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Abstract—In this study, a gesture and posture recognition
method which is based on the Block Sparse, Sparse Representa-
tive Classification, and its use for a robotic wheel-chair control are
explained. A Leap Motion sensor is used to capture the postures
of the left hand. There are five postures mapped to the control
commands of the power wheel-chair. These commands can be
expanded as the posture recognition commands can deal with
high number of classes. The MATLAB functions used in the
computations are compiled into .NET programing environment.
We tested the hand posture control in a hall where are occupied
by tables and chairs. The navigation experiments were successful.

Keywords—Robotic Wheel-chair control, Gesture and Posture
Recognition, Compressed Sensing, Block Sparse Recovery, Sparse
Representation based Classification.

I. INTRODUCTION

The trends in computing technologies are evolving towards
the systems and algorithms that can sense the environment
and make smart decisions to provide the users with more
intuitive user interfaces. These smart interfaces pave the way
for Human Machine Interfaces (HMIs) that aim to decrease
the physical and cognitive loads of the users. As the machines
and computing technologies get more compact and include
variety of tiny sensors, their use by ordinary people becomes
more difficult with the increasing functionality. Because of
these developments, we need more intuitive and easy to use
interfaces. These complex systems can be difficult even for
ordinary users, but even more so when elderly or people who
have some form of disability are concerned.

In this study, we explain a novel gesture and posture
recognition algorithm and its deployment on a robotic wheel-
chair as a replacement of a conventional joystick control. The
postures of left hand are captured via a Leap Motion sensor
which can report the palm position, velocity and orientation
values with the sub-millimeter accuracies.

The gesture and posture recognition algorithm is an im-
plementation of the well-known Sparse Representation based
Classification (SRC) algorithm [1] which has proven to be
robust and highly accurate method in the case of face recog-
nition research [1–3]. Based on this approach, Boyali et al.
[4][5] extended the use of the SRC algorithm for gesture
recognition and reported high classification accuracies. We
further extend the SRC based gesture and posture recognition
algorithm proposed by Boyali et al. in [4][5] by incorporating
the Block and Group Sparsity approach which enhances the
recognition accuracy as well as the speed of the algorithms.

The robotic wheelchair, on which the SRC based gesture
and posture recognition algorithms are tested, is equipped with

obstacle avoidance and path following systems which make the
wheelchair fully autonomous [6].

This is an initial study of an end-user power wheel-chair
control interface which will allow the people with severe
mobility impairment to command the wheelchair with their
residual and voluntary muscle movements. We employed a
Leap Motion sensor to capture the postures of a hand to test the
SRC based gesture and posture recognition algorithm, as the
Leap Motion sensor has recently been introduced to the market.
In future studies, we will utilize other means of sensors and
systems with the introduced gesture and posture recognition
algorithm.

Gesture or posture recognition based control of a power
wheelchair has long been investigated by the researchers. There
are several studies on the more intuitive user interfaces, to en-
able the people with severe mobility impairment and restricted
muscle movements to command a power wheelchair. That is
because the conventional joystick control of power wheel-
chairs may not be operated by those who are quadriplegics,
handicapped children or people suffering from progressive
Parkinson disease [7].

The remainder of the paper is organized as follows. In
Section II, a brief literature review of alternative control in-
terfaces for power wheelchair is given. The proposed BS-SRC
based gesture recognition method is explained in Section III.
Section IV is dedicated to the system and software architecture.
In Section V, the implementation and simulations are detailed.
The paper ends with the Conclusion Section.

II. PREVIOUS STUDIES

The alternative methods to conventional joystick wheel-
chair control are cluttered around different modalities. The
most common modalities seen in the related literature are
speech, gesture, gaze recognition and bio-signal control.

The voice and speech recognition systems suffer from
the ambient noise and the accuracy rate depends on speech
dexterity and pronunciation [8]. In the bio-signal based stud-
ies, Electromyography (EMG) [9–11], Electroencephalography
(EEG) [12–14], Electrooculography (EOG) [15][16] are uti-
lized to capture the occupant’s intention for the power wheel-
chair control. In addition to the long bio-signal capturing time
requirement and slow response, these studies also report more
than 8-20 % mis-classification rates that render the proposed
systems less appropriate for the real-time applications.

The gesture and posture recognition methods proposed by
Jia et al. [7] and Rofer et al. [17] are based on the template
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matching and Finite State Machine methods. In the study
by Jia et al. [7], the head of the occupant is monitored by
a camera and the position of the head and possible head
gestures are evaluated to find out whether the occupant intents
to give a navigation command to the wheel-chair. The accuracy
of the camera based studies highly depends on the varying
illumination, indoor and outdoor environments, cluttered back-
ground and shadow. The studies by Rofer et al. [17] and
Teymorian et al. [18] utilize the Finite State Machine method
which relies on the experimentally defined threshold and dead-
zone values. The state transitions are based on these manually
defined values which limit the free motion of the tracked body
parts. The bio-signal and head-joystick based systems require
attached or worn devices which may disturb the wheel-chair
occupant.

The proposed approach in this study is easy to implement,
highly accurate and does not bring about any limitation to
the free motion of the tracked hand. It is also robust to the
illumination variations and there is almost no mis-classification
error.

III.BLOCK SPARSE, SPARSE REPRESENTATION BASED
CLASSIFICATION

The BS-SRC algorithm is based on the Sparse Repre-
sentative based Classification algorithm which was originally
implemented for face recognition [1]. The idea is simple.
For a given collection of samples, which are stacked as
a column vector in a matrix A = [A1, A2, . . . , An] =
[v1,1, v1,2 . . . , vk,nk

] ∈ Rmxn, the observed pattern y ∈ Rm

is assumed to be represented by the linear combination of
the samples stacked in the dictionary matrix. Accordingly, the
vector x0 = [0, . . . , 0, α1, α1, . . . , αk, 0, . . . , 0] ∈ Rn which
represents the linear span coefficients are obtained by solving
the equation y = Ax + v where v ∼ N (0, σ2) is the white
noise. In the solution, the compressed sensing principles and `1
minimization methods are utilized. Once the solution vector is
recovered by using a few linear measurements, the class label
ri is defined by finding the minimum reconstruction residual
using equation (1).

min
i

ri(y) = ‖y −Aδi(x̂1)‖2 (1)

Boyali et al. [4][5] adopted the SRC method for the
gesture recognition and reported very high accuracy rates. The
authors take the Discrete Cosine Transform (DCT) of the two
dimensional gestures which consist of only x and y coordinates
to construct the dictionary matrix.

The recently introduced and highly effective approach in
compressed sensing literature is the block or group structure
assumption in seeking a sparse solution [19–21]. In this
approach, the sparse solution has a structure in which the
elements of the groups become either collectively zero or take
non-zero values.

Several solutions have been proposed for the block sparse
problems, such as Block Sparse Bayesian Learning (BSBL)
[22], Dynamic Group Sparsity (DGS) [19] and Block Sparse
Convex Programming (BS-CP) [23] which exploit the group
sparsity of the solution.

In the SRC method, the observed pattern is assumed to
be represented by all the samples stacked in the dictionary
matrix and the coefficients of the unrelated class samples are
also computed during the optimization. The block sparsity
approach eliminates these extra computations, thus yielding
a faster solution.

When the SRC method is concerned, there is indeed a
structure in the sparse solution x, since the samples from the
classes are put in the dictionary matrix in a structured form.
The sparse solution, when obtained via Block Sparsity meth-
ods, contains the coefficients belonging to the corresponding
class only.

We made use of the three methods BSBL, DGS and BS-
CP for two different gesture sets given in the studies by
Boyali et al. [4][5]. The experiments and simulations gave
more accurate results than those reported in the previous
studies in which only the SRC method is used. Besides, the
block sparsity approaches make the algorithms faster than the
classical sparsity assumptions, making the algorithms good
candidates for real time implementations.

The BSBL approach is chosen for the posture recognition
and its real-time implementation in this study. There are two
algorithms proposed in the BSBL method, the BSBL-EM
in which the optimization problem is solved by Expectation
Maximization (EM), and the BSBL-BO which utilizes the
Bound Optimization method for the solution. The latter one
is faster then the former.

In the BSBL method, the sparse solution:

x = [x1, . . . , xd1︸ ︷︷ ︸
x1

T

, . . . , xdg−1+1, . . . , xdg︸ ︷︷ ︸
xg

T

] ∈ Rn (2)

consists of concatenated g blocks and each block, xi ∈ Rdix1

is assumed to be generated by a parametrized multivariate
Gaussian distribution:

p(xi; γi, Bi) ∼ N (0, γiBi) i = 1, . . . , g

with a non-negative parameter γi which controls the block
sparsity of x and a positive definite correlation matrix Bi,
which maintains the correlation structure of the ith block.

The parameters are estimated by a type-II maximum like-
lihood procedure [24] after the parameters, γi, Bi and the
standard deviation of the measurement noise λ, the posterior
mean and covariance matrices are updated by using the EM
or BO methods.

IV.SYSTEM ARCHITECTURE

The robotic wheel-chair used in the study was previously
designed at The National Institute of Advanced Industrial
Science and Technology (AIST) laboratories (Fig. 1). It has
an autonomous mode, by which the wheel-chair can travel
between two pre-defined points [6]. In this mode, since the
occupant’s hands become free, the hand postures and gestures
can be utilized to add additional functionalities to the system.
We use free motion and postures of a hand captured by an
integrated Leap Motion sensor to command the wheelchair. An
additional modality also improves the safety while traveling.
In this configuration, the Leap Motion sensor is located on the
left side of the wheel-chair.
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Figure 1. Robotic Wheel-Chair and Leap Motion Sensor

There are five navigation commands, including, but not
limited to, ”Go Straight, Turn Left, Turn Right, Stop, and
Reverse” on the wheel-chair navigation mode (Fig. 2). The
algorithm has no limitations for adding more posture classes
into the dictionary matrix, and the number of the posture
classes can be increased when necessary.

Figure 2. Hand Postures Mapped to Wheel-chair Navigation Commands

The posture recognition module is located on a different
computer and the recognized commands are sent to the main
computer on which the obstacle avoidance, and autonomous
navigation modules reside, via a network cable (Fig. 3).

The Leap Motion sensor is a new device consisting of infra-

Figure 3. System Architecture

red cameras (Fig. 4) which can detect hands or pointers and
reports the position, orientation and velocity of the tracked
object at a frequency around 80 Hertz. The effective tracking
volume is of a pyramid form, the height of which is about
47 cm from the center of the leap motion to the base of the
pyramid.

Figure 4. Leap Motion Sensor and Its Coordinate System

The angles of view along the z and x axes are 2 and 2.3
radians, respectively. The tracking volume is sufficient for this
study. As the left hand is supported by the wheel-chair arm, it
is always visible to the system when a posture based mode is
active. The posture control mode is activated when the Leap
Motion sensor detects a hand in the viewing volume. If there is
no visible hand, the system enters the autonomous or joystick
mode.

Although the Leap Motion sensor provides many variables,
such as the number of fingers, finger direction, their relative
positions to each other, finger and palm velocities as well as
some internal recognized gestures by the frame object, we
only utilized the palm orientations; roll, pitch and yaw angles,
the direction of the normal vector of the palm and the palm
velocities for posture recognition.

The MatLeap MATLAB Mex interface [25] is used to
analyze the Leap Motion data in MATLAB environment, as the
proposed BS-SRC based gesture recognition algorithm written
in MATLAB. The MatLeap Mex interface contains of only
a few functions and receives a few variables from a Leap
Motion sensor. We added functions to the MatLeap interface
to read the variables related to the tracked palm. The detected
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postures of the hand are then used by the BS-SRC algorithm
for classification.

The algorithms and codes are converted to a dll file
using the MATLAB’s deployment toolbox to be able to use
the available solvers and the implemented codes for posture
recognition in the CSharp programming environment.

V. IMPLEMENTATION AND SIMULATIONS

When the gesture and postures are mapped to a certain
number of states, the common method is to use Finite State
Machines (FSM), if the number of features is limited to a few
dead-zone or threshold values which do not limit the freedom.
Using the FSM approach may be a valid decision when the
boundaries can be strictly separable by deadzones. However,
the uncertainties naturally exist in the complex signals such
as bio-signals which are required to be collected for relatively
long periods of time. Similarly, as the Leap Motion sensor
reports the features at a high frequency, and posture and
gesture recognition requires a certain number of data samples,
the boundaries between the postures cannot be set by FSM
methods in a feasible way.

The BS-SRC based gesture recognition method yields
highly accurate results which are more than 99% for different
kinds of gesture sets. We tested the BS-SRC method for
posture recognition and obtained more accurate results than
the gesture recognition studies.

The first step in posture recognition is to construct a dic-
tionary matrix A = [A1, A2, . . . , An] = [v1,1, v1,2 . . . , vk,nk

]
in which the samples from five postures are stacked as the
column vectors. The DCT coefficients of the matrix are then
computed.

Each posture signal vector vk,nk
consists of the palm roll,

pitch and yaw angles and the direction of the palm normal
vector in the three axes x, y and z. The left hand is kept
at the specified posture for 30 seconds and the palm roll,
pitch and yaw, as well as the palm normal vector direction
values are recorded. We reduced the sampling frequency from
80 Hertz to 50 Hertz. Each posture sample has a length of a
half second, which corresponds to 25 measured values from
each feature. There are 30 snapshots of each postures in the
dictionary matrix A ∈ R150x150.

These sample postures are put in the dictionary matrix,
the rest of 30 posture samples from each class are used for
verification. In total there are 150 test postures and the BS-
SRC based algorithm yields 100% recognition accuracy for
the test samples (Fig. 5).

In the real-time implementation of the posture recognition
algorithm, there are transition states between the postures.
These transition states which can be considered as gesture,
have a very short duration when compared to the postural
states. Each transition states or gestures differ in length. During
the transition, the hand posture can only be either of one of
the involved states, and the algorithm chooses one of them.

Only a few false spikes occurred in the simulations. As
shown in Fig. 6, the algorithm gives two instances of false
recognition, while the hand repeatedly switchs between the
Go Straight and Turn Right states.

We eliminate these rarely seen false recognitions by apply-
ing a very simple signal filtering method which incurs a short

Figure 5. Test Postures and Recognized States

Figure 6. Switching Between Turn Right and Go Straight Postures

delay to the system. The delay is acceptable to make sure
we produce a robust implementation of the algorithm. In most
cases, there is no need to use such a filter. The figures (Figures
7 and 8) show the unfiltered simulation results. We can also use
a low rank matrix recovery method to detect if the measured
instance is a posture or gesture. For this approach, in every
time instance, we add the received values to the dictionary
matrix as the 151th column and separate the matrix into two
components; low rank dictionary and the outliers matrix. We
use Direct Robust Matrix Factorization (DRMF) [26] algorithm
to detect whether the current measurement is a posture or a
gesture. Since the gesture states are not represented in the
posture dictionary, the DRMF algorithm gives higher residual
error for these states. There is an alternative approach we have
been working on. In this approach, once the transition states
are detected by the low rank matrix factorization method, we
can employ a second dictionary which only consists of the
gesture classes. The difficult part of this approach is to spot
exemplar gestures from the streaming signals.

The algorithm buffers 25 samples from each of the features,
concatenates them in a column vector to build the dictionary
matrix. The recognized postures are numbered one to five and
sent to the Laptop-1 (Fig. 3) computer via a network cable.
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Figure 7. Switching Between Turn Left and Go Straight Postures

Figure 8. All States Visited

The receiving computer sends commands to the on-board PC
to control the electric motors for a given navigation method.
We tested the real-time performance of the power wheelchair.
The tests were performed in a hall where there were tables and
chairs and we navigated in this crowded area by controlling
the wheelchair hand postures only.

VI. CONCLUSION AND FUTURE WORKS

This study is aimed to test the real-time performance of
the BS-SRC gesture and posture recognition method on a
power-wheelchair. The hand postures are captured via a Leap
Motion sensor by collecting the palm roll, pitch and yaw angles
as well as three palm normal direction vector at each time
instance, then the concatenated features are evaluated by the
BS-SRC method. The method yield highly accurate and robust

Figure 9. Test Hall

recognition rates.

The BS-SRC method is tested originally for two different
gesture sets and we received higher accuracies and faster
recognition when compared to those of the studies [4][5] in
which only the SRC method was used. We will design an
additional dictionary matrix, the column vectors of which will
only consist of the gestures. Since the Leap Motion reports
observations in a streaming signal form, the difficulty in this
approach is to spot the beginning and end points of the gestures
for a proper construction of the dictionary matrix.

We tested the posture recognition algorithm for only the
Leap Motion sensor. We aim to repeat the experiments by
using a pressure distribution sensor by which we can detect
the seating postures, to track the change of weight center of
the occupant and Microsoft’s MYO gesture bracelets which is
still in development phase and is not introduced to the market
yet.

ACKNOWLEDGMENT

This study is supported by the Japan Society for the
Promotion of Science fellowship program.

REFERENCES

[1] J. Wright, A. Y. Yang, A. Ganesh, S. S. Shankar, and
Y. Ma, “Robust face recognition via sparse representa-
tion,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 31, no. 2, 2009, pp. 210–227,
ISSN:0162-8828.

[2] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and
S. Yan, “Sparse representation for computer vision and
pattern recognition,” Proceedings of the IEEE, vol. 98,
no. 6, 2010, pp. 1031–1044.

[3] T. Li and Z. Zhang, “Robust face recognition via block
sparse bayesian learning,” Mathematical Problems in
Engineering, vol. 2013, 2013.

[4] A. Boyali and M. Kavakli, “A robust gesture recognition
algorithm based on sparse representation, random pro-
jections and compressed sensing,” in Proceedings of the
7th International Conference on Industrial Electronics and
Applications (ICIEA 2012) July 18–20, 2012, Singapore.
IEEE, pp. 290–294.

24Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-363-6

SMART 2014 : The Third International Conference on Smart Systems, Devices and Technologies



[5] A. Boyali and M. Kavakli, “A robust and fast gesture
recognition method for wearable sensing garments,” in
Proceedings of the 4th International Conferences on Ad-
vances in Multimedia (MMEDIA 2012) Apr 29–May 4,
2012, Chamonix / Mont Blanc, France. IEEE, pp. 142–
147.

[6] N. Hashimoto, U. Ozguner, N. Sawant, K. S. Yokuzuka,
M, O. Matsumoto, and S. Tsukuwa, “A framework of
fault detection algorithm for intelligent vehicle by using
real experimental data,” in Proceedings of the 14th Inter-
national IEEE Conference on Intelligent Transportation
Systems (ITSC 2011) Oct 5–7, 2011, Washington, DC,
USA. IEEE, pp. 913–918.

[7] P. Jia, H. H. Hu, T. Lu, and K. Yuan, “Head gesture recog-
nition for hands-free control of an intelligent wheelchair,”
Industrial Robot: An International Journal, vol. 34, no. 1,
2007, pp. 60–68.

[8] O. Babri, S. Malik, T. Ibrahim, and Z. Ahmed, “Voice
controlled motorized wheelchair with real time obstacle
avoidance,” in Proceedings of the 3rd International Con-
ference on Communications and Information Technology
(ICCIT 2012), Beirut, Lebanon. IEEE.

[9] T. Felzer and B. Freisleben, “Hawcos: the hands-free
wheelchair control system,” in Proceedings of the fifth
international ACM conference on Assistive technologies,
ACM. ACM, pp. 127–134.

[10] C. S. L. Tsui, P. Jia, J. Q. Gan, H. Hu, and K. Yuan,
“Emg-based hands-free wheelchair control with eog at-
tention shift detection,” in IEEE International Conference
on Robotics and Biomimetics, ROBIO 2007, Dec 15–18,
2007, Sanya, China, IEEE. IEEE, pp. 1266–1271.

[11] Y. Oonishi, S. Oh, and Y. Hori, “New control method
for power-assisted wheelchair based on upper extremity
movement using surface myoelectric signal,” in Pro-
ceedings of the 10th IEEE International Workshop on
Advanced Motion Control, 2008, (AMC’08), Mar, 26–
28, Trento, Italy, IEEE. IEEE, pp. 498–503.

[12] D. A. Craig and H. Nguyen, “Adaptive eeg thought
pattern classifier for advanced wheelchair control,” in
Proceedings of the 29th Annual International Conference
of the IEEE, Engineering in Medicine and Biology So-
ciety, (EMBS 2007), Aug 23–26, 2007, Lyon, France,
IEEE. IEEE, pp. 2544–2547.

[13] I. Iturrate, J. Antelis, and J. Minguez, “Synchronous eeg
brain-actuated wheelchair with automated navigation,” in
Proceedings of the IEEE International Conference on
Robotics and Automation, 2009. (ICRA’09), May 12–17,
Kobe, Japan, IEEE. IEEE, pp. 2318–2325.

[14] R. Gopura, D. Bandara, J. Gunasekara, and T. Jayawar-
dane, “Recent trends in emg-based control methods for
assistive robots,” Electrodiagnosis in New Frontiers of
Clinical Research (Turker, H., Hg.), S, 2013, pp. 237–
268.

[15] R. Barea, L. Boquete, M. Mazo, and E. L. A. Garcı́a-
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