
Sequencing Intelligent Components through Releases as a Risk Reduction Strategy:
a Smart-city Example

Pablo Valenzuela-Toledo

Department of Computer Sciences and Informatics
University of La Frontera
Temuco - Chile 4811230

email: pablo.valenzuela@ufrontera.cl

Carlos Cares

Center of Studies in Software Engineering
University of La Frontera
Temuco - Chile 4811230

email: carlos.cares@ceisufro.cl

Abstract—In Component-Based Software Engineering, the pro-
cess of selecting software components is under several risk
factors. Traditionally, these have been identified or mitigated
with software project management techniques. However, the new
demand for intelligent systems has added complexity to the
process. Despite the success and technological advances of this
type of systems, their development in an environment ready for
production remains a challenge. There is a considerable number
of technical issues that limit their adoption, and their selection
determines the introduction of new risk factors, different from
traditional ones. In this paper, we present the following idea:
given a set of requirements for one component - intelligent
behaviour, for example - we propose to sequence and replace
different components through evolving releases as a risk reduction
technique, instead of choosing the option of only one “right”
component. Using a systematic mapping literature review, we
gather the main risks of intelligent components. Then, we present
a formalization of the risk-based component selection technique.
Finally, we offer an example to illustrate our approach using a
sequence of intelligent software components in the context of an
air pollution forecasting system.

Keywords–Intelligent components; Component Selection;
Component-Based Software Engineering; Risk Management.

I. INTRODUCTION
The Component-Based Software Engineering approach is

based on the idea that software systems can evolve by selecting
and aggregating appropriate software components [1]. Some of
the recognized advantages of this approach are: (1) faster de-
velopment, since assembling new applications through existing
components reduces development time; (2) easier to maintain,
since managing one component at a time makes maintenance
easier; (3) improved quality, since each component is tested
before releasing it; (4) easier to create applications variants
and upgrades, since changing or upgrading each component
separately is simpler; and (5) lower overall development cost,
since the development cost is reduced by handling or upgrading
information systems separately [2].

When a software-intensive system is evolving, the pro-
cess of deciding which component to use involves different
available sourcing options, such as internal development, out-
sourcing, buying a commercial component or adopting some
open source component [3]. Several factors have already been
identified, in order to select a specific component: size, cost,
maturity (years, versions), compatibility, and adherence to
standards, among many other nonfunctional requirements [3]–
[5].

Risk management is a classical area in Project Management
discipline covering not only projects but also programs and

portfolios [6]. Risk management implies to manage potential
events which would (negatively) impact long-term strategic
objectives and projects’ objectives, i.e., cost, time and scope.
In software engineering, risk management has been a topic
of growing relevance through time, and different risk fac-
tors have been identified, such as analysis, design, coding,
testing, planning, control, contracts, teams, clients, policies
and structure [7]. In relation to Component-Based Software
Engineering, the risk is moved from classical waterfall stages
and their management to component-based stages and their
management, i.e., to component seeking, selecting, and testing.

While the field of Component-Based Software Engineering
has identified ways to help select a software component
using prioritization factors, there are new considerations and
challenges to overcome due to the intelligence software era
[8]. This intelligence software era brings systems that are
known as systems that can automatically improve through
experience [9]. The successes of the artificial intelligence field
are visible, for example, in domains such as computer vision
(e.g., object recognition [10]), natural language processing
(e.g., information extraction [11]), and sound analysis (e.g.,
voice recognition [12]). Diverse applications became part of
products of big and famous companies, such as Facebook,
Google, and Apple, producing a closeness effect between
people and artificial intelligence which has brought a new set
of demands to software production.

Therefore, despite the success and technical advances in
intelligence systems, its development in a production-ready
setting still remains challenging. There is a lack of tools
and software engineering practices for building such systems,
especially if the company/organization does not have an expe-
rienced machine-learning research group and a data-oriented
supporting infrastructure [13]. For example, let us consider
the selection of a machine learning component to enable a
weather forecasting functionality. This component may include
specifications about hardware (e.g., Graphics Processing Unit
(GPU) models), platforms (e.g., machine learning, deep learn-
ing library dependencies), source code (e.g., prepossessing,
glue code), configuration (e.g., model features configuration),
training data (e.g., sample period), or model state (e.g., version
of training model) [14]. This set of attributes differs from
traditional prioritization factors, adding complexity to the
selection process, and therefore risks.

To address the challenges presented above, in this arti-
cle, we present an approach based on software components,
which allows managing the risk involved in selecting complex
software components, such as those that provide intelligent

6Copyright (c) IARIA, 2019. ISBN: 978-1-61208-730-6

SMART 2019 : The Eighth International Conference on Smart Cities, Systems, Devices and Technologies

behaviour. The contributions of this work are the following:
(1) we identify the intelligent component risks by conducting
a systematic mapping literature review; (2) we introduce a
formalization of the problem of risk in the process of software
components selection; (3) we present a selection sequence
technique, from low to high risk, with a growing scenario of
requirements; and (4) we illustrate the proposal by presenting
the case of a plan for implementing an air pollution forecasting
system as part of a Smart-city project.

The remainder of this paper is organized as follows. In Sec-
tion 2, we collect information for establishing the risky points
of intelligent components, by applying the systematic mapping
protocol. In Section 3, we present a general framework for
selecting a sequence of components in place of only one and
the constraints for this choice. In Section 4, we apply the
general proposal by showing a scenario of the selection of an
intelligent component that enables an air pollution forecasting
functionality. Finally, in Section 5, we conclude with benefits
and limitations.

II. OPEN ISSUES ON SELECTING AND ADAPTING
INTELLIGENT COMPONENTS

To investigate the risky points when developing, selecting
or adapting intelligent software components, we analyze the
state-of-the-art of related software engineering challenges. Our
goal was to understand what are the software engineering
challenges, how they have been addressed, as well as the
context where they occur. To achieve that, we perform a
systematic mapping review (following the guidelines of [15]
[16]).

Figure 1. Systematic mapping review process. Adapted from [16].

Figure 1 gives an overview of how we developed the study.
First, we formulated research questions keeping in mind the
problem of unknown challenges when developing intelligent
software components. Second, we searched for articles in
digital libraries. The search included the search keywords,
the temporal interval of papers and the type of bibliographic
source. Third, we defined and applied the inclusion and
exclusion criteria to select articles. Fourth, we described the
classification scheme built with the selected articles. Finally,
we ordered the selected articles and generated a systematic
map.

A. Research question definition
We defined the following main research question (RQ):

what are the software engineering challenges when developing,

selecting or adapting intelligent software components? In our
research scope, we considered answering this question by
reviewing studies that present analysis, reviews or case studies
that overview software engineering challenges related to the
development of intelligent software components.

B. Executing the search
We executed the search by intersecting and joining key-

words in the following search string: (‘machine learning’ OR
‘artificial intelligence’ OR ‘autonomous’ OR ‘deep learning’)
AND (‘systems’ OR ‘applications’ OR ‘components’) AND
(‘software engineering challenges’). We utilized four library
sources: (1) Science Direct [17]; (2) IEEE Digital Library
[18]; (3) ACM Digital Library [19]; and (4) Springer Link
[20]. Complementary, we also looked for articles in Scopus
bibliographic database [21] as a form of verification, and to
expand the search spectrum. In all cases, we looked for articles
between the years 2014 and 2019 (March). As a result, we
gathered a total of 615 articles.

C. Screening of articles
To screen and review the gathered articles, we defined

and applied inclusion and exclusion criteria. Our inclusion
criteria considered primary and secondary studies published
in chapters of books, journals and scientific conferences.
As exclusion criteria, we did not consider articles with: (1)
research context out of our scope; (2) a language other than
English used; (3) specific application domain (e.g., telecommu-
nication; energy, medicine, etc.); (4) duplicates and conference
proceedings summaries; and (5) no full article text available.
After applying the inclusion criteria, we selected a total of 9
relevant articles. Also, the exclusion criteria allow us to select a
total of 4 articles. In this phase, we also included a snowballing
article selection technique (following the guidelines of [15]).
This technique gave us a total of 5 new relevant articles.
We also decided to add 8 articles manually. These articles
come from relevant conferences, like The First Symposium on
Software Engineering for Machine Learning Applications [13]
and domain experts from Google. Finally, we got a total of 17
selected articles.

TABLE I. SUMMARY OF GATHERED ARTICLES BY CRITERIA
AND STAGE PART I.

ScienceDirect IEEE ACM
Initial search 14 4 8
Inclusion criteria 0 2 1
Exclusion criteria 0 1 1
Snowballing selection 0 1 0
Total after criteria 0 2 1
Manually added - - -
Final total - - -

A summary of gathered articles by criteria is available in
Table I and Table II (The data was divided in two tables for
readability).

D. Grouping the articles
Once we finished the previous phases, we defined a clas-

sification scheme based on three subjects related to software
engineering challenges: (1) Software Life Cycle Phase, which
concern the software life cycle phases involved. Here, we in-
cluded specification, development, verification and validation,
and evolution phases. Also, we included project management
as a way to categorized related project development issues;
(2) Proposals, to investigate how the challenges have been

7Copyright (c) IARIA, 2019. ISBN: 978-1-61208-730-6

SMART 2019 : The Eighth International Conference on Smart Cities, Systems, Devices and Technologies

addressed. That includes development approach, project man-
agement, adjustment, measurement strategy, tool development,
team diversity or no strategy; (3) Context, to investigate where
the challenges have happened. We considered the academy, big
industry (e.g., Google or Apple) or small industry (e.g., online
or startup companies).

TABLE II. SUMMARY OF GATHERED ARTICLES BY CRITERIA
AND STAGE PART II.

Springer Scopus Total
Initial search 45 544 615
Inclusion criteria 0 6 9
Exclusion criteria 0 2 4
Snowballing selection 0 4 5
Total after criteria 0 6 9
Manually added - - 8
Final total - - 17

E. Data extraction and mapping process
We completed the systematic mapping review by generat-

ing a summary study map (Figure 2). We were able to identify
three categories with associated papers: (1) development; (2)
evolution; and (3) project management. In each of these
categories, there exist software engineering challenges that we
summarize in Table III.

Figure 2. Summary study map.

The Development category includes the following software
engineering challenges (or open issues): (1) Experiment Man-
agement, to manage a large number of experiments performed
when identifying an optimal model. In this experimental pro-
cess, it is necessary to guarantee reproducible results [14] [22]
[23]; (2) Transparency of Machine Learning Models. Complex
models like large neural networks used in fields, for example,

computer vision or natural language processing are difficult to
explain, and thus, transparency is traded for accuracy [13] [14];
(3) Difficulties in estimating the results of intelligent software
components before they have been trained and tested [24] [25];
(4) Resource Limitation, concerning specific requirements of
distributed systems to manage large volumes of data, the
computational needs for extracting and transforming data,
training and evaluating a model, and serving the model in
production [14] [24]; (5) Testing, related to the need for tools
which allow test static data and production data, machine learn-
ing models and production-ready components [22] [24] [26];
(6) Data Processing, when working with distributed systems,
adds complexity in several dimensions. It requires additional
knowledge, time to operate the systems, management and
resources associated with hardware and software [14] [24];
and (7) Development Team, concerning how diverse a software
development team must be. This list covers different aspects
of developing an intelligent component [23] [27] [28].

The Evolution category includes: (1) Issues with Depen-
dencies, that is data, hardware, machine learning frameworks
or models dependencies [28] [29] [30]; (2) Hidden Feed-
back Loops; this phenomenon happens when the data adapt
the model and not backward, especially in production-ready
systems [14]; (3) Monitoring Deployed Systems that refers
to the need to maintain a deployed machine learning system
over time. Usually, teams fail to recognize the effort needed
[14] [23]; and (4) Glue Code and Supporting Systems that
refers to systems with a small part of the code belonging
to the intelligent component. Here, the rest is “glue code”
that interacts with supporting systems, and thus, the system
becomes hard to test [14] [31] [32].

TABLE III. OPEN ISSUES/SOFTWARE ENGINEERING CHALLENGES

Category Challenges / Open Issues

Development

Experiment Management
Transparency of Machine Learning Models
Difficulties to Estimate Results
Resource Limitation
Testing
Data Processing
Development Team

Evolution

Issues with Dependencies
Hidden Feedback Loops
Monitoring
Glue Code and Supporting Systems

Project Management

Effort Estimation
Privacy
Data Workflows

Finally, the Project Management category includes: (1)
Effort Estimation. When developing intelligent software com-
ponents, the goals might be unclear, and an expected-results
definition is challenging. Also, other properties like acceptable
performance definition are hard to set beforehand [28] [33]
[34]; (2) Privacy of the Knowledge of a System, that refers
to how to store the data across the weights of a machine
learning model. This information is hard to manage when
there is a lack of model understanding. It forces companiesto
have terms of service agreements and to use anonymized or
aggregated statistics of the user data [13] [14] [23]; and (3)
Data Workflows that required to handle the volume, variety,
and the velocity of a large amount of data [33] [35] [36].

The final list of software engineering challenges involves
a risk every time that there is a lack of adequate associated
techniques. However, to present our proposal, we formulate a
formalization in the next section.

8Copyright (c) IARIA, 2019. ISBN: 978-1-61208-730-6

SMART 2019 : The Eighth International Conference on Smart Cities, Systems, Devices and Technologies

III. SEQUENCING COMPONENTS AS RISK REDUCTION
STRATEGY

In this section, we present a theoretical point of view of
the problem of the selection of several components in place of
selecting only one. Regarding this topic, the main focus of the
literature is on how to select one component for a specific
set of requirements. Here, the methods and techniques for
decision making are qualitative approaches [5] [37] [38]. To the
best of our knowledge, there are no proposals considering the
redundancy of components for the same set of requirements,
and there are not proposals considering components’ risks.
In this context, we consider that most of the quality factors
are uncertain factors because the expected quality occurs in
the best case, once the component has been successfully
integrated. This perspective manages not only quality factors
but traditional uncertainties, such as total time and budget.

In this proposal, we keep one of the main assumptions
of other authors, that is, we decide what components to
select before the test and try cycle. Risk perspective accepts
that the uncertainty of a project is higher at the beginning
and diminishes as it progresses due to proactive planning
and pertinent decision-taking [6]. Therefore, the focus of the
proposal is on the worst high risks case scenario, i.e., at the
beginning of the project.

In the following, we present a set of definitions for building
a conceptual framework which enables the consideration of
risks as a manifestation of uncertainties associated with com-
ponents.

Definition 1: The nth-dimension Risk of Using a Compo-
nent c, as part of a software solution s, or simply RUC, is a
vector ~r cs = (r1, r2, ..., rn) where ri ∈ [0, 1] ⊆ IR.

Definition 2: The nth-dimension risk-evaluation of a set of
components C = {c1, c2, ..., cm} for a software solution s is
denoted as the relationship RCs ⊆ C × [0, 1]m:

RCs = {(c1, ~r c1s), (c2, ~r
c2
s), ..., (cm, ~r

cm
s)} (1)

where the second element ~r cis is the nth dimension RUC
corresponding to the component ci in the software solution s.

Definition 3: A risk-based prioritization function over a
set of components C = {c1, c2, ..., cm} is a function ρ :
[0, 1]n −→ [0, 1] ⊆ IR. The resulting value of ρ(~r cis) will
be called the total risk of a the component ci under ρ.

Definition 4: The functionality of a software component
respecting the set of requirements Req = {r1, r2, ..., rF } is
a vector ~f cReq = (f1, f2, ..., fk) where fi ∈ {0, 1}. It will be
said that the component c accomplishes the functionality fi iff
fi = 1. In contrast, it will be said that the component c does
not accomplish the functionality fi iff fi = 0.

Definition 5: The functionalities of two components c1 and
c2 respecting the set of requirements Req = {r1, r2, ..., rF }
are the same iff ~f c1Req = ~f c2Req and it will be said that c1 and
c2 have different functionality iff ~f c1Req 6= ~f c2Req .

Definition 6: Given two components c1 and c2, the set of
requirements Req = {r1, r2, ..., rF }, the functionality of c1 as
~f c1Req = (f1, f2, ..., fm) and the functionality of c2 as ~f c1Req =
(g1, g2, ..., gm) , then it will be said that c1 has less or equal
functionality than c2, denoted as ~f c1Req � ~f c2Req iff fk ≤ gk∀k.

Lemma 1: Given a set of components C, the binary re-
lation � for functionalities of components imposes a partial
order on C. Therefore, C is posed under �.

Definition 7: The functional impact of a RUC ~r c is a

function λ : [0, 1]n −→ {0, 1}k. The resulting value λ(~r c)
will be called the loss of functionality of ~r c. It will be said
that there is no loss of functionality iff: λ(~r c) = ~f c and it will
be said that there is a total loss of functionality iff λ(~r c) = ~0.

Definition 8: Given a component c, its RUC ~r c, its cor-
responding evaluation of its loss of functionality λ(~r c) and
ρ a risk-based prioritization function, then the probability of
occurrence of that loss of functionality will be ρ(~r c)λ(~r c).

Definition 9: A risk-appraised situation for a component
selection stage, as part of a component-based software pro-
cess for developing the software s, is a quintuple As =
<C,Req,Rsk, ρ, λ>, where, C is a non empty set of com-
ponents, Req is a non empty set of requirements, Rsk is a
particular nth-dimension risk-evaluation RCs , ρ is a risk-based
prioritization function over C, and λ is a functional impact
function applicable to risks in RCs .

Definition 10: A risk-appraised situation for a component
selection stage, as part of a component-based software process
As = <C,Req,Rsk, ρ, λ>, is called coherent iff

~f ciReq � ~f
cj
Req ⇒ ρ(~r cis) ≤ ρ(~r cjs) ∀ci, cj ∈ C, (2)

When this constraint is not satisfied, then it is called an
incoherent risk-appraised situation.

Lemma 2: Any risk-appraised situation
As =<C,Req,Rsk, ρ, λ>, having just one element in
C, is coherent.

The proof is trivial because there is only one element in C
and ρ is a function. Therefore, the total risk of the component
ci is equal to itself.

Definition 11: A set of components D is called dis-
posable by risk of a risk-appraised situation A′

s =
<C ∪ D,Req,Rsk, ρ, λ> iff A′

s is incoherent, As =
<C,Req,Rsk, ρ, λ> is coherent and both situations accom-
plish the condition of equal functionality, i.e.,⋃

ci∈C

~f ciReq =
⋃

ck∈C∪D

~f ckReq (3)

Lemma 3: Given an incoherent risk-appraised situation
As =<C,Req,Rsk, ρ, λ> then, by definition

∃ci, cd ∈ C ~f cdReq ≺ ~f ciReq (4)

and
ρ(~r cd) ≥ ρ(~r cd) (5)

then {cd} is disposable-by-risk of As.
Lemma 4: Given a coherent risk-appraised situation

As =<C,Req,Rsk, ρ, λ> and ∃ci, cd ∈ C
~f cdReq ≺ ~f ciReq (6)

and
ρ(~r cd) ≥ ρ(~r ci) (7)

then {cd} is disposable-by-risk of As.

IV. THE ARAUCANÍA DIGITAL SMART-CITY EXAMPLE
In order to illustrate our proposal, we present an exam-

ple using the Araucanı́a Digital Smart-city Project (ADSP)
context, that includes air pollution forecasting functionality.
The ADSP goal is to develop smart cities systems in the
region of La Araucana, Chile. The project is funded by the
Inter-American Development Bank (BID) and is executed by
industry and academy actors [39].

9Copyright (c) IARIA, 2019. ISBN: 978-1-61208-730-6

SMART 2019 : The Eighth International Conference on Smart Cities, Systems, Devices and Technologies

First, we define our risk vector, following Definition 1, that
considers the risk associated with intelligent components and
with traditional software development projects (we present a
scenario with already evaluated risks, and thus, we do not
review how the values were generated). The risks for the in-
telligent components are those already identified in Section II:
(1) Experiment Management (EM), p = 0.05; (2) Difficulties
to Estimate Results (DER), p = 0.1; (3) Development Team
(DT), p = 0.15; (4) Glue Code (GC), p = 0.15; and (5) Data
Workflows (DW), p = 0.05. We also include the following 2
risks related to traditional software development: (6) Budget
Limitations (BL), p = 0.15; and (7) Timeline Restriction (TR),
p = 0.15 [40].

Second, we define a set of software components that
provide air pollution forecasting functionality. Each component
considers an associated algorithm previously used in another
context for this purpose [41]. We name every component based
on the associated algorithm-name as follows: (1) Support Vec-
tor Machine (SVM); (2) Artificial Neural Networks (ANN);
(3) K-Means (KM); (4) K-Nearest Neighbors (KNN); and (5)
Regression Models (RM).

Third, we present a resume of the seven risks evaluation
related to the five intelligent software components (all men-
tioned above) (Table IV). Also, we set the values according to
the context that the software development team and the project
give us (we stand that we do not consider the methodology to
calculate the risk value, and thus, we assume that this example
does not represent a case study with appropriate empirical
rigour). Here, the team is one project manager, two senior
software developers, one junior data analyst, and one senior
software engineering scientist. It is crucial to notice that we
do not have a machine learning specialist in our team (this
context represents a particular case that may change with a
different team or a different project).

TABLE IV. RISK EVALUATION OF AN INTELLIGENT COMPONENTS SET

RC
s EM DER DT GC DW BL TR ρ

SVM 0.5 0.5 0.6 0.5 0.6 0.5 0.4 0.41
ANN 0.4 0.6 0.6 0.5 0.8 0.6 0.6 0.47
KM 0.3 0.4 0.4 0.5 0.6 0.4 0.3 0.47
KNN 0.3 0.4 0.4 0.6 0.6 0.4 0.3 0.34
RM 0.2 0.2 0.2 0.6 0.6 0.3 0.1 0.24

In order to evaluate how many software requirements
accomplish the functionalities of a set of software components,
we present a resume in Table V. The collection of software
requirements is defined as follows [26]: (1) Air Pollution Index
Forecasting (APF), i.e., the prediction of the future value of
the polluting particle; (2) Interpolation of the Current Pollution
value (ICP), i.e., constructing new data points within some
geographical areas; (3) Automatic Fail Identification (AFI),
i.e., automatic identification of “not a number”(NaNs) values
or infinities appearing in the model during the execution of
the system; (4) Editable Model (EM), that is, the compo-
nent supports hyper-parameters updating; and (5) Stale Model
Aware (SMA), that is, the model allows an automatic stale
identification.

In Table VI, we present the loss of functionality of compo-
nents due to the risks mentioned above. To do this, we use the
λ function on each functionality defined in the previous step.

Following the definitions, we have a risk-appraised situa-
tion as we describe in Definition 9. Additionally, there exists an
incoherent risk-appraised scenario because, for example, SVM

TABLE V. THE FUNCTIONALITY OF AN INTELLIGENT SOFTWARE
COMPONENT WITH RESPECT TO A SET OF REQUIREMENTS

~f c
Req APF CCD AFI EM SMA ρ

SVM 1 0 0 0 0 0.41
ANN 1 1 1 1 0 0.47
KM 0 1 0 1 0 0.47
KNN 1 1 0 1 0 0.34
RM 1 1 1 0 0 0.24

TABLE VI. LOSS OF FUNCTIONALITY OF COMPONENTS

λ λ(APF) λ(CCD) λ(AFI) λ(EM) λ(SMA) ρ
SVM 1 0 0 0 0 0.41
ANN 1 1 1 1 1 0.47
KM 0 1 0 1 0 0.47
KNN 1 1 0 1 0 0.34
RM 1 1 0 0 0 0.24

provides less functionality than RM, and its risk is higher than
RM. Therefore, SVM is risk disposable. Similarly, KNN offers
better functionality than KM, and its risk is lower than the risk
of KM. Therefore, KM is risk disposable too. Removing the
disposable components, we have the following situation that
� imposes to the component set:

~f RMReq � ~f ANNReq ; ~f KNNReq � ~f ANNReq (8)

Finally, we selected these three components for the fore-
casting functionalities (RM, KNN, ANN). The potential loss of
functionality due to risks, by using the logic operator “AND”,
gives us additional security on functionality AFI. To select
a sequence, we first select the less risky component to ensure
some functionality on early releases. But, due to the team size,
we may support only prototype development at the moment.
Therefore, we first plan RM and KNN then ANN. Note that
risks are going down from 0.47 to 0.24*0.34*0.47.

V. CONCLUSION
In this paper, we have presented a solution proposal to

the problem of intelligent software component selection. First,
we have conducted a systematic literature review that allows
us to identify a collection of risks that we classified into
three main categories: (1) Development; (2) Evolution; and
(3) Project Management. This review differs from previous
related ones because our goal has been found lack of software
engineering, instead of identifying a specific way to deploy
intelligent systems. Second, we have formalized our proposal
by presenting a conceptual framework and risk reduction strat-
egy to support the component selection process. To the best
of our knowledge, there is no work addressing the selection
problem in the way that we have been presenting it. Third,
we present the scenario of risks and how to select more than
one component instead of just the best one. In this way, the
advantage of this proposal is that it allows looking for not only
the optimal option but a set of available best ones. Fourth, we
have illustrated this scenario with a case of software planning
in the context of an air pollution forecasting functionality as
part of a Smart-city project. Fifth, as a limitation, while we
considered that our presented example illustrates our proposal,
under no circumstances we pretend to present this as a case
study or an empirical evaluation. Thus, our future work is:
(1) update our systematic literature review; (2) improve the
proposal by formulating the component selection problem as a
search based problem. With this approach, we expect to prove
the methodological framework supporting our idea; and (3)

10Copyright (c) IARIA, 2019. ISBN: 978-1-61208-730-6

SMART 2019 : The Eighth International Conference on Smart Cities, Systems, Devices and Technologies

conduct a study case, using the frame of The Araucanı́a Digital
Smart-city Project.

ACKNOWLEDGMENT
The authors would like to thank to ATNME16393CH

SMART CITY IN A BOX project 2019, Temuco, Chile.

REFERENCES
[1] G. Pour, “Component-based software development approach: new op-

portunities and challenges,” in Proceedings. Technology of Object-
Oriented Languages. TOOLS 26 (Cat. No. 98EX176). IEEE, 1998,
pp. 376–383.

[2] H.-I. Jeong, C.-S. Lee, C.-H. Kim, C. Park, and H.-C. Woo, “Design
of a software component bank for distribution,” Journal of systems
integration, vol. 10, no. 3, 2001, pp. 223–237.

[3] P. Chatzipetrou et al., “Component selection in software engineering-
which attributes are the most important in the decision process?” in 2018
44th Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). IEEE, 2018, pp. 198–205.

[4] M. Borg et al., “Selecting component sourcing options: A survey of
software engineerings broader make-or-buy decisions,” Information and
Software Technology, vol. 112, 2019, pp. 18–34.

[5] C. Alves, X. Franch, J. P. Carvallo, and A. Finkelstein, “Using goals
and quality models to support the matching analysis during cots selec-
tion,” in International Conference on COTS-Based Software Systems.
Springer, 2005, pp. 146–156.

[6] H. Sanchez, B. Robert, M. Bourgault, and R. Pellerin, “Risk manage-
ment applied to projects, programs, and portfolios,” International journal
of managing projects in Business, vol. 2, no. 1, 2009, pp. 14–35.

[7] H. R. Costa, M. d. O. Barros, and G. H. Travassos, “Evaluating software
project portfolio risks,” Journal of Systems and Software, vol. 80, no. 1,
2007, pp. 16–31.

[8] E. Woods, “Software architecture in a changing world,” IEEE Software,
vol. 33, no. 6, 2016, pp. 94–97.

[9] M. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives,
and prospects,” Science, vol. 349, no. 6245, 2015, pp. 255–260.

[10] B. Kehoe, A. Matsukawa, S. Candido, J. Kuffner, and K. Goldberg,
“Cloud-based robot grasping with the google object recognition engine,”
in 2013 IEEE International Conference on Robotics and Automation.
IEEE, 2013, pp. 4263–4270.

[11] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, “Very deep
convolutional networks for natural language processing,” arXiv preprint
arXiv:1606.01781, vol. 2, 2016, pp. 1107–116.

[12] J. R. Bellegarda, “Spoken language understanding for natural interac-
tion: The siri experience,” in Natural Interaction with Robots, Knowbots
and Smartphones. Springer, 2014, pp. 3–14.

[13] F. Khomh, B. Adams, J. Cheng, M. Fokaefs, and G. Antoniol, “Software
engineering for machine-learning applications: The road ahead,” IEEE
Software, vol. 35, no. 5, 2018, pp. 81–84.

[14] A. Arpteg, B. Brinne, L. Crnkovic-Friis, and J. Bosch, “Software
engineering challenges of deep learning,” in 2018 44th Euromicro Con-
ference on Software Engineering and Advanced Applications (SEAA).
IEEE, 2018, pp. 50–59.

[15] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” in Proceedings of the
18th international conference on evaluation and assessment in software
engineering, Citeseer. ACM, 2014, p. 38.

[16] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conduct-
ing systematic mapping studies in software engineering: An update,”
Information and Software Technology, vol. 64, 2015, pp. 1–18.

[17] “Science direct,” 2019, (Accessed on 13/06/2019). [Online]. Available:
https://www.sciencedirect.com/

[18] “Ieee digital library,” 2019, (Accessed on 13/06/2019). [Online].
Available: https://ieeexplore.ieee.org/Xplore/home.jsp

[19] “Acm digital library,” 2019, (Accessed on 13/06/2019). [Online].
Available: https://dl.acm.org/

[20] “Springer link,” 2019, (Accessed on 13/06/2019). [Online]. Available:
https://link.springer.com/

[21] “Scopus,” 2019, (Accessed on 13/06/2019). [Online]. Available:
https://www.scopus.com/home.uri

[22] E. Breck, S. Cai, E. Nielsen, M. Salib, and D. Sculley, “The ml
test score: A rubric for ml production readiness and technical debt
reduction,” in 2017 IEEE International Conference on Big Data (Big
Data). IEEE, 2017, pp. 1123–1132.

[23] J. Bosch, H. H. Olsson, and I. Crnkovic, “It takes three to tango:
Requirement, outcome/data, and ai driven development,” in Proceedings
of the International Workshop on Software-intensive Business: Start-
ups, Ecosystems and Platforms, vol. 2018, 2018, pp. 177–192.

[24] O. Hummel, H. Eichelberger, A. Giloj, D. Werle, and K. Schmid, “A
collection of software engineering challenges for big data system de-
velopment,” 2018 44th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), 2018, pp. 362–369.

[25] M. Felderer, B. Russo, and F. Auer, “On testing of data-intensive
software systems,” CoRR, vol. abs/1903.09413, 2019, in press.

[26] E. Breck, S. Cai, E. Nielsen, M. Salib, and D. Sculley, “Whats your
ml test score? a rubric for ml production systems.” IEEE, 2016, pp.
19–26.

[27] M. Kim, T. Zimmermann, R. DeLine, and A. Begel, “The emerging
role of data scientists on software development teams,” in Proceedings
of the 38th International Conference on Software Engineering. ACM,
2016, pp. 96–107.

[28] P. Bailis, K. Olukotun, C. Ré, and M. Zaharia, “Infrastructure for usable
machine learning: The stanford dawn project,” 2017.

[29] T. Menzies, C. Bird, T. Zimmermann, W. Schulte, and E. Kocaganeli,
“The inductive software engineering manifesto: principles for industrial
data mining,” in MALETS ’11. ACM, 2011, pp. 19–26.

[30] E. Breck, N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich, “Data
infrastructure for machine learning,” 2018, (Accessed on 13/06/2019).
[Online]. Available: http://www.sysml.cc/doc/9.pdf

[31] D. Morgenthaler, M. Gridnev, R. Sauciuc, and S. Bhansali, “Searching
for build debt: Experiences managing technical debt at google,” in 2012
Third International Workshop on Managing Technical Debt (MTD).
IEEE, 2012, pp. 1–6.

[32] K. M. Anderson, “Embrace the challenges: Software engineering in a
big data world,” 2015 IEEE/ACM 1st International Workshop on Big
Data Software Engineering, 2015, pp. 19–25.

[33] T. Menzies, C. Bird, T. Zimmermann, W. Schulte, E. Kocaganeli,
and T. Zimmermann, “The inductive software engineering manifesto:
principles for industrial data mining,” 2011, pp. 19–26.

[34] D. Sculley et al., “Machine learning: The high interest credit card of
technical debt,” in SE4ML: Software Engineering for Machine Learning
(NIPS 2014 Workshop), 2014.

[35] H. H. Olsson and J. Bosch, “Towards data-driven product development:
A multiple case study on post-deployment data usage in software-
intensive embedded systems,” in International Conference on Lean
Enterprise Software and Systems. Springer, 2013, pp. 152–164.

[36] G. Yenni et al., “Developing a modern data workflow for regularly
updated data,” in PLoS biology. Public Library of Science, 2019.

[37] R. Land, L. Blankers, M. Chaudron, and I. Crnković, “Cots selection
best practices in literature and in industry,” in International Conference
on Software Reuse. Springer, 2008, pp. 100–111.

[38] A. Mohamed, G. Ruhe, and A. Eberlein, “Cots selection: past, present,
and future,” in 14th Annual IEEE International Conference and Work-
shops on the Engineering of Computer-Based Systems (ECBS’07).
IEEE, 2007, pp. 103–114.

[39] “Ufro smart city,” 2019, (Accessed on 13/06/2019). [Online]. Available:
http://smartcity.ufro.cl/

[40] L. Wallace, M. Keil, and A. Rai, “Understanding software project risk:
a cluster analysis,” Information & management, vol. 42, no. 1, 2004,
pp. 115–125.

[41] C. Bellinger, M. S. M. Jabbar, O. R. Zaı̈ane, and A. R. Osornio-Vargas,
“A systematic review of data mining and machine learning for air
pollution epidemiology,” in BMC public health. BMC Public Health,
2017, p. 907.

11Copyright (c) IARIA, 2019. ISBN: 978-1-61208-730-6

SMART 2019 : The Eighth International Conference on Smart Cities, Systems, Devices and Technologies

