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Abstract—This work introduces a next-generation smart city
platform using a novel embedded vision system. i.e., HAura. The
HAura system integrates a dual camera and other sensors with
a powerful embedded computing unit. The powerful perception
stack, based on robust deep learning and computer vision
techniques, provides a perfect baseline for implementing a variety
of security, traffic management and urban planning policies.
Choosing to process images directly on the device and transmit
only metadata ensures compliance with privacy and security, as
well as bandwidth efficiency. The next evolution of the vision stack
will finally improve capabilities by introducing a new multi-task
perception model.

Keywords-smart-city; edge inference; safety; privacy-preserving
AI.

I. INTRODUCTION

Increasing urbanization brings several challenges regarding
public safety, congestion control, and the search for more
efficient infrastructure. More urban centers are turning to
camera-based smart-city solutions, which use computer vision,
machine learning, and built-in data anonymization techniques
to monitor public areas in real time, detecting and recognizing
vehicles and pedestrians. These technologies are potentially
the way to enable a new level of situational awareness and
decision-making. In this paper, we present a comprehensive
solution for smart-city infrastructure implementation, within
the mentioned context. The designed system includes cameras
and other sensors, in addition to communications systems.
A powerful but efficient embedded computing unit performs
local image analysis, leveraging a modern computer vision
stack based on deep learning techniques. Running the vision
stack on the edge device, instead of on a central compute
server, provides all the flexibility and scalability of a fully
decentralized architecture. In addition, the images are never
transmitted, which makes the system effective in protecting the
privacy of citizens. The next chapter discusses the technical
hardware and software details of the developed system. In
the following one, the details of the current vision stacks are
presented. In the end, the development of a next-generation
vision stack is introduced, which will largely improve the
abilities of the system without overburdening the computa-
tional capabilities. The remainder of this paper is structured
as follows:

• In Section II, we discuss the smart city application
scenario in which we operate the proposed HAura system.

• In Section III, we detail the hardware and software
technical characteristics of the HAura system, including
the execution stack and data representation format.

• In Section IV, we delve in the details of the proposed
preception stack, based on powerful and efficient deep
models. We also anticipate ongoing work on the devel-
opment of a next-generation perception model.

• Section V summarizes this overview and provides addi-
tional insights.

II. OUTLINE

A. Motivation

In accordance with projections, it is anticipated that 68% of
the global population is expected to live in urban areas by 2050
[1]. Consequently, there is an imperative need for improved
city management, particularly in terms of security and safety
measures. An urban monitoring system is implemented using
a connected camera infrastructure, with several technological
and non-technological challenges involved. As pointed out by
[2], human monitoring operators are easily overwhelmed by
simultaneous monitoring of multiple screens. Therefore, there
is a prevailing need for automated and accurate monitoring
systems. Current computer vision systems are already used to
implement sophisticated systems for traffic monitoring [3][4],
road safety, emergency detection [4][5] and urban planning
[6]. However, the algorithmic scenario is constrained by the
ability to comply with privacy regulations and technological
limitations dictated by available economic resources.

The HAura system processes footage on the local edge
computing unit, sending only the resulting metadata over a
dedicated low-latency network (bypassing the public Internet),
achieving an end-to-end latency below 150 ms. In contrast,
conventional IP camera setups rely on the Internet, introducing
hundreds of milliseconds—or even seconds—of delay. Low-
latency is essential to enable the interaction between the smart
city and connected vehicles, enhancing vehicle perception by
providing critical information.

B. HAura embedded system

The HAura embedded kit, shown in Figure 1, is composed
of a dual camera, computing board, and software, and enables
real-time identification, geolocalization, and tracking of ve-
hicles, pedestrians, and various road users. HAura computes
all the data onboard. The metadata produced by the device is
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Figure 1. Haura hardware installed at the Modena Automotive Smart Area
(MASA) [7]. Modena, Italy.

seamlessly transmitted to a server. Depending on the munici-
pality or the private entity, the server, leveraging the metadata
produced by the HAura infrastructure, implements different
applications to monitor road users and execute smart urban
strategies. At the time of writing, HAura is being implemented
in several Italian cities to improve public safety and optimize
traffic flow, including Modena, Reggio Emilia, and Torino.

III. TECHNICAL DESCRIPTION

A. HAura Technology stack

The proposed device, named HAura, is a smart road side
unit designed for safety management and data analysis in
smart cities and industrial contexts. Specifically, the system
processes data from two cameras continuously, with an image
transmission frequency of 10Hz. The metadata produced is
sent to a server that can implement any urban monitoring
policy utilizing the produced data.

a) Hardware Description: Enclosed in a rugged water-
proof case, the HAura’s computing heart is based on the
Nvidia Orin Nano embedded platform. This choice is popular
in the embedded computer vision domain because of the
performance of the Nvidia Graphics Processing Unit (GPU)
included in the Orin System on Chip (SoC).

• Computing: Specifically, the Orin Nano SoC is based on a
6-core Arm Cortex A78A Central Processing Unit (CPU),
an Ampere-based Nvidia GPU with 1024 Cuda cores and
32 Tensor cores. It is also equipped with 8Gb of unified
Low-Power Double Data Rate 5 (LPDDR5) memory.

• Sensors: The sensor set comprises two Red-Green-
Blue (RGB) cameras. These cameras offer a wide 120°
field of view, ensuring comprehensive coverage of the
surveillance area. The system supports a resolution from
640x480 to 1920x1080

• Connectivity: Mainly the device is designed for low-
latency 5G connectivity. The system also supports Wi-
Fi (2.4GHz and 5GHz) and Ethernet. To complement
this, it is equipped with a Global Positioning System

(GPS) antenna, which is useful for automating the post-
installation operations, ensuring accurate localization.

Figure 2. Diagram of the HAura’s hardware, processing pipeline, and data
produced.

b) Software Description: The full software suite is ready
to power a full-fledged smart city infrastructure. At the base of
the software stack, we have a custom Linux-based operating
system (OS), boasting essential capabilities of remote per-
formance assessment and over-the-air (OTA) updates. A key
component, the HAura’s perception stack depicted in Figure 2,
facilitates real-time object detection and tracking over time.
The upcoming frames from both cameras are processed in
parallel using the powerful computer vision infrastructure
detailed at Section IV-A. The obtained detections include
pedestrians and different vehicles (cars, bicycles, vans, buses
and motorcycles). The output is processed to recover GPS
coordinates of detected objects and perform tracking of detec-
tions over time. The resulting JSON, exemplified in Figure 3,
includes categorized information represented by numeric IDs
(e.g., 0 for a person), latitude, longitude, tracking ID, device
ID, and detection timestamp.

1 {

2 "camIdx ": 0,

3 "nObjects ": 1,

4 "objects ": [

5 {

6 "latitude ": 45.06582260131836 ,

7 "longitude ": 7.662070274353027 ,

8 "speed": 0.0,

9 "orientation ": 0,

10 "id": 1089,

11 "cl": 2

12 }

13 ]

14 }

Figure 3. Example json snippet with object data.

Only this metadata is transmitted, leveraging the Message
Queuing Telemetry Transport (MQTT) protocol. No images of
any kind are included (faces, license plates etc.). This choice is
an important factor in preserving citizens’ privacy and assuring
compatibility with the strictest regulations.
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(a) Object Detection (b) Panoptic Segmentation (c) Depth Estimation (d) Keypoint Detection

Figure 4. Visual representation of the different tasks implemented.

IV. COMPUTER VISION STACK

A. HAura perception stack
The current version of the HAura perception stack follows

a conservative approach based on known techniques that have
been proven to stand the test of time The core of the vision
system is based on the object detection task, which involves
identifying and localizing objects of interest.
Overall, the current perception stack is structured as follows:

• Self Diagnostic: A small Resnet-18 [8] model, trained on
a specialized proprietary dataset, is capable of classifying
incoming images to detect abnormal conditions such as
intense dirt or occlusion sources. This model is run
sporadically (every several minutes) and is therefore not
relevant to the overall latency.

• Object Detection: The core of the vision system is based
on the YoLo-V4 [9] object detector, trained on the 80-
classes MS COCO dataset [10]. YoLo-V4 is preferred
to newer models because of its good balance between
performance and low inference cost. Of the 80 classes,
we select 6 of interest (person, car, bike, bicycle, truck,
bus).

• Mullti-object tracking: We use an extremely efficient
tracker based on ByteTrack [11]. This tracker works by
associating the detections of successive frames and does
not require additional deep models, ensuring excellent
execution performance.

• Mapping to GPS: Using calibrated camera extrinsic, the
object detections are mapped to GPS coordinates using
the inverse perspective mapping technique.

The vision stack runs entirely on NVidia embedded hard-
ware. Model inference is accelerated using the proprietary
TensorRT framework, currently version 8.6.1.

TABLE I. PERFORMANCE METRICS FOR DIFFERENT NUMBERS OF
CAMERAS. THE REPORTED LATENCY (MILLISECONDS) OBTAINED

BY AVERAGING OVER 1000 FRAMES.

Stage 1 Camera 2 Cameras 4 Cameras

Detection 19.98 32.41 64.85
GeoTracking 0.77 0.78 0.85
End2End 21.15 33.63 66.96

In Table I, we report an analysis of inference performance.
Detection only replays the inference time of YoLo-V4 net-
work. GeoTracking refers to the combination of Bytetrack
tracker and Inverse Perspective Mapping (IPM) in GPS co-
ordinates. End2End latency in the end includes the complete

execution cycle, including decoding the image and processing
of the results in the desired format. From a performance
standpoint, for precise identification, the system guarantees
the following recognition ranges: 40 meters for pedestrians,
45 meters for cyclists, and 50 meters for cars.

B. Future Multi-Task perception model
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Figure 5. Outline of a multi-task learning architecture.

The current development effort is focused on the next gen-
eration of the perception stack. The underlying deep learning
model is based on a multi-task learning paradigm [12]. A
multi-task approach involves a single model being able to
produce detection for multiple distinct tasks in a single forward
pass. Compared with a classical approach, in which a specific
and separate model is trained for each task, the multi-task
approach has several advantages. Typically, as exemplified in
Figure 5, a single backbone is used for feature extraction
from the image. Only a shallow decoder is added for each
task. This implies that the computational cost introduced by
each additional task is marginal to the overall computational
cost. In addition, in a positive-transfer effect, simultaneous
learning of related tasks introduces a regularization effect that
can potentially boost performance and generalization ability
compared with single-task learning.

We are currently developing the model to include the fol-
lowing tasks, depicted in Figure 4, that presents an immediate
application for numerous downstream applications.

• Object Detection: This is the same task underlying the
current stack. Accurate prediction of bounding boxes
remains a crucial element. The new enhanced model will
lead to improved detection performance.
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• Panoptic Segmentation: This task extends beyond object
detection by assigning a semantic class label to each pixel
while simultaneously assigning a unique label to each
object instance (e.g., individual vehicles or pedestrians).
Panoptic segmentation will enable a more comprehensive
understanding of the urban scene.

• Depth Estimation: This task involves predicting per-
pixel depth values to reconstruct the three-dimensional
structure of the scene. This task is essential for estimat-
ing distances to objects and understanding their spatial
relationship in the real world. Accurate depth data will
enhance functionalities such as collision detection, and
more precise GPS localization.

• Keypoint estimation: This task focuses on identifying
and localizing critical points on objects, such as human
body joints for pedestrians. This task enables fine-grained
analysis of movement patterns of pedestrian, essential for
advanced techniques of for behavior prediction.

The tasks of object detection, segmentation and keypoint es-
timation are all trainable on the MS COCO dataset, which pro-
vides the required annotations. The depth estimation ground-
truth is not included, although there are dedicated datasets such
as NYU Depth V2 [13] or KITTI [14], training a multi-task
dataset on heterogeneous datasets is non-trivial. To overcome
this limitation, we are considering leveraging pseudo labels for
COCO images obtained using a powerful foundation model
like DepthAnything [15].

C. Foundation Backbone

A second innovation, in addition to the multi-task paradigm,
is to base the feature extractor of the new model on a pow-
erful foundation model. In vision, a backbone foundation is
obtained by pre-training the model with special techniques on
a large scale, millions or even billions of images. A prominent
example is Dino-V2 [16]. This backbone has been trained on
a large dataset of 142 million images using a self-supervised
learning approach derived from [17]. With the large-scale pre-
training, the foundation models learn strong feature extraction
ability, when fine-tuning on downstream tasks therefore the
final model will show exceptional performances and strong
generalization ability. The main disadvantage is that it is not
possible to replicate pretraining on a large scale because of the
huge costs and lack of proprietary training data. Therefore, we
must start from the pretrained models released by the authors
and keep the same model architecture. In particular, Dino-V2
is based on the Vision Transformer (ViT) family of models
[18], which are generally considered expensive in terms of
computational resources. For this reason, a crucial phase of
the work is focused on reducing the computational cost of ViT
models while maintaining compatibility with the pretrained
weights of Dino-V2.

D. Computing cost reduction

Reducing computational cost, hence inference time, with-
out degrading performance is a key goal for inference on
edge devices. The TensorRT inference framework provided by

NVIDIA already implements a large set of generic techniques
to accelerate inference: the proprietary TensorRT compiler
is capable of optimizing the inference graph, performing
complex fusion of operations and carefully selecting inference
kernels to maximize performance. In addition, different tools
are provided to implement techniques such as quantization
and pruning [19]. In addition, there is extensive scientific
literature of techniques to mitigate the inefficiencies of specific
categories of models. Our current work includes developing a
specific novel technique to further accelerate the inference of
the ViT models on which DinoV2 is based that we use as the
backbone for the multi-task model.

V. CONCLUSION

In this paper, we introduced the HAura hardware and
software stack, a generic platform for smart city infrastructure.
Our design leverages on-edge inference, ensuring privacy pro-
tection by transmitting only data that complies with existing
regulations, thereby reducing the risk of exposing sensitive
information. The platform allows adopters to develop front-
end applications that utilize aggregated metadata for a variety
of purposes, from real-time traffic monitoring to long-term
urban planning. While our initial evaluations are promising,
we recognize that further work is needed to thoroughly assess
privacy guarantees and regulatory compliance in diverse set-
tings. Future efforts will focus on developing a comprehensive
front-end platform with the most requested functionalities and
on evaluating the use of Large Language Models to sim-
plify aggregate data querying. Although specialized systems
are available for individual applications, to the best of our
knowledge our platform represents a unique step toward a
universal, upgradeable, and reconfigurable solution for smart
city infrastructure.
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