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Abstract—This work is focused on the development of an inte-
grated system designed to detect, map, and analyze road surface
defects, contributing to Smart City infrastructure maintenance.
The system is installed on vehicles and leverages a multi-sensor
approach, combining Light Detection and Range (LiDAR) point
clouds, visual information from Red-Green-Blue (RGB) cameras,
inertial data and Global Navigation Satellite Systems (GNSS)
coordinates. Road defects such as potholes and alligator cracks are
detected in RGB images by a custom deep learning model based
on instance segmentation. The scene understanding is committed
to a second Artificial Intelligence (AI) model based on semantic
segmentation in order to perceive objects locations and the overall
structure of the road. Afterward, all results are processed together
and translated into the 3D domain of LiDAR data. This can be
done through a proper camera calibration procedure and LiDAR-
Camera data alignment with the estimation of intrinsic and
extrinsic parameters. Then, AI segmentation results are projected
to 3D point clouds in order to isolate the detected items from the
rest of the point cloud and obtain three-dimensional models of each
of them, enabling measurements like the affected surface extension,
depth and volumes. GNSS and inertial data are fused together to
obtain the correct orientation and location of the system, enabling
geographic positioning of all detected items on the map. Results
are displayed on a map-based portal, enabling easy access to near
real-time defect data. This approach advances road monitoring
by automating the mapping and analysis of surface conditions,
enhancing urban infrastructure management. In addition, the
strengths of this approach are the possibility of deploying the
pipeline in edge devices enabling real-time computation, the use
of pre-existing training datasets based on RGB images alone, and
good accuracy on the geographical localization and estimation of
defect measurements.
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I. INTRODUCTION

As urban areas grow the need to monitor road conditions
efficiently becomes crucial for keeping infrastructure intact and
promoting road safety. The conventional methods of inspecting
roads are laborious, time consuming and frequently fall short
of providing the accuracy required for repairs. However, recent
progress in sensor technology, artificial intelligence and data
integration present fresh opportunities for monitoring road
conditions. Over the past few years, many approaches have
been explored. Sometimes using inertial data [1], pure machine
learning and computer vision methods [2][3], sometimes
exploiting more sophisticated deep learning models [4], and
other times combining vision and depth sensing together with
spatial Al [5][6]. The technologies that have been tested for

depth estimation are based on stereoscopy, Red-Green-Blue-
Depth (RGB-D) cameras and LiDAR. However, each has its
own disadvantages: stereoscopy generally does not work with
feature-poor surfaces, RGB-D cameras based on Time of Flight
(ToF) technology, while achieving good accuracy, drop their
performance in outdoor environments and are limited to a
range of few meters, while LiDAR provides the most long-
range and accurate measurements but at the expense of lower
point density and the need for an additional imaging system to
obtain the scene picture. Furthermore, approaches using RGB-D
images as input for Al detection models, while achieving good
performance due to depth information, are strongly affected
by the context, sensor position and framing of the training
data, and therefore require the acquisition of huge amounts
of images from every possible angle and distance, in order to
replicate all possible setups. Our approach, on the other hand,
bases Al inference solely on RGB images and transports the
detection information to the LiIDAR domain, via camera-LiDAR
registration, as shown in Figure 1.

Figure 1. Camera-LiDAR Registration.

This allows the use of pre-existing datasets without having to
create a custom dataset and re-labelling all images. This work
suggests a setup (see Figure 2) that utilizes LiDAR technology
along with RGB imaging, inertial and GNSS data within a
framework based on Robot Operating System (ROS), as shown
in Figure 3, in order to identify and pinpoint road surface
issues efficiently.

From an economic standpoint, the system’s adaptability
to city vehicles, including public transport, could potentially
transform routine operations into continuous, cost-effective road
monitoring. Combining this distributed sensing with on-the-
ground human supervision, such as cleaning personnel, creates
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a hybrid model that optimizes resource use and enhances data
accuracy, leading to efficient urban road maintenance.

In Section 2, the methods employed are detailed, including
the hardware components, the software architecture, the design
and training of the AI models. In Section 3, the results
of the system’s validation are presented, focusing on the
performance metrics of the Al models and the accuracy of
defect measurements and positioning. In Section 4, the paper
concludes with a discussion of the system’s contributions and
potential future developments.

II. METHODS

The proposed system integrates the following hardware
components: an Hybrid Solid-State LIDAR with 128-channels
of resolution, a global shutter camera sensor with 4k resolution
at 30 fps, a navigation system with 9-axis accelerometer INS
and dual antenna GNSS and a Nvidia Jetson AGX module
where the software runs. The LiDAR, camera and navigation
system are mounted on the vehicle’s roof, while the Jetson
unit is installed inside the cabin and connected to the vehicle’s
power supply.
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Figure 2. Hardware setup.

The software architecture is based on ROS and is made
up of the following nodes: driver nodes to collect data from
each sensor and publish to topics, data processing nodes to
apply Al model inference on images and get results, projection
nodes to map defects from RGB domain into 3D domain and
make measurements and navigation nodes to estimate precise
latitudes and longitudes of each defects. All collected results
are then submitted to the visualization platform.

There are two types of custom trained AI models: an
instance segmentation model based on the You Only Look
Once (YOLOVS8-Seg) small architecture [7] and a semantic
segmentation model based on the SegFormerB1 architecture
[8]. The former was trained on the RDD22 dataset [9]: since
it is an object detection dataset, it was necessary to re-label
the annotations with the addition of pothole and alligator crack
segmentation mask. In order to speed up the process, the
Segment Anything Model (SAM) [10] was adopted, enabling a
quick annotation of the images from the bounding boxes using a
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Figure 3. Software architecture components in ROS framework.

dedicated tool. The latter was trained on the Cityscapes dataset
[11], which provides over 5000 densely annotated images with
30 segmentation classes. The purpose of the two models is to
identify potholes and alligator cracks in road images captured
by the camera, along with their segmentation masks, and to
verify their placement within the "road" class of the semantic
segmentation model, in order to limit false positives. Qualitative
results for both models are shown in Figure 4.

III. RESULTS & DISCUSSION

The system was rigorously tested on various urban road
sections, demonstrating strong performance in identifying
potholes and alligator cracks. The validation of the Al models
on dedicated test sets yielded key computer vision metrics
that underline their effectiveness. For the YOLO model, a
mean Average Precision (mAP) of 0.56 at thresholds of
Intersection Over Union (IoU) ranging from 0.5 to 0.95 reflects
its robustness in detecting and segmenting defects across
different scales and conditions. The mAP is calculated with
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the following equation:
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where N, is the total number of classes, N,y is the number
of IoU thresholds and APEi) is the average precision for class
c at IoU threshold <.

Additionally, an Fl-score of 0.57 indicates a balanced
performance in terms of precision (reducing false positives)
and recall (capturing true positives). The formula of F1-score
is the following:
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where P is the Precision and R is the Recall value. For
the SegFormerB1 model used in road segmentation, a mean
Intersection over Union (meanloU) score of 0.43 demonstrates
its capacity to accurately delineate the "road" class, while
an exceptional Fl-score of 0.98 highlights its precision and
reliability in avoiding misclassifications. The following for-
mulas provide the way for calculating meanloU for semantic
segmentation:
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where A. is the predicted segmentation for class ¢, B, is the
ground truth segmentation for class ¢ and N, is the number
of classes. These metrics are considered strong, given the
complexity of urban environments and variability in road
textures.

Figure 4. YOLOVS8s-Seg results for pothole and crack segmentation (left),
SegFormerB1 road segmentation results (right).

Moreover, the integration of segmentation results with
LiDAR data allowed for accurate 3D reconstruction and spatial
measurements, achieving an error margin of less than 10%
for defect dimensions (surface area and depth). The system’s
navigation module further enhanced functionality, delivering
geolocation with Global Positioning System (GPS) accuracy
suitable for effective road management applications at the
city scale. Finally, deployment on the Nvidia Jetson AGX
64 GB Edge device and model optimization using TensorRT
enabled real-time processing. The YOLO model achieved a
remarkable throughput of 312 Frames-Per-Second (FPS), while
the SegFormer model delivered 18 FPS, ensuring a processing
rate exceeding 10 Hz—well-aligned with the LiDAR’s sampling

rate. This ensures that the system can operate seamlessly in
real-time, offering both efficiency and scalability.

IV. CONCLUSION

Our work presents an advanced, integrated system for detect-
ing and mapping road surface defects, marking a significant
step forward in Smart City infrastructure maintenance. By
leveraging a multi-sensor approach, including LiDAR, RGB
cameras, inertial data, and GNSS, the system achieves precise
localization and accurate measurements of defects like potholes
and alligator cracks. The innovative application of RGB-based
Al models combined with LiDAR domain projection enables
the use of existing datasets, minimizing the need for extensive
retraining. Deployment on an edge device ensures real-time
processing, while the ROS-based framework facilitates seamless
data integration and visualization. The achieved accuracy
in defect detection, spatial measurement, and geolocation
demonstrates the system’s potential for scalable implementation
in urban road management. Future developments could further
enhance adaptability to diverse environments, driving even
greater efficiency in urban infrastructure maintenance.
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