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Abstract—Uber demand prediction is at the core of intelligent
transportation systems when developing a smart city. However,
exploiting uber real time data to facilitate the demand predic-
tion is a thorny problem since user demand usually unevenly
distributed over time and space. We develop a Wavenet-based
model to predict Uber demand on an hourly basis. In this
paper, we present a multi-level Wavenet framework which is
a one-dimensional convolutional neural network that includes
two sub-networks which encode the source series and decode
the predicting series, respectively. The two sub-networks are
combined by stacking the decoder on top of the encoder, which
in turn, preserves the temporal patterns of the time series.
Experiments on large-scale real Uber demand dataset of NYC
demonstrate that our model is highly competitive to the existing
ones.

Keywords–Anything; Something; Everything else.

I. INTRODUCTION

With the proliferation of Web 2.0, ride sharing applications,
such as Uber, have become a popular way to search nearby
sharing rides. Since the Uber demands changes over time at
different regions that there is a gap of expectancy between
the users and drivers. Various deep learning models have been
proposed to facilitate time series data and achieved state-of-
the-art performances in a great deal of real-wrold applications.
For example, Recurrent Neural Networks (RNN) and Long
Short-Term Memory (LSTM) typically employ a softmax
activation function nodes to model correlations of series points.
While generally effective, the models of this line, such as [16],
largely rely on the hidden state of the previous nodes, which
makes it hard to apply the parallel computing tricks within the
series. Convolutional Neural Network (CNN) uses trainable
receptive field unit to learn local shape patterns. However,
most of these time-domain methods fail to consider external
information of a time series, although some start to exploit it
in a indirect manner.

Inspired by the recent success in a series of time se-
ries prediction, Wavenet [30], which employs a convolutional
sequence embedding model, has demonstrated its ability of
achieving highly competitive performance to the state-of-the-
art, i.e., [8], [19]. The logic of Wavenet is to convert the
embedding matrix as the “cache” of the previous interactions
in a k-dimensional vector and deem the sequential pattens of
the interaction as the signature of the “cache”. Max pooling
operation is then applied to learn the maximum value of the
convolutional layer, so as to increase the scope of receptive
field and tackle the issues of irregular input length. Fig. 1
depicts the key architecture of Wavenet. To this end, we present
a new deep learning method for predicting the Uber demands

Figure 1. The structure of WaveNet, where different colours in embedding
input denote 2× k, 3× k, and 4× k convolutional filter respectively.

at an hourly basis, which is a WaveNet-based neural network
framework (UberNet) that exploits external features for time
series analysis. Simply put, UberNet can utilize both WaveNet-
based features (e.g., pickup demands) decomposition and the
external features (days of week) to enhance the learning ability
of deep neural networks. A max pooling layer is performed to
“remember” the maximum value of the hidden layer, in order
to magnify the power of receptive field.

The rest of this paper is organized as follows. We firstly
defines the problem of Uber demand prediction with deep
learning in Section II. Then, we introduce the related work
in Section III. Section IV systematically presents the proposed
framework for graph classification. The experimental results of
prediction are reported in Section V. Finally, we present our
conclusion and future work in Section VI.

II. PRELIMINARY

In this section, Wavenet is shortly recapitulated. Then,
we formally introduce several concepts and notations. We
introduce a novel neural network that is operated directly
on the time series’ waveform. The joint probability of a
waveform, x = x1, ..., xT , is given as the form of conditional
probabilities as follows:

P (x)=

T∏
t=1

p(xt|x1, ..., xt−1)

Each datapoint xt is therefore conditioned on the value
of all previous timesteps. Similar to Wavenet, the core idea
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of Ubernet is to embed the previous s timestamp as a s × k
matrix I by taking the embedding query operation, as shown in
Fig 1. Each row of the matrix mapped into the latent features
of one timestamp. The embedding matrix is the “cache”
of the s timestamp in the k dimensional vector. Intuitively,
models of various CNNs that are successfully applied in series
transformation can be customized to model the “cache” of
an traffic demand sequence. However, there are two stark
differences, which makes the use of Wavenet model counter-
intuitive. First, the variable-length of the demand sequences
in real-world entails a large number of “cache” of different
sizes, whereas conventional CNN structures with receptive
field filters usually fail. Second, the most effective filters for
text cannot easily fit into the scenario of modelling demand
sequence “caches”, since these filters (with respect to row-wise
orientation) often fail to learn the representations of full-width
embeddings.

Softmax Distribution One approach of learning the con-
ditional distributions p(xt|x1, ..., xt−1) over the individual
timestep is to use a mixture density network. However, van
den Oord et al. [2] showed that a softmax distribution gives
a superior performance, even if the data is only partially
continuous (as is the case for special events or holidays). A
possible reason is that a categorical distribution tend to be
more flexible which can sift out arbitrary distributions since
it has no assumptions about the shape. We adopt the gated
activation unit as the gated PixelCNN []

z = tanh(Wf,k ∗ x)� µ(Wg,k ∗ x) (1)

where ∗ is the convolution operator, � is an element-
wise multiplication, µ represents a sigmoid function, k denotes
the layer length, f and g are filter and gate, and W is a
convolution filter, which will be detailed in the Section IV. In
our preliminary experiments, we found that this non-linearity
can greatly outperform the rectified linear activation function
for modeling time series.

Given the normalized time series, we propose to use filters
in [2], which traverse the full columns of the sequence “cache”
by a single large filter. Specifically, the width of filters is
usually equal to the width of the input “cache”. The height
typically varies with respect to the sliding windows over
timestamp at a time (Fig 1, embedding input). Filters of
different sizes will generate variable-length feature maps after
convolution (convolutional layer). To ensure that all maps have
the same size, the max pooling is performed over each map,
which selects only the largest number of each feature map,
leading to a 1×1 map (Fig 1 Feedforward Layers). Lastly, the
maps from these filters are concatenated which form a feature
vector, which is then fed into a softmax layer that yields the
probabilities of next timestamp. In our experiments, we will
present results of UberNet with both horizontal and vertical
convolutions.

From the above analysis of the convolutions in Wavenet, it
is easy to see that there are many drawbacks with the current
model. First, the max pooling operator cannot distinguish
whether an feature that appear in the map is important or
not. In addition, it is oblivious of the position where the max
pooling occurs. The max pooling operator may be effective
in the “cache” processing, which is actually detrimental for

modeling long-range sequences. Furthermore, shallow network
of WaveNet will only be suitable for only one hidden layer
which often fail when it comes to long-range dependences. The
last important drawback derives from the generative process of
next timestamp, which we will discuss in Section 5.1.

III. RELATED WORK

Traffic prediction has become a popular topic, where
various machine learning approaches have been proposed. In
the seminal work of univariate forecasting model, FARIMA
is employed to model and predict traffic condition. Min et
al. [22] proposed a regression model that considers spatial
and temporal interactions of road conditions. However, this
model entails a heavy computational cost with a vast amount of
parameters, and yet fail to consider several important features
of a transportation. Later on, multivariate model of nonpara-
metric regression [6] is designed to exploit the additional
features of transportation to infer the traffic state, however,
the performance gain was quite limited.

The recent advances in deep learning has provided new
opportunities to resolve this problem. Ramdas et al. [28] gives
an examination of traditional neural network approaches and
they found that the training process of deep learning model is
computationally prohibitive when comparing to the traditional
ones. To address this issue, researchers have proposed the
dropout mechanism [10], which aims to find a sparse rep-
resentation that is frequently updated in real time. What is
more, the approaches of this line still require a fine tuning of
parameters, which is not applicable given a different dataset.
Lastly, despite the good performance, these models mostly
either entails a super-linear execution time [31] or transform
the original time series into a constant size format, which
may cause a memorization step with unnecessary cost. These
problems grow exponentially bad when the length of the series
increases.

IV. UBERNET

This section introduces our proposed framework there,
which uses a novel probabilistic generative model that includes
dilated convolutional blocks to create the receptive field. This
model is different from the WaveNet models since: (1) the
probability estimator can capture the transition process of all
individual timestamp at once, instead of the last one in the
series; (2) the convolutional layers are on the basis of the more
efficient 1D dilated convolution rather than the standard 2D
one.

The proposed UberNet framework consists of two core
components, a decoder and an encoder. The former is a time
series model of one-dimensional layers, which are then masked
use dilation. The encoder process the output of decoder into
a low-dimensional representation and is defined as a one
dimensional convolutional layers as well but without masking.
To learn the embedding bandwidth of the encoder and decoder,
the decoder is stacked on the computational output of encoder.

Embedding Look-up Layer: Given a time series t0, ..., tl,
the model retrieves each of the first s timestamps t0, ..., ts
via a look-up operation, and concatenate these timestamp
embeddings together. Assuming the embedding dimension is
2k, where k will be set as the number of inner channels in the
convolutional network. This results in a matrix of size. Note
that unlike WaveNet that considers the input matrix as a 2D
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Figure 2. The structure of dilated residual blocks

“cache” during convolution operation, UberNet optimize the
embedding via a 1D convolutional operation, which we will
detail later.

Dilated layer It is clear in Fig 1 that the standard filter can
only operate convolutional function within the receptive field
by the depth of the neural network. This makes it difficult
to handle long-range sequences. Hence, instead of employing
standard convolutions, we designed the dilated convolution to
create the generative model, where the dilated layer acts as
the convolutional filter to a field which is broader than its
original area via the dilation of a zeros matrix. This allow the
model become more efficient as it requires fewer parameters.
Therefore, a dilated filter is also known as the sparsed filter.
Another advantage is that dilated layer does not change the
spatial dimensions of the input so that the stacking will be
much faster on the convolutional layers and residual structures.

By setting the width of convolutional filter as 3, we can see
that the dilated convolutions allow for exponential increase in
the size of receptive fields, while the same stacking structure
for the standard convolution has only linear receptive fields.
The dilated convolutional operation is more powerful to model
long-range time series, and thus does not require the use of
large filters or additional layers. Practically speaking, one need
to carry out the structure of Fig 1 multiple times by stacking
in order to further improve the capacity.

Masked Residual Increasing the depth of network lay-
ers can generate a higher-level condensed representations,
however, it also easily causes some side effects, e.g., the
vanishing gradient issue. To address this problem, residual
learning mechanism is employed in cnn architectures. While
residual learning has been proved to be effective in the field of
computer vision,its effectiveness and feasibility in the context
of traffic simulation is still largely unknown.

The logic of residual learning is that several convolutional
layers can be stacked as a block, from which multiple blocks
can communicate with each other through the skip connection
scheme by passing signature feature of each block. The skip
connection scheme can directly train the residual mapping
instead of the conventional identity mapping scheme. This
scheme not only maintain the input information but also
increased the values of the propagated gradients, resolving the
gradient vanishing issue.

Inspired by [24], we employ two residual modules as
shown in Fig. 2. We encapsulate each dilated convolutional
layer into a residual. The input layer and convolutional one are
stacked through a skip connection (i.e., the identity line in Fig
2). Each block is represented as a pipeline structure of several
layers, namely, normalization layer, activation (e.g., ReLU)
layer, convolutional layer, and a skip connection in a specific
manner. In this work we put the state-of-the-art normalization

Figure 3. Transformation from the 2D dilated filter to the 1D dilated filter

layer before each activation layer, as it is well known that it has
shown superior performance than batch normalization when it
comes to sequence processing.

Final Layer The matrix in the last layer of the con-
volution structure (see Fig 2) has the same size as of the
input embedding. However, the output should be a matrix
that contains probability distributions of all timestamps in
the output series, where the probability distribution is the
expected one that generates the prediction results. We use one
additional convolutional layer on top of the last convolutional
layer in Fig 2. Following the procedure of one-dimensional
transformation in Fig 3, we convert the expected prediction
matrix as categorical distribution over timestamps, where each
row vector is reshaped with the softmax operation.

The aim of this softmax operation is to maximize the
log-likelihood of the training data with respect to all hyper-
parameters. Fortunately, maximizing log-likelihood can be
mathematically converted to minimizing the summation of the
binary cross-entropy loss for each timestamp. For practical
neural network with tens of millions of timestamps, the nega-
tive sampling strategy can be applied to avoid the calculation
of the full softmax distributions. The performance operated by
these negative sampling strategies is almost the same as the
full softmax method given that the sampling size are properly
tuned.

V. EXPERIMENT SETUP

In this section, we will show the statistic of the dataset, the
parameter settings, and the experimental results.

A. Datasets
The Uber raw data on pickups is derived from a non-Uber

FHV company. The trip information include day of trip, time
of trip, pickup location, and driver for-hire license number.

We have chosen datasets which (a) have been made pub-
licly available, so as to enable other researchers to reproduce
our results, and (b) have key characteristics covering a large
part of the design space (e.g., day of trip, pickup locations). A
detailed statistic about this dataset over months is reported in
Figure 4. It is clear that the number of pickups is increasing
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TABLE I. The performance of pickups prediction with different sets of features(smape)

Learning Models External Features Pickup Features All Features
ARIMA 235.34 243.29 235.22
Linear Regression 324.52 254.02 257.03
Prophet 320.43 204.12 198.72
LSTM 423.43 351.27 1421.30
UberNet 203.42 223.97 227.38

Figure 4. The statistic of pickups over months.

over time. This is due to the fact that more and more people
opt into Uber platform over this time period. Notice that we
use the 2014 data as the training dataset and the 2015 data as
the test dataset.

Approach
In our experiments, we compare the following four ap-

proaches:

1) the baseline approach Autoregressive Integrated Mov-
ing Average (ARIMA), where the “evolving variable”
of interest is regressed on its own lagged (i.e., prior)
values and the “regression error” is actually a linear
combination of error terms whose values occurred
contemporaneously and at various times in the past.

2) the off-the-shelf model Prophet, which is an additive
regression model with a piecewise linear kernel.
Prophet automatically detects changes in trends by
selecting changepoints from the data. The monthly
seasonal component is modelled using Fourier series,
and a weekly seasonal component is captured using
dummy variables.

3) the state-of-the-art Long Short Term Memory
(LSTM), which is a type of generalized regression
neural networks (GRNN) that aims to relax the con-
straints of the conventional NN architecture. LSTM
used in our work is a simple neural network with four
hidden layers (normalization and Relu) with the same
number of neurons.

4) the UberNet, which is the approach that described in
Section IV

B. Parameter Settings
For ARIMA model, we have the Adjusted Dickey-Fuller

Test, where the model achieved the best performance when we
set p = 2, d = 1, and q = 1. For Prophet model, we set all the
parameters of the default values, the yearly seasonality is set
as false. The results of varying models are reported in Table

Figure 5. The performance of UberNet during June 2015.

I. A rectifier activation function is used for the neurons in the
hidden layer of LSTM. A softmax activation function is used
on the output layer to turn the outputs into probability-like
values. Logarithmic loss is used as the loss function and the
efficient ADAM gradient descent algorithm is used to learn
the weights.

Metric Symmetric mean absolute percentage error
(SMAPE or sMAPE) is an accuracy measure based on per-
centage (or relative) errors. It is defined as smape = abs(F−A)

1/2(F+A)
. This is one of the most commonly used metrics in time
series analysis community, e.g., the Web Traffic Time Series
Forecasting competition, since this metric is a relative value
which ignores outliers and is invariant if the data is linearly
rescaled.

C. Experimental Results

Table I shows the performance accuracy of pickup pre-
diction through with different sets of features. It is clear that
Prophet and UberNet outperform the other types of learning
models. Furthermore, one can see that using both external
features, namely, the weather and temperature conditions,
works better than using pickup features or relational features
alone, for all learning models. Last but not least, one can also
observe that RNN approach, i.e., LSTM, fail to yield good
results. The reason is probably that the dataset is too small
for LSTM to unlock its power. One possible way to remedy
this is to carry out hot encoding on all the features so that the
feature space can be expanded for learning. We left this for
future work.

To further demonstrate the effectiveness of our proposed
model, Figure 5 show the performance of UberNet during the
entire June of 2015. The blue line denotes the ground truth
and the red line represent the prediction. It is easy to see
that Ubernet can actually predict the pickups most of the time
except some holidays. This is probably due to the overfitting
issue of the deep learning architecture. UberNet can largely
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resolve this issue but cannot eradicate it. We believe UberNet
will achieve a even better result given more training data.

VI. CONCLUSION

The major contribution of this paper is threefold. First, we
formally defined the problem of Uber pickup prediction as a
machine learning task. Second, we identified several external
features which can be used together with standard pickup
features by learning algorithms to predict pickups in terms of
their context. Third, we demonstrate that it is better to exploit
both external features and pickup features through a WaveNet
type deep neural network, namely, UberNet.

There are several interesting and promising directions in
which this work could be extended. First, since users and
Uber drivers can be represented as a graph structure, it will
be interesting to learn the performance of some advanced
graph regression algorithms, such as BB-Graph [2]. Second,
UberNet in the current form relies on one of the simplest
convolutional neural netowrk, which makes sense as a first
step towards integrating the context information of Uber into
learning model, but of course we could consider using more
sophisticated neural network like RCNN. Lastly, For example,
location of the user has not considered in this work yet , in
future we would like to explore the geographical distribution
to facilitate UberNet.
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