evaluated. The relevance of the paper is based on two
observations.

First, practitioners are very keen to know the accuracy
that can be achieved via size estimation methods. In fact,
they often use size estimation methods to derive the most
important piece of information upon which the cost of software
is estimated; therefore, accurate size estimation is essential

to get accurate cost estimates, hence to allocate the correct
amount of resources and prepare reliable development plans.

Second, to evaluate the accuracy of estimates, you need re-
liable indicators. Traditional indicators like MMRE have been
proved to be biased: thus, finding and testing more reliable
indicators is necessary. Consider for instance what happens
when researchers propose a new estimation technique: how can
we decide that the new technique is good, and possibly even
better than existing techniques? Reliable accuracy evaluation
techniques and indicators –like those proposed here– can
answer such question.

According to our empirical study, we can recommend that
the accuracy of estimates be evaluated by

• Computing the mean of absolute residuals (MAR) of
all the models to be tested.

• Any estimation method must prove more accurate than
the trivial models –like the constant model and the
random model– that do not require any knowledge
concerning the application to be estimated. Hence,
one should always test models against the random and
constant models.

• Having established that the considered estimation
method is better than the trivial methods, one should
also evaluate whether the considered method is more
accurate than the currently used estimation technique,
to see if abandoning the latter to adopt the new method
is worthwhile.

• Using Wilcoxon Sign Rank Test is advisable, since it
can give indications concerning the statistically sig-
nificance of the comparisons based on two methods’
MAR values.

• Also looking at the boxplots of absolute residuals can
help, especially when a few outliers affect the MAR
at a great extent (as in Figure 2).

• Assessing the effect size using Hedges’s g (or similar
indicators) is useful to assess the extent of the im-
provement that a new technique can guarantee over
another one.

• Finally, the IARA index shows in how many cases a
method is more accurate than another one.

Overall, this paper shows that assessing the accuracy of
estimates can hardly be based on a single indicator. Instead,
using the proposed set of indicators provides a quite detailed
and complete picture of the merits of the evaluated estimation
models.

As a final observation, we note that the analyses reported
in this paper were carried out in the R environment [19].
Practitioner and researchers that need to evaluate estimation
accuracy can apply the proposed approach quite easily and
derive the indicators described in Section III very quickly.

Future work includes:

• Further evaluating model-based COSMIC size estima-
tion methods against additional datasets.

• Experimenting the accuracy evaluation methods used
in this paper with other estimation techniques and
using other datasets.
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dell’Insubria.

REFERENCES

[1] L. Lavazza, “Accuracy Evaluation of Model-based COSMIC Functional
Size Estimation,” in International Conference on Software Engineering
Advances (ICSEA), 2017.

[2] B. A. Kitchenham, L. M. Pickard, S. G. MacDonell, and M. J. Shepperd,
“What accuracy statistics really measure,” IEE Proceedings-Software,
vol. 148, no. 3, 2001, pp. 81–85.

[3] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit, “A simulation
study of the model evaluation criterion MMRE,” IEEE Transactions on
Software Engineering, vol. 29, no. 11, 2003, pp. 985–995.

[4] I. Myrtveit, E. Stensrud, and M. Shepperd, “Reliability and validity in
comparative studies of software prediction models,” IEEE Transactions
on Software Engineering, vol. 31, no. 5, 2005, pp. 380–391.

[5] The COSMIC consortium, Functional Size Measurement Method Ver-
sion 4.0.1 Measurement Manual (The COSMIC Implementation Guide
for ISO/IEC 19761:2011), 2015.

[6] V. Del Bianco, L. Lavazza, G. Liu, S. Morasca, and A. Z. Abualkishik,
“Model-based early and rapid estimation of COSMIC functional size–
an experimental evaluation,” Information and Software Technology,
vol. 56, no. 10, 2014, pp. 1253–1267.

[7] K. Berg, T. Dekkers, and R. Oudshoorn, “Functional size measurement
applied to UML-based user requirements,” 2005, pp. 69–80.

[8] L. A. Lavazza, V. Del Bianco, and C. Garavaglia, “Model-based
functional size measurement,” in Proceedings of the Second ACM-
IEEE international symposium on Empirical software engineering and
measurement. ACM, 2008, pp. 100–109.
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