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Abstract - The implementation of IoT solutions in open 
environments brings challenges regarding the characterization 
of radio frequency signals, which impacts in the performance of 
the network. In this paper we propose the identification of radio 
frequency signal signatures of sensor nodes located in open 
environments. We analyse the results of a field test conducted in 
a rural property. For the signatures identification, we employed 
strategies that use the original signal and the signals as 
estimated by moving average and Kalman filters. The results 
indicated the feasibility of using Kalman filters and the original 
signal to create rules to identify the signal signature. 

Keywords - Wireless Sensor Networks; WSN; Link Quality 
Estimator; Kalman Filter; Moving Average Filter; RSSI. 

I.  INTRODUCTION 

The advent of the Smart City in the context of the Internet 
of Things (IoT), will depend upon the massive deployment of 
Wireless Sensor Networks (WSN) in outdoor environments 
[1]. For that reason, it is interesting to characterize the open 
environment and identify the particularities of signal 
propagation, so to work in the development of network 
management strategies and the elaboration of metrics to be 
used in Quality of Service (QoS). These metrics will be useful 
in the preparation of Service Level Agreements (SLA) [2]. 

In this paper, we propose the creation of a strategy to 
identify the signature of radiofrequency signals through the 
analysis of Received Signal Strength Indicator (RSSI) and its 
treatment by means of Kalman and moving average filters. 
This work compares these two strategies and identifies their 
utility in QoS metric creation for WSN. This work approaches 
the management of autonomous networks and the 
identification and characterization of radiofrequency signal 
behaviour for different scenarios in open environments. These 
management strategies can then be used in the preparation of 
SLAs. 

This article is organized as follows: in Section II, we 
present a literature review that provides theoretical basis for 
the proposal; in Section III, we introduce the criteria proposal 
to identify the radiofrequency signal signature in open 
environments; in Section IV, we present the materials used for 
the data collection in a rural property, in Section V, we show 
the collection methods used; in Section VI, we present the 

results; in Section VII, we bring a discussion about the results, 
identifying the pertinence of each method and in Section VIII 
we, present the conclusion and future work. 

II. RELATED WORK 

In this section we map the articles found in the literature 
regarding the scope of this work. We researched for ways of 
estimating the radio channel for WSN, evaluating the quality 
of the radiofrequency communication, based on WSN 
operating in the 915 MHz and 2.4 GHz. In [3], an estimation-
based model using Kalman filtering was presented, it is a 
software implemented predictive filter. In this model, the 
experimentally obtained data was processed by the filter, 
producing an estimated RSSI. From that estimation and the 
system noise (which depends on the type of hardware, antenna 
characteristics, operating temperature, frequency, among 
other factors), it was possible to obtain the Signal-to-Noise 
ratio (SNR) and then trace the Packet Success Rate (PSR) as 
a function of the estimated RSSI [3]. 

In [4], [5], several strategies for channel estimation and 
radio link quality measurements were presented. They went 
from RSSI-based Hardware estimators, Link Quality 
Indicator (LQI) and PSR to software implemented indicators, 
such as simple and exponential moving average filters, 
Kalman filtering, estimation of stationary probabilities by 
Markov chains, fuzzy logic, among others. Also, temporal and 
spatial correlations showing how the received signal intensity 
varies over time and space and strategies involving RSSI were 
presented [5]. The analysis over time consisted in varying the 
transmission time between data packets. The temporal 
analysis consisted in varying the environments in which the 
experiments were carried out. 

It is well known that wireless communication is sensitive 
to obstacles, such as people, walls, trees, buildings, among 
others [5]. 

III. PROPOSED RSSI SIGNATURE MAPPING CRITERIA 

In this section, we present the proposal for the elaboration 
of a RSSI signature mapping criteria, i.e. how the RSSI 
behaves over time and space, considering what was said in 
Section II. 

21Copyright (c) IARIA, 2018.     ISBN:  978-1-61208-653-8

SMART 2018 : The Seventh International Conference on Smart Cities, Systems, Devices and Technologies



In WSN, it is frequent to estimate the quality of the radio 
frequency (RF) link as a function of hardware parameters, 
such as RSSI, LQI and PSR [4], [5]. In this work, the RSSI 
was the parameter selected to develop the statistical analyses 
and evaluations regarding the RF link behaviour, as there are 
many related works in the literature that addresses this metric 
[5]. In addition to the conventional tools for statistical analysis 
such as average, maximum, minimum and standard deviation, 
it was decided to estimate the down and uplink RSSI using 
Kalman filter and moving average. The objective was to find 
the signature of the radio signal, identifying patterns 
considering both the instantaneous signal and the values 
treated by Kalman filters and moving average. In addition, an 
evaluation and comparison of these two strategies was made. 

IV. MATERIALS 

As the farm where the tests were carried out has 
approximately 78 hectares, the long range BE990 module was 
used. It consists of the CC1101 radio transceiver, an ATMega 
328 microcontroller and a CC1190 power amplifier [6]. The 
total power is of 26 dBm (0.5 Watts) at the output of the 
amplifier and the distance covered is greater than 5 km, which 
was enough for the tests. The BE990 operates in the industrial, 
scientific and medical band (ISM) of 915 MHz. It is certified 
by the Brazilian National Telecommunications Agency 
(ANATEL), and its sensitivity is close to -112 dBm [6]. Figure 
1 shows the BE990. 

 
Figure 1. Module BE990. 

 
The sensor nodes were equipped with the DK106 

application board. We assembled four Sensor Nodes (SN) and 
a base radio station (ERB). Figure 2 shows the ERB and one 
of SN. Each SN relayed to the ERB data regarding: the link 
RSSI (focus of this work), air temperature, humidity and soil 
moisture. 
 

 
Figure 2. ERB and SN. 

V. METHODS 

The ERB and all four SN were programmed using the 
Arduino IDE, since the BE990 module is compatible with that 
platform. For the communication between the ERB and the 
SN we used the Radiuino protocol [7]. It is a flexible and easy 
to implement protocol, suitable for the development of 
applications of WSN. For the tests, we used a point-to-
multipoint (star) topology, with the ERB establishing 
communication with each SN sequentially. Although it is not 
in the scope of this work, the Radiuino protocol can be adapted 
to work with dynamic routing, with the objective of covering 
areas of shading and reaching great distances [8]. 

The data gathering was done by a central processing unit, 
using a network management script, developed in the Python 
programming language [9]. For the visualization of the data, a 
Zabbix server [10] was used, as it offers a user friendly 
graphical interface for the benefit of the clients. 

The system was set up as follows: the network manager 
software requested data from the SN; the ERB then, in turn, 
sent a data packet to each SN, upon receiving it, each SN 
replied with a data packet containing the requested data. The 
ERB received the packet and, via Serial UART 
communication, updated the manager software; the data then 
was analysed, and the information sent to the Zabbix server. 

The system operated for eighteen consecutive days, 
collecting data. In addition to conventional statistics, such as 
mean, maximum and minimum and standard deviation, the 
MATLAB software [11] was used to implement the Kalman 
filtering algorithm and simple moving average, in order to 
create rules to trace the RSSI signature. The Kalman filter is a 
predictive software filter, which objective is to eliminate 
possible random noise, estimating future values [3].  

The equations are based on the propagation and updating 
of the current state, based in the fact that the future is the 
present with some corrections and corrupted by random noise 
[3]. The signal propagation equations are given by (1) and (2): 
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the state covariance. 
The measurement updating equations are given by (3), (4) 

and (5): 
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where kK represents the gain of the Kalman filter, R is the 

noise in the module receiver and kz  is the gross RSSI value 

collected by the Python script.  
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In the experiments, the state covariance Q was 0.5 and the 
receiver module noise R was 10 dBm. The moving average 
corresponds to a sliding window average, allowing the 
average value to be updated in real time. For this reason, 
compared to the average, the moving average provides more 
information about the radio communication since the average 
value is always updated based on the number of samples in 
sliding window. For these experiments, we used a sliding 
window with ten samples. 

VI. RESULTS 

In this section we present the results from only one SN 
since those can be replicated to the others. The SN selected 
was the node 1 as it was powered by mains power generating 
a larger volume of data if compared to SN powered by 
batteries, as those had to made use of sleep mode strategies. 
Tables 1 and 2 show basic statistical analyses: mean, standard 
deviation, maximum and minimum for the RSSI down and 
uplinks, respectively. 

 
TABLE 1. BASIC DOWNLINK RSSI STATISTICS FOR SN 1. 

 

 
 

TABLE 2. BASIC UPLINK RSSI STATISTICS FOR SN 1. 
 

 
 
Figures 3 and 4 show the RSSI after processing by the 

Kalman filter.  
 

Figure 3. Downlink RSSI – Kalman Estimate. 
 

  
Figure 4. Uplink RSSI – Kalman Estimate. 

 
In Figures 5 and 6, an estimate was made using the moving 

average. The blue lines are the RSSI original values, obtained 
by the Python script, while the red lines represent the 
estimates, that is, the outputs of the Kalman filters and the 
moving average. 

 

  
Figure 5. Downlink RSSI – Moving Average Estimate. 

 

 
Figure 6. Uplink RSSI – Moving Average Estimate. 

 

VII. RESULTS EVALUATION 

According to Tables 1 and 2, we observe a reasonable 
difference between the maximum and minimum RSSI, which 
can be justified by the value of the standard deviation. When 
comparing the down and uplink averages, we observed a 
variation of 3dB, indicating a small asymmetry. In the outdoor 
environment where SN 1 was located, there are several 
obstacles, such as poles, trees, motors, electric pumps 
(potentially generating electromagnetic noise), metal grids, 
among others. In addition, the SN 1 was located 700m away 
from ERB, without a line of sight. 

Using the results shown in Figure 3, it is possible to 
observe that the downlink RSSI processed by the Kalman 
filter causes a smoothing of the radio signal, allowing for the 
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drawing of future RSSI estimates, eliminating possible 
random perturbations. This is evident in Figure 4, between 
measurements 2500 and 3000. There that the -100.5dBm 
point, which was the minimum uplink RSSI value (also shown 
in Table 2), was discarded in the process, because a just single 
measurement don’t have a significant impact for a output 
signal in Kalman and moving average  estimators. In Figure 
5, we can observe that the moving average filtering also 
generated a RSSI smoothing (in the same way as the Kalman 
filter), however with an estimate more like the original signal. 
In both methodologies, it is notable the existence of possible 
RSSI signature rules, both for up and downlink. For example, 
in Figure 3, the Kalman estimated RSSI remained between -
79 dBm and -87.5 dBm. This means that, according to the 
estimated value, the RSSI must follow this same pattern and 
stay in this range for most of the time. The other rules are 
shown in Table 3. 

 
TABE 3. RSSI SIGNATURE RULES. 

 

 
 

Comparing the Kalman filtering to the moving average in 
terms of efficiency, the former results in a more smoothed 
RSSI curve, due to the parameter values used in the algorithm. 
For example, for Kalman filtering, both the state variable and 
the measured value can be corrupted by a zero average 
Gaussian white noise perturbation with a certain covariance, 
allowing for more sensitive statistical analyses.  

The moving average is a good strategy to estimate the 
average over time, but it is less complex than the Kalman 
strategy, which in turn performs the data treatment taking into 
account several external factors (number of network devices, 
random sensor noise, initial values, etc.) [20]. In addition, a 
decision was taken to work with smaller sliding windows for 
the moving average, considering that the larger the window, 
the greater the processing. In this way, it is possible to estimate 
the development of efficient statistical tools to estimate the 
quality of the RF link, and then discover the signal signatures 
in time and space. 

VIII. CONCLUSIONS AND FUTURE WORK 

The focus of this work was to collect RSSI data from one 
SN in the network and analyse how the radio signal behaves 
over time and space. For this, simple statistical strategies were 
used as mean, standard deviation, maximum and minimum 
and later, Kalman filtering and moving average. The objective 
was to analyse the values estimated by the filtering methods 
and then draw behavior rules to characterize the down and 
uplink RSSI signatures. Results from this work showed that 
through estimations, it is possible to draw rules for signal 
behaviour, as can be seen in Table 3. Future work should focus 
on new rules to make more precise received signal 
characterizations, seeking a better channel estimation so to 

guarantee an improved RF link quality. With information 
regarding the communication behaviour, it will be possible to 
develop more efficient WSN management strategies, ensuring 
high levels of QoS in the SLA of the WSN. 
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