
Layered Modeling Approach for Distributed Situation Recognition
in Smart Environments

Mathias Mormul, Pascal Hirmer, Matthias Wieland, and Bernhard Mitschang

Institute of Parallel and Distributed Systems
University of Stuttgart, Universitätsstr. 38, D-70569, Germany

email: firstname.lastname@ipvs.uni-stuttgart.de

Abstract—In the last decade, multiple new paradigms changed
the way IT works. Cloud and Edge Computing led to new
approaches, such as Smart Factories and Smart Cities, but also
to new challenges and opportunities. One of those challenges is
the recognition of situations, e.g., machine failures. Especially in
the domain of industrial manufacturing, several requirements
have to be met in order to deliver a reliable and efficient
situation recognition. One of these requirements is distribution.
The main contribution of this paper is a layered modeling
approach for modeling situations to enable the distribution of
situation recognition based on distribution patterns that are
introduced in this paper.

Keywords–Industry 4.0; Edge Computing; Smart Factories;
Smart Homes; Situation Recognition; Distribution Pattern.

I. INTRODUCTION

In recent years, Industry 4.0 (I4.0), the digitization of the
manufacturing industry, emerges as a new paradigm enabling
approaches, such as Smart Factories [1]. In I4.0, devices
equipped with sensors and actuators communicate with each
other through uniform network addressing schemes to reach
common goals [2][3]. Oftentimes, this goal is situation recog-
nition, which enables monitoring of I4.0 environments and,
consequently, the timely reaction to occurring situations. For
example, the occurrence of a traffic accident in a Smart City,
recognized by sensors of a vehicle, could lead to an adaptation
of traffic lights to control the affected traffic.

Situations are recognized through the aggregation of con-
text data which, in I4.0, is usually provided by sensors. In
current approaches, such as the one we introduced in our
previous work [4][5], situations are recognized in a monolithic
IT infrastructure in the cloud. Consequently, involved context
data needs to be shipped to the processing infrastructure in
order to recognize situations. However, especially in domains
where efficiency is of vital importance, e.g., Smart Factories,
this approach is not feasible. In order to fulfill important
requirements, such as low network latency and fast response
times, the situation recognition needs to be conducted as close
to the context data sources as possible and, therefore, in a
distributed manner. Processing data close to the sources is
commonly known as Edge Computing [6].

In this paper, we introduce an approach to enable a
distributed situation recognition. By doing so, we introduce so-
called distribution patterns. These patterns represent common
ways to distribute the recognition of situations, i.e., exclusively
in the edge, in on-premise or off-premise cloud infrastructures,
or based on a hybrid approach. We provide a layered approach
for modeling and executing the situation recognition based

on these distribution patterns. Our approach builds on a set
of requirements we derive from a use case scenario in the
manufacturing domain. We validate the approach by applying it
to our previous non-distributed situation recognition [4][5] that
is based on the modeling and execution of so-called Situation
Templates [7].

The remainder of this paper is structured as follows: Sec-
tion II describes related work and foundational background. In
Section III, we introduce a motivating scenario, which is used
to derive requirements for our approach. In Section IV, we
present the main contribution of our paper. Finally, Section V
concludes the paper and gives an outlook to future work.

II. RELATED WORK AND BACKGROUND

In this section, we describe related work, as well as
foundational concepts of our previous work that are necessary
to comprehend our approach.

A. Related Work
In related work, approaches exist for distributed situation

recognition using ontologies, e.g., Fang et al. [8]. These
approaches do not achieve the latency required in real-time
critical scenarios, such as Industry 4.0 [1], due to time-
consuming reasoning. The goal of our approach is to offer
a low latency for distributed situation recognition in the range
of milliseconds. Many approaches using ontologies are in the
range of seconds to minutes, even without distribution [9][10].
Using machine learning leads to similar limitations regarding
latency [11].

In the area of distributed Complex Event Processing (CEP),
Schilling et al. [12] aim at integrating different CEP systems
using a common meta language. This allows to use different
CEP systems and integrate the results. This could be beneficial
for our distribution because we would not be limited to one
execution environment. However, in [12], the queries have to
be hand-written and distributed. This is difficult, especially
for domain experts, e.g., in Industry 4.0, who do not have
computer science knowledge. In our approach, we provide an
abstraction by Situation Templates that can be modeled using a
graphical user interface. Furthermore, the users are supported
in splitting up the template and in the distribution decision.
Other approaches in distributed CEP, e.g., by Schultz-Moller
et al. [13], follow the concept of automatic query rewriting.
Here, CEP queries are split up using automated rewriting and
are distributed on different operators based on a cost model,
which is mostly based on CPU usage in the different nodes. In
our approach, we want to support the user to select the desired

47Copyright (c) IARIA, 2018. ISBN: 978-1-61208-653-8

SMART 2018 : The Seventh International Conference on Smart Cities, Systems, Devices and Technologies

Context Data
Sources

Transport Material Machines Production

Situation Recognition (e.g., CEP)Situation
Template
Modeling

Situation
expert

Situation object

defines

tool: 71%

v

material: 36

<10

Machine critical

Context Node

Condition Node

Operation Node

Situation Node

1
2

3

ObjectID: Milling_Machine_X1

Occurred: true

Timestamp: 1416489737

Context: [materialSensor: 36,

toolSensor: 71%]

Quality: 95%

Machine critical

>90%

4

Situation
Template

Situation Model

Figure 1. Previous approach for situation recognition

distribution type. Since there are many aspects, such as data
protection or security, that play a role in distributing the CEP
queries correctly, this only can be known by a responsible user.

Furthermore, approaches exist that enable a massive dis-
tribution of sensors, e.g., by Laerhoven and Gellersen [14]
in cloths, to detect activities of the person wearing the cloth.
This is similar to detecting the situation in the edge, but there
is no concept presented in [14] to integrate the activities with
other activities from different edges or create a global situation
involving different locations.

B. Background
In this section, we describe our previous work. Our first

approach for situation recognition, this paper builds on, is
depicted in Figure 1. This approach is a result of the issues of
related work, as discussed in the previous section.

An important fundamental concept are Situation Templates
(ST), introduced by Häussermann et al. [7]. We adapted the
STs in [5] to model and recognize situations. Situation Tem-
plates (see Figure 1 on the buttom left) consist of context, con-
dition and operation nodes, which are used to model specific
situations. Context nodes describe the input for the situation
recognition, i.e., the context data, based on the definition of
Dey et al. [15]. Context nodes are connected to condition
nodes, which define the conditions that have to apply for a
situation to be valid. Operation nodes combine condition and
operation nodes and represent the logical operators AND, OR,
or XOR. Operation nodes are used to aggregate all condition
nodes of the ST into a single node, the situation node.

After modeling of a ST (Figure 1, Step 1), we developed a
transformation into an executable representation (not depicted)
was realized using CEP or light-weight execution languages,
such as Node-RED. The advantage of this transformation is
that it provides a flexible means to recognize situations. These
transformations can be found in [16][17]. Consequently, we

are not limited to specific engines or data formats. Once the
transformation is done, the executable Situation Template is
handed over to the corresponding execution engine.

On execution (Figure 1, Step 2), context data originating
from the context sources is validated against the conditions
defined by the Situation Template, for example, through pattern
recognition in CEP. On each validation, we create a so-called
situation object [18], defining whether the situation occurred
and containing the involved context data (Figure 1, Step 3).
We created a Situation Model [18](Figure 1, Step 4) to define
the attributes of those situation objects. This leads to a better
understanding of how context data led to the situation.

This previous approach for situation recognition works
well, however, there are still some limitations this paper aims
to solve. First, the current approach was built to monitor single
things (e.g., devices). However, as the complexity of nowadays
IT infrastructure arises, means need to be enabled to monitor
more than one thing using the introduced Situation Templates.
Furthermore, currently, the STs are executed in a monolithic
manner because in former scenarios, distribution was not
necessary. In current approaches, e.g., involving Industrie 4.0,
however, this is necessary. In this paper, we aim for enhancing
our approach in order to be more fitting to recent scenarios.

III. SCENARIO AND REQUIREMENTS

In this section, we introduce a practical motivating scenario
from the I4.0 domain, which is used throughout the paper to
explain our approach. In the scenario, depicted in Figure 2,
a specific part of the supply chain of a production company
should be monitored. As depicted, there are several entities
involved: (i) production machines, assembling products based
on parts, and (ii) trucks, delivering the parts to be assembled.
The monitoring should detect critical situations that could
occur, for example, the failure of at least one of the machines,
or a delivery delay of parts, e.g., caused by issues with

48Copyright (c) IARIA, 2018. ISBN: 978-1-61208-653-8

SMART 2018 : The Seventh International Conference on Smart Cities, Systems, Devices and Technologies

Merging of different departments

LogisticsProduction

Production Line
Situation

Machine 1 Machine 2 Truck

Transport
Situation

Supply Chain
Situation

data input

Legend:

Situation Template

Deployment Location

Figure 2. Motivating scenario for distributed situation recognition

trucks or with the supplier. Situations that could occur are: (i)
Production Line Situation, indicating that one of the production
machines is in an erroneous state, (ii) Transport Situation,
indicating a problem with the truck, and (iii) Supply Chain
Situation, indicating a problem with either the production line
or the truck.

When applying our previous approach, described in
Section II, to this scenario, new requirements arise that need
to be coped with. We divide these requirements into ones
that concern the modeling of STs and ones that concern
the execution of the situation recognition. We derived 8
requirements R1 to R7 for this scenario.

Modeling Requirements
Three requirements focus on the modeling of the situation
recognition using STs.

• R1 - More powerful Situation Templates: With our
previous approach (cf. Section II-B), single machines
can be monitored in an efficient way as evaluated
in [5], which was sufficient for previous scenarios.
However, in recent scenarios involving Industry 4.0,
the requirements are increasing. In our motivating sce-
nario, it is important to model dependencies between
multiple entities within a single ST, e.g., to recognize
the Production Line Situation.

• R2 - Low modeling complexity: In our previous
approach, modeling STs involving a lot of context data
has led to a cumbersome task and, consequently, to a
high complexity and error-prone modeling. To cope
with this issue, a new modeling approach is required
that enables the reutilization of already existing STs
to lower the modeling complexity of new STs.

• R3 - Domain-independence: A consequence of the
issue described in R2 is domain-dependence. Large
STs usually consist of a wide range of context data
sources, e.g., Trucks or the Production Line of our
scenario. However, these context data sources require
domain experts of these specific areas. Consequently,
STs need to be modeled by these experts together.
This leads to high costs due to the communica-
tion overhead. Hence, our goal is to enable domain-
independence for ST modeling.

Execution Requirements
• R4 - Low latency: In many domains, latency plays

a crucial role. Especially in Smart Factory environ-
ments, the industrial automation layer has strong re-
quirements regarding end-to-end latency up to 1 ms or
even lower [19]. Therefore, the execution of the situa-
tion recognition needs to adapt to those requirements,
so that critical situations like machine failures can be
recognized in a timely manner.

• R5 - Low network traffic: In modern scenarios,
large amounts of data are produced that need to be
stored and processed in order to recognize situa-
tions. For example, an autonomous car produces about
35 GB/hour of data [20]. In comparison, Budomo
et al. [21] conducted a drive test and recorded a
maximum and minimum upload speed of 30Mbps
(13.5 GB/hour) and 3.5Mbps (1.58 GB/hour), re-
spectively, using the current mobile communication
standard LTE-A. Therefore, transferring all data of an
autonomous car to the cloud is currently impossible.
Consequently, reducing the network traffic is an im-
portant issue when recognizing situations.

• R6 - Data security & privacy: Especially the pro-
cessing of company data needs to be secure and,
furthermore, privacy needs to be ensured. However,
especially when processing data in the Public Cloud,
companies need to trust the Cloud providers that
they provide the security they require. Alternatively,
companies can keep their data close, i.e., in a trusted
environment.

• R7 - Cross-company situation recognition: Modern
products and its components are rarely built com-
pletely by one company. Therefore, most actual sce-
narios are very complex, involve multiple companies,
and require a cross-company situation recognition.
Our motivating scenario in Figure 2 can be regarded as
such an example, in which a manufacturing company
cooperates with a logistics company. For example, a
delayed delivery caused by a failure of the truck must
be communicated to the manufacturing company. Con-
sequently, our situation recognition approach needs to
enable a cross-company situation recognition.

IV. DISTRIBUTION OF SITUATION RECOGNITION

In our previous work, we already solved challenges re-
garding sensor registration and management [22], efficient
solutions for a situation recognition [17], and the management
of recognized situation [18]. Now, we concentrate on extending
our previous approach by introducing a distribution of the sit-
uation recognition to fulfill the above-mentioned requirements
R1-R7. For this, we first present (i) the modeling improve-
ments for our approach to support the distribution we aim
for. On this basis, we present (ii) the execution improvements
to enable the distribution based on three distribution patterns
including a decision support for each of those patterns.

The distributed situation recognition was implemented
based on the existing prototype of our previous work, intro-
duced in [17][18] by following adaptations: (i) the modeling
for STs was extended, (ii) the transformation was enhanced to
accept multiple things, and (iii) the communication between
the distributed locations is enabled by messaging systems.

49Copyright (c) IARIA, 2018. ISBN: 978-1-61208-653-8

SMART 2018 : The Seventh International Conference on Smart Cities, Systems, Devices and Technologies

A. Modeling Improvements
In the following, we present the improvements regard-

ing the modeling of STs to fulfill the requirements R1-R3.
The extension of the STs, i.e. its schema, comprises (i) the
modeling of multiple things within a single ST, and (ii) a
layered modeling by reutilizing already modeled STs. These
extensions are depicted in Figure 3. Requirement R1 describes
the need for the modeling of more powerful situations, e.g.,
Production Line critical. However, a production line itself does
not contain any sensors but rather describes the coherence
and arrangement of multiple machines. Therefore, to model a
situation describing the production line, we need to model all
machines of the production line into a single ST. By extending
the Situation Template Schema to allow the modeling of
multiple things, therefore, we fulfill requirement R1.

It is obvious that from a certain amount of things in a single
ST and each thing having multiple sensors, the complexity of
modeling such a ST is becoming a problem. An excessive
complexity restricts the usability of our modeling approach,
hence, the reduction of the modeling complexity is required
(cf. R2). To cope with the increasing complexity of STs, we
introduce the layered modeling approach. Instead of modeling
everything within a single ST, we use situations as context
input for further situation recognition. Thereby, we implicitly
reuse already modeled STs. These situations can be divided
into three classes: local situations, hybrid situations, and
global situations. This classification is based on the context
input of the respective situations and describes the hierarchy
of situations. Local situations only receive context input by one
or multiple things. Hybrid situations receive at least one local
situation as input and context input of at least one thing. Global
situations receive at least two situations, local or/and hybrid,
as input. An equivalent modeling of the situation Production
Line critical using the layered modeling approach is shown in
Figure 3 (right side). Based on this comparison, we show the
benefits of this approach:

• Reusability: By using situations as input, we reutilize
existing STs. When modeling a global situation, we
only need to model the relation between the already
modeled local/hybrid situations similar to putting to-
gether building blocks. A further advantage is that the
local/hybrid STs possibly were already used and tested
for correctness, which lowers the error-proneness for
modeling global situations.

• Reduce complexity: The reusability directly leads to
less complex STs, since the modeling is based on the
Divide and Conquer paradigm. By using the layered
modeling approach, we fulfill the requirement R2.

• Distribution: Since we do not have one single and
complex ST, but instead, multiple smaller ones, we
already have a beneficial starting point for the distri-
bution of the situation recognition as we can simply
execute the different STs at different locations.

• Support for specific domains: Having multiple things
within a single ST could lead to the problem that
knowledge from different domains is required. For
example, motivating scenario contains three domains -
manufacturing, logistics and their dependencies. Using
the layered modeling approach, different domains can
model STs independently. Requirement R3 is fulfilled.

As a result, by introducing an extended Situation Template
Schema to enable the modeling of multiple things within a
single ST and the layered modeling approach, we fulfill all
modeling requirements R1-R3.

B. Execution Improvements
The modeling improvements we presented in the last

section serve as the foundation for the distribution of the
situation recognition. As mentioned above, in our previous
approach, the situation recognition was executed centralized in
the cloud. Hence, all context data was sent to this cloud and
was used as input for the situation recognition. However, lately,
the term Edge Computing gains more and more attention. Shi
et al. [6] define the edge as ”any computing and network
resources along the path between data sources and cloud data
centers”. Therefore, in our context, Edge Computing refers to
the processing of context data close to the data sources.

By introducing Edge Computing to our approach, a distri-
bution of the situation recognition to the cloud and the edge
can be performed. In the scenario of Figure 2, the distribution
of the situation recognition seems obvious. Using the layered
modeling approach, we can model the local situations Pro-
duction Line Situation and Transport Situation and the global
situation Supply Chain Situation. The situation recognition for
the local situation is executed at the edge, i.e., locally in the
factory or truck, respectively. The global situation is executed
in the cloud and receives the local situations as input. However,
based on the execution requirements R4-R7, this distribution
might not always be ideal.

Therefore, in the following, we present the execution
improvements resulting from the distribution of the situation
recognition. First, we present the concept of context stripping
and its benefits. Afterwards, we introduce three distribution
patterns and a decision support for choosing the most suitable
distribution pattern for a certain scenario.

1) Context Stripping: As presented in Section II-B, when a
situation recognition is executed, situation objects are created
that are defined by the Situation Model [18]. This situation
object contains all context data that were used for the eval-
uation of this specific situation. In [18], we approximated
the data volume of situation objects based on the amount
of used context data. The results showed that the appended
context data presents the majority of the data size of a situation
object. Now, when using the layered modeling approach, we
may use local situations that we recognized at the edge as
input for the recognition of global situations in the cloud.
That causes us to send all context data to the cloud again
within the situation object. However, based on the scenario,
we might not be interested in the context data of a situation
object but only if the local situation occurred or not, so we
can evaluate the global situation. Therefore, we introduce the
concept of context stripping. By using context stripping, the
context used for the situation recognition is not sent within
the situation object. It only contains the most vital data for a
further situation recognition in the cloud. Therefore, content-
wise, a local situation only contains a boolean value, which
describes if the local situation occurred or not and the required
meta data for further processing.

This leads to a trade-off the user has to decide based on
his requirements. By using context stripping, the data size of a
situation object can be strongly reduced. However, the context

50Copyright (c) IARIA, 2018. ISBN: 978-1-61208-653-8

SMART 2018 : The Seventh International Conference on Smart Cities, Systems, Devices and Technologies

Local situation:
Machine 1 critical

Local situation:
Machine 2 critical

Global situation:
Production Line critical

Status critical Status critical

Situations act as context input

v

tool: 71%

&

Production Line critical

&

Machine1 Machine2

Multiple Things in one Situation Situation Template

Context Node

Condition Node

Operation Node

Situation Node

Thing / Local Situations

Situation
Template

Situation
Template

material: 22 material: 12tool: 56%

>90% >90%<10 <10

v

==true ==true

Figure 3. Modeling improvements for STs (legend see Figure 4)

data that led to the evaluation of a specific situation object is
discarded after processing. In our first approach, we explicitly
wanted to store the context data within situation objects for
a detailed historization of situations. This historization, for
example, can be used afterwards for a root cause analysis of
detected situations based on the involved context data.

2) Distribution Patterns: As mentioned above, the distribu-
tion of the situation recognition is dependent on the execution
requirements R4-R7. Therefore, a general solution for the
distribution of the situation recognition is not possible. Instead,
we introduce three different distribution patterns, depicted in
Figure 4 based on the scenario shown in Figure 2. The Type
I distribution pattern describes our previous approach. All
context data, i.e., in this scenario, context data from a truck and
two machines, is sent to the cloud. The situation recognition
is executed in the cloud and all context data is available. In
contrast, the Type II pattern describes the execution of the
situation recognition at the edge, close to the data sources.
In this case, it is often impossible to gather all context data
from all sources, e.g., from the truck, since it is not part of the
local network of the factory, where the machines are located.
Therefore, only parts of the situation recognition may be
executed at the edge. The Type III pattern is a hybrid solution
based on both the Type I and Type II pattern and enables the
execution of situation recognition at the edge, which results in
local situations (i.e., Production Line and Transport) and the
execution of situation recognition in the cloud, where the local
situations are used to evaluate the global situation.

In the following, the different distribution patterns are
described in more detail with regard to the execution require-
ments R4-R7. Each pattern comprises advantages for certain
use cases and might not fulfill every execution requirement.
Additionally, the presented distribution patterns are applicable
to the distribution of data processing in general.

3) Type-I: Cloud-only (Figure 4, left): Despite many ad-
vantages of Edge Computing, the Type-I distribution pattern
still is a viable option. Introducing Edge Computing is no

trivial task and comprises multiple challenges [6]. Companies
with low IT experience or no IT department benefit from
outsourcing IT infrastructure and expertise to third-party cloud
providers. This oftentimes is the case for SMEs, which then
can solely focus on their products and the pay-as-you-go model
provides a cost-effective and scalable infrastructure.

• R4 - Low latency: Currently, when using an off-
premise cloud, the requirement of 1 ms is already
violated by the network latency itself. Therefore, re-
quirement R4 cannot be fulfilled.

• R5 - Low network traffic: Since all context data
must be sent to the cloud first, network traffic cannot
be reduced. Requirement R5 is not fulfilled.

• R6 - Data security & privacy: Since all context data
is sent to the cloud, new security risks are introduced.
Furthermore, company policies might prohibit sending
sensitive or personal context data to the cloud. There-
fore, requirement R6 is not fulfilled.

• R7 - Cross company situation recognition: Since all
data is available in the cloud, companies can work to-
gether to execute a collaborative situation recognition.
Requirement R7 is fulfilled.

As shown, the Type-I pattern does not fulfill most require-
ments. Still, in non-critical scenarios where high latency is
acceptable, the network traffic is low or fluctuating and the data
is allowed to be sent to the cloud by the companies’ policies or
government regulations, the Type-I pattern is a sensible option.

4) Type-II: Edge-only (Figure 4, middle): In comparison,
the Type-II distribution pattern describes the execution of the
whole situation recognition at the edge. As already mentioned,
this is only possible if all context data is available at the edge.
Therefore, the situation recognition of local situations is best-
suited for an edge-only execution.

• R4 - Low latency: Yi et al. [23] show that latency can
be reduced by 82% by moving an application to the
edge of the network. As the situation recognition is

51Copyright (c) IARIA, 2018. ISBN: 978-1-61208-653-8

SMART 2018 : The Seventh International Conference on Smart Cities, Systems, Devices and Technologies

Cloud

Logistics
Edge

Production
Edge

Production
Egde

Cloud

Type I: Cloud-only Type III: HybridType II: Edge-only

Context data input

Legend:

Transport
Situation

Supply Chain
Situation Situation flow

Machine
Situation

Geographical distinction

Situation Template

Deployment Location

Machine
Situation

Machine
Situation

Machine
Situation

Production
Line Situation

Transport
Situation

Machine
Situation

Machine
Situation

Production
Line Situation

Production
Line Situation

Supply Chain
Situation

Figure 4. Distribution patterns

executed as close as possible to the data sources the
requirement R4 is fulfilled. With an execution time
of 3ms for our situation recognition [17], the overall
latency is kept comparably low.

• R5 - Low network traffic: No context data is sent
to the cloud, therefore, network traffic stays low and
requirement R5 is fulfilled.

• R6 - Data security & privacy: One of the main
concerns regarding the adoption of Cloud Computing
still is security, especially in companies with few expe-
rience with Cloud Computing. Security and privacy of
data is increased, since all context data and situations
remain at the edge, i.e., a local network controlled by
its company. Requirement R6 is fulfilled.

• R7 - Cross company situation recognition: In
general, the data sources of different companies are
geographically distributed and not in the same local
network. Therefore, a cross company situation recog-
nition is not possible. Requirement R7 is not fulfilled.

Most requirements are fulfilled. However, more complex
scenarios (cf. Figure 2) cannot be mapped to this pattern
because of geographically distributed data sources. Therefore,
the Type-II distribution pattern is best suited for company-
internal situation recognition that fulfills critical requirements
like latency and security. Especially in mobile environments,
e.g., an autonomous truck, with high-volume data the Type-II
pattern is a good option.

5) Type-III: Hybrid (Figure 4, right): Neither a Type-I nor
a Type-II distribution pattern presents a viable option for our
motivating scenario, since the truck produces too much data
for a cloud-only solution and the geographical distribution of
the data sources prevents an edge-only solution. Therefore, in

the Type-III distribution pattern, the situation recognition is
distributed to both the cloud and the edge. This leads to the
recognition of local situations at the edge and global situations
in the cloud and their advantages.

• R4 - Low latency: The latency for local situations
is reduced as described in Type-II. However, global
situations are evaluated in the cloud and the latency
is as described in Type-I. Therefore, the requirement
R4 is fulfilled only for local situations.

• R5 - Low network traffic: As in Type-II, network
traffic can be saved by shifting the situation recog-
nition to the edge. The situation objects of the local
situations must be sent to the cloud for the evaluation
of global situations, thereby increasing network traffic.
However, by using context stripping, the data size
of situation objects can be massively reduced and
still enable further processing of global situations.
Therefore, requirement R5 is fulfilled.

• R6 - Data security & privacy: Security and privacy
of local situations match the Type-II pattern. Again,
when using context stripping for local situations, we
support complex scenarios and do not have to send
sensitive context data within situation objects to the
cloud. Therefore, R6 is fulfilled.

• R7 - Cross company situation recognition: As in the
Type-I distribution pattern, a collaborative situation
recognition is possible. However, a big advantage is
gained by using context stripping. Possibly sensitive
context data of each company remains at their respec-
tive edge. Only context-stripped local situations are
sent to the cloud for the collaborative evaluation of the
global situation. Therefore, requirement R8 is fulfilled.

52Copyright (c) IARIA, 2018. ISBN: 978-1-61208-653-8

SMART 2018 : The Seventh International Conference on Smart Cities, Systems, Devices and Technologies

TABLE I. FULFILLMENT OF EXECUTION REQUIREMENTS BY THE
DISTRIBUTION PATTERNS

R4 R5 R6 R7

Type-I: Cloud-only X X X X
Type-II: Edge-only X X X X
Type-III: Hybrid X X X X

Except reducing the latency for the evaluation of global sit-
uations, all requirements are fulfilled by this hybrid approach.
Especially the usage of context stripping presents multiple
advantages when transferring local situations to the cloud.
The Type-III distribution pattern is best-suited for complex
scenarios with multiple data sources that require a fast reaction
to local situations and a centralized situation recognition of
global situations without increasing the network traffic. Mul-
tiple companies can collaborate without sharing sensitive data
or infringing government regulation.

Table I summarizes the analysis of the different distribution
patterns. As shown, the Type-III hybrid approach fulfills all
execution requirements.

V. SUMMARY AND FUTURE WORK

In this paper, we present an approach for distributed
situation recognition. To support the distribution, we extend
the Situation Template Schema so that multiple things and
situations can be used for context input using a layered mod-
eling approach. Furthermore, we present the concept of context
stripping to reduce network traffic by removing the associated
context of situation objects. We examine three distribution
patterns based on execution requirements that are important
for a situation recognition in complex environments.

In future work, we intend to create a sophisticated cost
model, since choosing a suitable distribution pattern is very
use-case dependent. This way, users can receive a more
detailed decision support based on their specific properties
and requirements, which can lead to a faster adoption of new
technologies like Edge Computing.

Acknowledgment This work is partially funded by the
BMWi project IC4F (01MA17008G).

REFERENCES

[1] D. Lucke, C. Constantinescu, and E. Westkämper, Manufacturing Sys-
tems and Technologies for the New Frontier: The 41st CIRP Conference
on Manufacturing Systems May 26–28, 2008, Tokyo, Japan. London:
Springer London, 2008, ch. Smart Factory - A Step towards the Next
Generation of Manufacturing, pp. 115–118.

[2] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer Networks, vol. 54, no. 15, 2010, pp. 2787 – 2805.

[3] J. S. He, S. Ji, and P. O. Bobbie, “Internet of things (iot)-based learning
framework to facilitate stem undergraduate education,” in Proceedings
of the SouthEast Conference. ACM, 2017, pp. 88–94.

[4] M. Wieland, H. Schwarz, U. Breitenbücher, and F. Leymann, “To-
wards situation-aware adaptive workflows: SitOPT – A general purpose
situation-aware workflow management system,” in Pervasive Computing
and Communication Workshops (PerCom Workshops). IEEE, 2015,
pp. 32–37.

[5] P. Hirmer, M. Wieland, H. Schwarz, B. Mitschang, U. Breitenbücher,
S. G. Sáez, and F. Leymann, “Situation recognition and handling
based on executing situation templates and situation-aware workflows,”
Computing, 10 2016, pp. 1–19.

[6] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, 2016,
pp. 637–646.

[7] K. Häussermann, C. Hubig, P. Levi, F. Leymann, O. Simoneit,
M. Wieland, and O. Zweigle, “Understanding and designing situation-
aware mobile and ubiquitous computing systems,” in Proc. of intern.
Conf. on Mobile, Ubiquitous and Pervasive Computing. Citeseer, 2010,
pp. 329–339.

[8] Q. Fang, Y. Zhao, G. Yang, and W. Zheng, Scalable Distributed
Ontology Reasoning Using DHT-Based Partitioning. Springer Berlin
Heidelberg, 2008, pp. 91–105.

[9] X. Wang, D. Q. Zhang, T. Gu, and H. Pung, “Ontology based context
modeling and reasoning using OWL,” in Pervasive Computing and
Communications Workshops, 2004. Proceedings of the Second IEEE
Annual Conference on, 2004.

[10] W. Dargie, J. Mendez, C. Mobius, K. Rybina, V. Thost, A.-Y. Turhan
et al., “Situation recognition for service management systems using
OWL 2 reasoners,” in Pervasive Computing and Communications Work-
shops (PERCOM Workshops), 2013 IEEE International Conference on.
IEEE, 2013, pp. 31–36.

[11] J. Attard, S. Scerri, I. Rivera, and S. Handschuh, “Ontology-based
situation recognition for context-aware systems,” in Proceedings of the
9th International Conference on Semantic Systems. ACM, 2013, pp.
113–120.

[12] B. Schilling, B. Koldehofe, U. Pletat, and K. Rothermel, “Distributed
heterogeneous event processing: Enhancing scalability and interoper-
ability of cep in an industrial context,” in Proceedings of the Fourth
ACM International Conference on Distributed Event-Based Systems.
ACM, 2010, pp. 150–159.

[13] N. P. Schultz-Møller, M. Migliavacca, and P. Pietzuch, “Distributed
complex event processing with query rewriting,” in Proceedings of
the Third ACM International Conference on Distributed Event-Based
Systems, ser. DEBS ’09. New York, NY, USA: ACM, 2009, pp. 4:1–
4:12. [Online]. Available: http://doi.acm.org/10.1145/1619258.1619264

[14] K. V. Laerhoven and H. W. Gellersen, “Spine versus porcupine: a study
in distributed wearable activity recognition,” in Eighth International
Symposium on Wearable Computers, vol. 1, Oct 2004, pp. 142–149.

[15] A. K. Dey, “Understanding and using context,” Personal and ubiquitous
computing, vol. 5, no. 1, 2001, pp. 4–7.

[16] P. Hirmer, M. Wieland, H. Schwarz, B. Mitschang, U. Breitenbücher,
and F. Leymann, “SitRS - A Situation Recognition Service based on
Modeling and Executing Situation Templates,” in Proceedings of the
9th Symposium and Summer School On Service-Oriented Computing,
2015, Konferenz-Beitrag, pp. 113–127.

[17] A. C. Franco da Silva, P. Hirmer, M. Wieland, and B. Mitschang,
“SitRS XT-Towards Near Real Time Situation Recognition,” Journal
of Information and Data Management, 2016.

[18] M. Mormul, P. Hirmer, M. Wieland, and B. Mitschang, “Situation model
as interface between situation recognition and situation-aware appli-
cations,” Computer Science - Research and Development, November
2016, pp. 1–12.

[19] O. N. Yilmaz, Y.-P. E. Wang, N. A. Johansson, N. Brahmi, S. A.
Ashraf, and J. Sachs, “Analysis of ultra-reliable and low-latency 5g
communication for a factory automation use case,” in Communication
Workshop (ICCW), 2015 IEEE International Conference on. IEEE,
2015, pp. 1190–1195.

[20] O. Moll, A. Zalewski, S. Pillai, S. Madden, M. Stonebraker, and
V. Gadepally, “Exploring big volume sensor data with vroom,” Pro-
ceedings of the VLDB Endowment, vol. 10, no. 12, 2017.

[21] J. Budomo, I. Ahmad, D. Habibi, and E. Dines, “4g lte-a systems at
vehicular speeds: Performance evaluation,” in Information Networking
(ICOIN), 2017 International Conference on. IEEE, 2017, pp. 321–326.

[22] P. Hirmer, M. Wieland, U. Breitenbücher, and B. Mitschang, “Auto-
mated Sensor Registration, Binding and Sensor Data Provisioning,” in
CAiSE Forum, 2016.

[23] S. Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and appli-
cations,” in Hot Topics in Web Systems and Technologies (HotWeb),
2015 Third IEEE Workshop on. IEEE, 2015, pp. 73–78.

All links were last followed on May 22.

53Copyright (c) IARIA, 2018. ISBN: 978-1-61208-653-8

SMART 2018 : The Seventh International Conference on Smart Cities, Systems, Devices and Technologies

