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Abstract - Hydrogen is a clean energy source that is 
essential for responding to climate change and ensuring energy 
security. Typically, hydrogen storage vessels are exposed to 
high pressure environments, which can pose an immediate risk 
of explosion in the event of failure. Therefore, technologies are 
needed to detect and resolve failures early through diagnostics 
of hydrogen storage vessels. In this paper, we propose a deep 
learning-based multimodal failure detection technique to 
ensure the safety of hydrogen storage vessels. To develop the 
failure detection technique, we first performed tensile tests on 
the storage vessel material to collect Acoustic Emission (AE) 
signals, and also collected failure and normal data based on 
tensile load graphs. The Synthetic Minority Over-sampling 
Technique (SMOTE) method was applied to solve the data 
imbalance. Finally, we developed a multimodal deep learning 
model using time-domain waveforms and frequency spectra 
for failure detection, and the proposed method achieved an 
accuracy of 99.19% and an F1 score of 0.9733, demonstrating 
excellent failure detection performance. Furthermore, we 
confirmed that the proposed method shows better performance 
than using only time-domain waveforms or frequency spectra, 
and we expect that this research will contribute to the safety 
diagnosis and maintenance of hydrogen storage vessels. 

Keywords - Hydrogen Storage Vessels; Acoustic Emission; 
Multimodal; Deep-learning. 

I. INTRODUCTION 
Hydrogen is a clean energy source that emits no 

greenhouse gases when burned, and is essential for 
responding to climate change and ensuring energy security. 
However, hydrogen exists as a gas at room temperature and 
is highly flammable and bulky, requiring advanced storage 
and transport technologies. Therefore, high-pressure vessels 
for compressed hydrogen storage are essential for hydrogen 
mobility and infrastructure development [1]. 

In general, hydrogen storage vessels are classified into 
types 1 to 4 according to their materials and structures, as 
shown in Figure 1. Type 1 vessels, made entirely of metals 
such as aluminum or steel, are cost-effective and ideal for 
transporting hydrogen at low pressures of 200 bar [2]. Type 
2 vessels consist of a metal liner reinforced with an outer 
layer of Glass Fiber  Reinforced Plastic (GFRP), allowing a 
maximum pressure limit of 300 bar. Type 3 vessels enhance 
this design by using Carbon Fiber  Reinforced Plastic 
(CFRP) as the outer layer, significantly increasing the 
pressure limit to 700 bar. Unlike Type 2, which does not 
fully wrap the liner with fibers, Type 3 uses a fully wrapped 

structure, providing superior reinforcement. Type 4 vessels, 
on the other hand, use a resin liner as the inner layer and 
CFRP as the outer layer, achieving a lightweight design 
while maintaining the same pressure rating as Type 3. 

 

 
Figure 1.  Types of hydrogen gas storages: (a) Type 1, (b) Type 2, (c) 

Type 3, (d) Type 4. 

The metallic composition of Type 1 hydrogen storage 
vessels makes them susceptible to fatigue, corrosion and 
cracking, increasing the risk of hydrogen leakage or 
explosion. Periodic inspection and failure detection are 
therefore essential for safety. Traditional diagnostics often 
require disassembly of the vessel, which is not feasible 
during operation. Failure of a high-pressure vessel poses an 
immediate risk of explosion, emphasizing the need for in-
service diagnostics to detect and resolve failures early, while 
maintaining reliability and efficiency. Non-Destructive 
Testing (NDT) technologies are therefore essential. NDT 
technologies, such as ultrasonic, radiographic and Acoustic 
Emission Testing (AET) provide real-time in-service safety 
diagnostics. AET is particularly effective because it analyses 
acoustic signals generated during failure, making it ideal for 
high-pressure vessel diagnostics. These methods can ensure 
safety while preventing catastrophic events such as 
explosions. However, previous research has focused on 
specific materials or single failure modes, and in particular 
on Type 2 and Type 3 vessels.  

Therefore, this paper proposes a deep learning based 
multimodal failure detection technique to ensure the safety of 
Type 1 hydrogen storage vessels. To do so, we first perform 
tensile tests on specimens made of aluminum, stainless steel 
and steel to collect AE signals during failures, and construct 
a dataset of AE signals using tensile load plots. A 
multimodal deep learning model using time-domain 
waveform and frequency spectrum data is developed to 
improve detection accuracy and reliability. As a result, the 
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multimodal model achieved an accuracy of 99.19% and an 
F1 score of 0.9733, demonstrating excellent performance.  

II. BACKGROUNDS 

A. Failure Modes of Hydrogen Storage Vessels 
Failures in hydrogen storage vessels refer to structural 

deformations caused by external impacts, exceeding 
allowable pressure limits or material durability issues. The 
high temperature and high pressure conditions resulting from 
repeated loading and unloading cycles lead to fatigue-related 
failures, and Type 1 vessels are particularly susceptible due 
to their lower allowable pressure limits. 

As Type 1 vessels are made entirely of metal, any 
potential failures are also limited to metal failures. Metals 
have a single molecule structure and failures occur 
sequentially depending on the fatigue level of the material. 
Failures in metals are classified into elasticity, plasticity and 
fracture. Elasticity occurs when the stress exceeds the yield 
strength, i.e., a deformation that is reversible when the stress 
is removed. Plasticity, on the other hand, refers to the 
permanent deformation that occurs even after the stress is 
removed [3]. Fracture refers to cracks and ultimate fracture 
caused by excessive stress. Figure 2 shows examples of the 
three failure modes in Type 1 hydrogen storage vessels. 

 
 

Figure 2.  Failure modes of Type 1 vessel: (a) Elasticity, (b) Plasticity, (c) 
Fracture. 

 

B. AET-Based Non-Destructive Testing 
NDT inspects objects without damage, enabling real-time 

failure detection in hydrogen storage tanks. AET evaluates 
material failure by analyzing the elastic waves generated 
during deformation. AET systems consist of AE sensors for 
signal detection, Data Acquisition (DAQ) systems for digital 
signal conversion, and analysis for interpretation. Figure 3 
shows an example of an AET system. 

 

Figure 3.  An Example of an AET system. 

Accurate AE data acquisition requires appropriate 
sampling rates. Hits are defined using parameters such as 
preamplifier gain, threshold and Hit Definition Time (HDT). 

Noise is filtered with High Pass Filters (HPF) and Low Pass 
Filters (LPF), and signal features are extracted in the time 
domain (e.g. maximum amplitude, rise time) and frequency 
domain (e.g. peak frequency, average frequency). Figure 4 
illustrates the AE waveform and the DAQ parameters used to 
define hits. To collect accurate data from AE sensors, an 
appropriate sampling rate must be set. Event occurrences, or 
hits, are defined using parameters such as preamplifier gain, 
threshold, Peak Definition Time (PDT), Hit Definition Time 
(HDT), Maximum Hit Duration (MHD) and Hit Lockout 
Time (HLT). 
 

Figure 4.  Example of DAQ parameters for defining hits. 

C. Tensile Testing 
Tensile testing involves pulling customized specimens 

using a Universal Testing Machine (UTM) to apply stress 
until failure occurs. Figure 5 shows an example of an AET-
based tensile test and a tensile stress graph. When a 
specimen reaches failure, its properties change, resulting in 
variations in the applied stress. Generally, failures appear as 
inflection points on the tensile load graph. By analyzing 
these inflection points, changes in the specimen properties 
can be identified. 
 

Figure 5.  (a) Tensile testing, (b) Tensile-load graph and inflection point. 

III. RELATED WORKS 
Research on hydrogen storage failure is divided into 

Finite Element Model (FEM)-based approaches and AE 
signal analysis methods. FEM simulates stress and fatigue 
under operational conditions and analyses potential failures 
experimentally [4]. However, FEM studies primarily focus 
on correlations between failure phenomena and fatigue levels, 
limiting their application for real-time detection during 
operation. In contrast, AET-based research is simpler as it 
avoids detailed numerical analysis and relies on acoustic 
signals generated during failures. This allows for real-time 
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failure detection. However, AET studies have mainly 
focused on composite materials, such as CFRP in Type 2, 3 
and 4 vessels, and there is a lack of research on Type 1 
vessels, despite their widespread use and advantages. 

Type 1 vessels are made from a variety of metals such as 
steel, stainless steel and aluminum and require extensive 
failure analysis. Recent AET and deep learning studies have 
analyzed failures in metallic vessels, but have been limited to 
4130X steel [5]. Therefore, this study addresses this gap by 
collecting AE signals from steel, stainless steel, and 
aluminum through tensile testing and constructing an 
accurate dataset. A multimodal classification model was also 
developed using time domain waveforms and frequency 
spectrum data. 

IV. DATA PROCESSING 
For safety reasons, it is impractical to directly charge and 

discharge Type 1 hydrogen storage vessels or to apply 
destructive pressure. Instead, AE failure signals have been 
obtained by performing tensile tests on specimens of 
container materials under predetermined parameters. 

A. Data Acquisition 
In this study, the specimens included stainless steel 

(SUS304), steel (SS400) and aluminum (AL6106-T6), all of 
which are widely used in hydrogen storage vessels [6][7]. 
These specimens were fabricated in accordance with Korean 
standard KS B 0801 No. 5, and Table Ⅰ shows example 
images of each specimen. 

TABLE I.  EXAMPLE IMAGES OF SPECIMENS 

Material Standard Example Images 

Stainless steel SUS304  

Steel SS400  

Aluminum AL6106-T6  

 
The specimens were subjected to tensile testing to induce 

material specific failures. Tensile loads were applied using 
the Sintech 30/G model (MTS system) and AE signals were 
recorded using the IDK-AES-H150 resonant sensor at 1 
MHz. Failures typically occur below 500 kHz, while signals 
below 10 kHz are often noise or equipment vibration, so a 
digital filter was applied to remove noise. Hit detection 
parameters were set to accurately capture peak values and 
event intervals. Table Ⅱ summarizes the DAQ settings used 
in the experiment. 

Tensile tests were performed on three specimen types to 
collect AE waveform data. Specimens were loaded to failure 
and only event waveform data was collected based on the 
sensor settings. Normal data was also collected by attaching 
AE sensors to Type 1 vessels operated within allowable 
pressure limits. Figure 6 shows the test environment and 
failed specimens, while Table Ⅲ lists the number of samples 
collected. 
 

Figure 6.  (a) Tensile testing environment, (b) Specimens after testing. 

 

TABLE II.  DAQ PARAMETERS CONFIGURED TO DEFINE HITS 

Parameter Type Parameters Value Unit 

Sensor 

Sampling Rate 1 MHz 

Pre-Amp Gain 40 dBae 

Threshold 30 dB 

Digital Filter 
High Pass Filter (HPF) 10 kHz 

Low Pass Filter (LPF) 500 kHz 

Hit Detection 

Peak Definition Time (PDT) 200 μs 

Hit Definition Time (HDT) 400 μs 

Maximum Hit Duration (MHD) 1 ms 

Hit Lock-out Time (HLT) 10 ms 

TABLE III.  NUMBER OF COLLECTED DATA 

Specimen Number of data 

Stainless steel 333 

Aluminum 2,056 

Steel 44,792 

Type 1 Storage 
(Normal) 69,243 

 

B. Data Labeling  
Metal failure occurs when the tensile load exceeds the 

yield strength, changing atomic arrangements and material 
properties. These changes vary with the rate of load increase, 
allowing failure regions to be identified using a time 
dependent load curve. The elastic region occurs when 
stresses remain below the yield point, causing minimal 
deformation and a continuous increase in load. Plasticity 
begins when the stress exceeds the yield point, resulting in 
significant deformation and slower load increase. An 
inflection point marks the transition from elasticity to 
plasticity. Fracture occurs when the material can no longer 
support the stress, causing the load to drop rapidly to zero, 
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creating another inflection point. These points divide failure 
regions and matching their times to the event waveforms 
allows failure labelling. Figure 7 illustrates tensile load 
graphs and failure region subdivisions, summarized in Table 
Ⅳ. 

 

C. Data Preprocessing 
The dataset was pre-processed for deep learning training, 

incorporating frequency domain information to improve 
performance. 

 
1) Unify Waveform Lengths and Min-Max Scaling 

All waveform lengths were unified to 1024 samples. AE 
waveforms vary in length depending on event duration, but 
consistent input sizes are required for deep learning. This 
study determined the optimal length to minimize information 
loss and computational load. Waveform lengths were 
statistically analyzed and outlier information segments were 
identified to set the unified length to 1024, as shown in the 
histogram in Figure 8. 

 
 

Figure 8.  Histogram of  waveform lengths.  

Second, the amplitude of the waveform was scaled to [-1, 
1] using min-max scaling. Without scaling, data values could 

vary widely, causing instability and inefficiency during the 
weight update process. Scaling creates a uniform distribution, 
reducing variability and stabilizing training. Since waveform 
data includes negative values, the scaling range was set to [-1, 
1], as expressed below: 

                   (1) 

where max(x) and min(x) is: 

                   (2) 

            (3) 

For x, the baseline is 0, but x' maps the maximum and 
minimum of x to 1 and -1 respectively. If their absolute 
values differ, the centers of the waveforms can vary, 
increasing the variance of the data. To overcome this, the 
larger absolute value is mapped to 1 and the smaller to -1, 
centering the waveform at 0. Figure 9 shows the original 
waveforms after min-max scaling and alignment to 1024 
length, comparing standard scaling and the adapted method. 
 
 

Figure 9.  Plot a waveform after preprocessing: (a) General min-max, 
scaling (b) Ours. 

 
2) Construction of Frequency Spectrum Dataset 

Understanding both intrinsic and frequency 
characteristics is essential in waveform analysis. Frequency 
characteristics minimize the effect of sensor type and 
placement, facilitating generalized classification methods. To 
incorporate this, the frequency domain data was constructed 
using the Fourier Transform (FT). As the signals were digital 
and discrete, the Discrete Fourier Transform (DFT) was 
applied using the Fast Fourier Transform (FFT) algorithm 
for computational efficiency. 

Figure 7.  Tensile-load graph and failure region of each material 
specimens: (a) Stainless steel, (b) Steel, (c) Aluminum. 

 

Figure 1.   

 

 

TABLE IV.  TIME AND NUMBER OF ACQUIRED WAVEFORMS ACCORDING TO FAILURE REGIONS IN EACH SPECIMEN 

Specimen 
Time by Region (Seconds) Number of Waveforms 

Total 
Experiment Elasticity Plasticity Fracture Elasticity Plasticity Fracture 

Aluminum 100.54 0 ~ 57.21 57.2 ~ 100.4 100.4 ~ 100.5 1,583 467 6 

Steel 379.85 0 ~ 37.47 37.4 ~ 365.9 366.7 ~ 379.8 4,093 40,621 78 

Stainless steel 728.94 0 ~ 33.94 34.6 ~ 706.7 706.5 ~ 728.9 184 107 42 

Total 5,860 41,195 126 
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The FFT transformation produced discrete frequency 
spectrum graphs as line plots of the frequency distribution. 
Unlike the waveform data, the frequency spectrum lacks 
negative values and was scaled to [0, 1]. Each FFT result 
contained 1024 samples, corresponding to the length of the 
waveform. Due to y-axis symmetry, only positive 
frequencies were retained, reducing the length to 512. 
Table Ⅴ shows examples of the original waveform, the 
pre-processed waveform and the scaled spectrum data after 
FFT transformation. 
 

TABLE V.  EXAMPLE OF PREPROCESSED WAVEFORM AND 
FREQUECY SPECTRUM 

Data Type Specimen Example 

Wavefor
m 

Stainless 
steel 

 

Aluminum 

 

Steel 

 

Frequency 
Spectrum 

Stainless 
steel 

 

Aluminum 

 

Steel 

 
  

 

V. CLASSIFICATION MODEL FOR FAILURE DETECTION 
A deep learning model was developed using the 

constructed dataset to classify type 1 storage failures. 
Fracture, which indicates material rupture and explosion, 
was excluded as it is irrelevant to safety diagnostics. Only 
elasticity, plasticity and normal data were used to 
distinguish these states. The data set was divided into 
training, validation and test sets in a ratio of 60:20:20. 
However, there is a significant imbalance between 
elasticity and plasticity data. To address this, the SMOTE 
method was used to balance the training data [8]. Table Ⅵ 
shows the number of training, validation and test data 
augmented by SMOTE.  

A binary failure and normal classification model was 
trained and tested using the collected dataset. The model, 
designed as a one-dimensional convolutional neural 

network (1D-CNN), extracted features from both 
waveforms and frequency spectra for classification. To 
better capture temporal characteristics, an extended causal 
1D-CNN architecture was used. Figure 10 shows the 
structure of the diluted causal 1D CNN. 

TABLE VI.  NUMBER OF TRAIN/VALID/TEST DATASET 

Failure 
Mode 

Train 
Validation Test Before 

Augmentation 
After 

Augmentation 
Elasticity 3,516 41,545 1,172 1,172 
Plasticity 24,717 41,545 8,239 8,239 
Normal 41,545 41,545 13,849 13,849 
Total 69,778 124,635 23,260 23,260 
 
 

Figure 10.  Dilated Causal 1D-CNN 

Convolution, batch normalization and max-pooling 
(size: 2) layers were used to process the input data to 
extract features, which were then transformed into a 1-
dimensional vector with 3 outputs using global average 
pooling, bypassing the need for a fully connected layer. 
The outputs were passed through the softmax activation 
function to compute the final probabilities for each failure 
type. The Nadam optimizer was used to train the model. 
This study evaluated the classification performance under 
three input scenarios: waveform data only, frequency 
spectrum data only, and combined features of both. In 
addition, the ResNet-50 architecture was used as the 
feature extractor to evaluate the performance 
improvements from a deeper network design.  

Table Ⅶ shows the experimental results for models 
using different inputs and architectures. The result shows 
that the 12-layer multimodal model achieved the best 
performance with 99.19% and an F1 score of 0.9733. The 
superior results of the flatter model compared to ResNet 
suggest that a more complex architecture is not necessary 
for this classification task. Furthermore, the higher 
performance of the multimodal model compared to single 
input models (waveform or frequency spectrum) indicates 
that the two types of data are complementary for this 
classification problem. Figure 11 shows the structure of 
the best performing model, i.e. the 12-layer 1D CNN 
multimodal model. 
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VI. CONCLUSION 
This paper proposes a deep learning-based multimodal 

fault detection technique to ensure the safety of hydrogen 
storage vessels. To this end, we first collected AE signals 
from Type 1 hydrogen storage vessels by tensile testing 
and constructed data sets for elastic, plastic and normal 
regions. We then developed a multimodal deep learning 
fault detection model using waveform and frequency 
spectral data. From the experimental results, we confirmed 
that the proposed multimodal model achieved an accuracy 
of 99.19% and an F1 score of 0.9733, demonstrating 
excellent failure detection performance. In the future, the 
proposed method is expected to enable real-time fault 
detection of Type 1 vessels, contributing to efficient and 
reliable safety diagnostics. 
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TABLE VII.  CLASSIFICATION PERFORMANCE 

Input Data Type Model Structure Accuracy Precision Recall F1-Score 

Waveform Only 
12-Layer 1D-CNN 98.87% 0.9603 0.9622 0.9613 

ResNet-50 1D-CNN 98.83% 0.9602 0.9655 0.9628 

Frequency 
Spectrum Only 

12-Layer 1D-CNN 98.94% 0.9599 0.9712 0.9654 

ResNet-50 1D-CNN 98.93% 0.9604 0.9624 0.9614 

Multimodal 
12-Layer 1D-CNN 99.19% 0.9723 0.9743 0.9733 

ResNet 1D-CNN 98.89% 0.9590 0.9686 0.9637 

 
 
 
 

 
Figure 11.  Proposed 1D-CNN multimodal model. 
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