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Abstract— Automatic detection and classification of parking 

signs play an important role in autonomous and human-driven 

cars as it may lead to significant traffic reduction. Existing 

approaches mostly focus on traffic sign detection. Although 

there are a few studies in recent years that focus on parking sign 

detection, this field of study faces a lot of challenges such as the 

diversity of parking signs in different countries, the fact that the 

size of parking signs is usually smaller than that of normal 

traffic signs and the difficulty of understanding their meaning, 

a challenge that extends even to human drivers.  This paper 

proposes a novel method for detecting and classifying parking 

signs using visual information. This study is conducted on a 

custom dataset of nearly 16000 images of parking signs in 

Vancouver, Canada. We base our approach on the YOLOv7X 

network, which is a powerful object detection algorithm, and 

obtained a mean Average Precision (mAP) of 95% on the test 

set, a notable result compared to the existing state-of-the-art 

object detection algorithm. 

Keywords- Autonomous Driving; Parking Sign Detection; 

Object Detection. 

I.  INTRODUCTION 

Nowadays, artificial intelligence and machine learning 
technologies are used in day-to-day activities, having a 
significant impact on our everyday lives. Machine learning is 
a key technology that enables autonomous driving. Object 
detection and classification play a vital role in autonomous 
driving, as they are necessary for detecting pedestrians, cars, 
traffic lights, and traffic signs on the roads. Automated 
parking sign detection is a key factor of smart city 
infrastructure, as it has the potential to greatly reduce traffic 
congestion by notifying human drivers and autonomous 
vehicles of available street parking spaces ahead. Researchers, 
governments, and industry have all taken an interest in this 
topic because of its significant impact on the environment and 
productivity. 
      Parking sign detection and classification may be 
considered similar to traffic sign detection; however, the 
parking signs are usually smaller and more diverse. While the 
traffic sign detection task has drawn a lot of attention [1]-[3], 
very few researches have been conducted on parking sign 
detection and classification.  

In their study [4], Mirsharif et al. proposed a supervised 
computer vision method to automatically detect and locate 
parking signs in San Francisco. They extract the potential 
regions of the image that may contain the parking sign by 
using a sliding window and then obtain a Histogram of 

Oriented Gradients (HOG) for each candidate. Based on the 
resulting features, the Support Vector Machine (SVM) 
learning algorithm classifies parking sign types using a linear 
function. After combining potential detections from multiple 
viewpoints, a map of the street is created that shows the 
location of the signs. However, this work is limited to only 
detecting parking signs, falling short from identifying their 
content.  A more recent approach is based on a YOLOv5 
network to generate a real-time parking sign detection model 
that detects parking signs with a mean Average Precision 
(mAP@.5) of 96.8% [5]. However, this method is also limited 
to detecting the presence of a parking sign. Chau et al. [6] 
proposed a different approach that is also based on YOLOv5 
to first detect the parking signs and then classify them by using 
symbol detection. This method achieved an accuracy of 
96.8% for parking sign detection and 98.3% for symbol 
detection. Their two-stage methodology is able to both detect 
the signs and classify the symbols inside the signs. However, 
at the end of their method, there is another step needed for 
combining the symbols and providing a unique meaning for 
the detected signs and their proposed method lacks this step. 
     In our previous work presented in [7], we trained a 
YOLOv4 model on our British Columbia (Canada) parking 
sign dataset to detect and classify parking signs. For input 
frame size of 416x416, this method achieved a mean Average 
Precision (mAP) of 93.01% in detecting and classifying 
parking signs, while the accuracy (mAP) increased to 98.56% 
for input frames of 1080X1080 size.  

In this paper, we introduce a larger and more 
comprehensive dataset for parking signs used in the Province 
of British Columbia (BC), Canada. Using this dataset, we train 
a YOLOv7 network to detect and classify the BC parking 
signs into three main categories: parking is allowed, no 
stopping, and no parking. The reason for this classification is 
that our scheme is part of a street parking availability pipeline, 
where we first detect whether parking is allowed or not in a 
specific area and then share this information with another 
network that detects street parking availability and combines 
the information to make the final accurate decision that is 
shared with human-driven and autonomous vehicles. We 
compare the performance of our proposed model with that of 
the state-of-the-art approach presented in [7]. We compare the 
accuracy and speed performance of the YOLOv7X model 
with the retrained (on the new dataset) state-of-the-art 
YOLOv4 model presented in [7]. Evaluations showed that 
YOLOv7X outperformed YOLOv4, with YOLOv7X 
achieving a mAP of 95% at a threshold of 50% overlap and 
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YOLOv4 reaching a mAP of 86% at the same threshold. The 
YOLOv7 model also performed better on generalization and 
inference time compared to YOLOv4.  

The rest of the paper is organized as follows. In Section II, 
we present our method and dataset and briefly explain the 
networks we have trained. Section III presents and analyzes 
the visual and numerical results, and Section IV concludes the 
paper. 

II. OUR PROPOSED METHOD 

A. Our New Dataset 

In this paper, our first task was to extend the dataset with 
additional video sequences from the city of Vancouver, BC. 
To this end, our team captured additional video sequences 
under different weather and light conditions around the city of 
Vancouver. The resulting comprehensive dataset consists of 
15838 unique frames that were extracted from all the video 
streams. We used the Computer Vision Annotation Tool 
(CVAT) to label these extracted frames. We grouped the 
parking signs into three main categories: no stopping, no 
parking, and parking allowed. Figure 1 shows examples of 
different signs present in frames of our dataset. Each of the 
labeled frames contains one or more parking signs. The 
labeling process draws a rectangular bounding box around 
each of the signs in the frame (see Figure 2). In total, our 
dataset consists of 7824 no stopping signs, 4091 no parking 
signs, and 7053 parking-allowed signs.  

We exported the labels in the format supported by YOLO, 
meaning that for each frame there is a text file containing the 
class number (for example 0 corresponds to the stopping sign, 
1 to the no parking sign, and 2 to the parking-allowed sign) 
and the coordinates of the bounding boxes. We used 12180 
frames for training, 3090 for validation, and 567 for testing. 

B. Our Network 

We base our approach on the YOLOv7X network 
architecture [8]. YOLO, which stands for You Only Look 
Once, is a well-known family of real-time object detection 
networks, with the original YOLO object detector first 
introduced in 2016 [8]. This network architecture proved to be 
much faster than its peer object detectors and established itself 
as the choice for real-time object detection applications. Since 
then, different versions of YOLO have been introduced, with 
each one of them offering a significant increase in 
performance and efficiency. YOLOv7, being the latest official 
YOLO version, can predict bounding boxes more accurately 
than its peers at much faster inference speeds [9]. YOLOv7 

uses an Extended Efficient Layer Aggregation network E-
ELAN as the final layer aggregation, an extended version of 
the ELAN [10] computational block. The multiple paths 
supported by E-ELAN offer a shorter distance for the gradient 
to back-propagate through the layers, allowing the network to 
converge faster. Compared to YOLOv7, which increases the 
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Figure 2. Some examples of the images in our dataset. 
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Figure 1. Examples of (a) no parking (b) no stopping and (c) 

parking allowed signs. 

 
 

Figure 3. Comparison of YOLOv7 with previous object detection 

networks [9]. 
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depth or width to improve performance, YOLOv7x introduces 
a compound scaling on the neck, which increases the depth 
and width of the entire model simultaneously, leading to 
improved accuracy. Figure 3 shows the improvements of 
YOLOv7 over the prior YOLO versions in terms of Average 
Precision (AP) and computational time over the Common 
Objects in Context (COCO) dataset [11]. 

III. OUR APPROACH 

We compared the street parking sign detection and 
classification performance of YOLOv7X trained on our new 
dataset against that of the state-of-the-art YOLOv4 also 
retrained on the same dataset. Both networks were trained 
using Canada's Digital Research Alliance’s computing 
clusters [12]. We used a Tesla v100 Graphics Processing Unit 
(GPU) for the training and testing phases. The mAP metric is 
used to evaluate the performance and accuracy of the models. 
A model's average precision is determined by measuring its 
precision and recall at various Intersection-Over-Union (IoU) 
thresholds. Recall that IoU is equal to the ratio of the area of 
overlap between the predicted bounding box and the ground-
truth bounding box to the area of the union between the two 
boxes. As YOLOv7X supports mosaic augmentation, which 
combines several frames into a new one, we had to disable this 
option for our implementation. The reason for this decision 
comes from the fact that mosaiced frames would introduce 
signs on the top, left, and bottom of the scene, thus misleading 
the network and reducing the accuracy. 

YOLOv7X supports input images of 640x640 and 
1280X1280 pixels. Since parking signs are rather small 
objects, the detection and classification tasks become more 
difficult for low-resolution images, so we decided to use 
1280X1280 input images. Note that we also use the same 
resolution for the YOLOv4 network for a fair comparison. 

Table I below shows the results of the validation set for 
the two models at 0.5 IoU threshold. We observe that the 
YOLOv4 model scored a mAP of 91% while YOLOv7X 
reached a mAP of 97% for the same dataset, a significant 
increase in performance. 

The models were then tested on 567 unseen frames from 
our test dataset. The total number of bounding boxes for signs 
used as ground truth was 720 (several frames have more than 
one sign). Table II shows the results of precision, recall, and 
mAP on the test dataset at a threshold of 0.5 for YOLOv4 and 
YOLOv7X. As it can be seen, YOLOv7X achieves a mAP of 
95% while YOLOv4’s mAP is only 86%. In terms of precision 
and recall, YOLOv7X and YOLOv4 have the same precision 
(93%), while YOLOv7X outperforms YOLOv4, yielding a 
recall of 92%, which is almost 10% higher than that of 
YOLOv4. From the above, we can conclude that our 

YOLOv7X model significantly outperforms the state-of-the-
art model in detecting and classifying street parking signs. 

Regarding the complexity and inference time reduction 
reported in previous studies, YOLOv7 needs 75% fewer 
parameters while it requires 36% less computation in 
comparison with YOLOv4.  In our experiments, using the 
same hardware setup, the inference time for YOLOv4 was 
approximately 530 milliseconds, while YOLOv7X completed 

TABLE I: VALIDATION RESULTS 

Model mAP @ 0.5 

State-of-the-art (YOLOv4) 0.91 

Ours (YOLOv7X) 0.97 

 

 
(a) 

 
(b)  

Figure 4. Visual results on a test image for (a) YOLOv7X and (b) 

YOLOv4. 

TABLE II: TESTING RESULTS YOLOV4 AND YOLOV7X FOR PRECISION, 
RECALL, AND MAP ON THE TEST DATASET AT A THRESHOLD OF 0.5 

Model Precision Recall mAP @ 0.5 

State-of-the-art 
(YOLOv4) 

0.93 0.81 0.86 

Ours 
(YOLOv7X) 

0.93 0.92 0.95 

 

TABLE III: TESTING RESULTS OF YOLOV4 AND YOLOV7X FOR THE 

THREE DIFFERENT CATEGORIES AT A THRESHOLD OF 0.5 

Model No stopping No parking Parking 
allowed 

State-of-the-art 
(YOLOv4) 

0.85 0.90 0.85 

Ours  
(YOLOv7X) 

0.90 0.98 0.91 
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the same task in 25 milliseconds, making the latter a better 
candidate for real-time implementation for sign detection. 

Table III shows the mAP at 0.5 for the three different 
classes for both YOLO models. It is obvious that for all three 
categories of parking signs, YOLOv7X performs better than 
YOLOv4. In both models, the highest mAP belongs to the No 
Parking class. YOLOv7X had 98% accuracy and 
outperformed YOLOv4 by 8%. YOLOv7X achieved a mAPs 
of 90% for the No stopping class and 91% for the Parking 
allowed class, again exceeding YOLOv4’s performance. 
Overall, the results suggest that YOLOv7X significantly 
exceeds YOLOv4’s performance in the detection and 
classification task.  

Figure 4 shows the same frame of a scene processed by 
YOLOv7 (Figure 4 a) and YOLOv4 (Figre 4 b) for 
visualization purposes. We observe that YOLOv4 did not 
detect the signs, while YOLOv7X detects and classifies both 
signs with high confidence (0.84 and 0.94). Note that here we 
show only one frame, but YOLOv4 failed to detect the signs 
for the entire duration of this scene.  

Figure 5 shows a very rare image sample in our dataset, 
where there are 4 signs in the frame, whose visual quality is 
rather poor. It may be seen that despite that, YOLOv7X 
detected and classified all the signs correctly. On the other 
hand, we observe in Figure 6 that YOLOv4 only detected one 
of the four signs in the frame and failed to detect the rest of 
the signs. This proves that YOLOvX is more capable of 
detecting parking signs in images with poor visual quality. 

IV. CONCLUSION 

We proposed an innovative parking sign detection and 

classification scheme that is based on the YOLOv7X network 

architecture. The network was trained and tested on a custom 

dataset of almost 16000 frames that were extracted from 

videos captured by our team with a car camera in the streets 

of Vancouver, BC. We used a three-class strategy to classify 

our dataset and since the objects in our dataset were small and 

hard to detect, we chose the input image size to be 1280 by 

1280 pixels. 

     Performance evaluations have shown that the YOLOv7x 

model outperforms YOLOv4 in terms of both accuracy and 

detection and is much faster than YOLOv4. Additionally, 

YOLOv7X is capable of detecting and classifying small and 

low-quality signs (i.e., weather deteriorated, low light 

conditions) present in video frames. 

     In the future, we plan to expand our current dataset by 

adding more videos from different parts of the city and under 

different weather and light conditions. We will also extend our 

initial three-class strategy to more classes that will include 

time information and different municipality related 

restrictions and then develop a new method that can detect and 

classify parking signs according to all these classes.  
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