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Abstract—Smart systems such as physical infrastructures in-
fused with information technology offer a great opportunity for
satisfying the customer needs and managing the resources more
effectively and efficiently. In this paper, we examine the smart
infrastructures in terms of their sustainability potential, which in
turn requires a consideration of human aspects. We consider the
currently defined metrics for the smart grid and point out the
lack of metrics to quantify this aspect. We then present a simple
model for smart grid that considers the carbon footprint and
energy consumption that would result by accounting for certain
aspects of human behavior. Such a model is useful in assessing
whether the sustainability objectives are being met and what
actions are required in this regard.

Keywords: Smart Infrastructure, Sustainability, Rebound ef-
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I. INTRODUCTION

The world we live in is experiencing rapid and likely long-
term changes that are already posing difficult sustainability
challenges. For example, the increasing population and on-
going migration of populations to mega-cities puts a severe
stress on the built infrastructure and the environment. The
ongoing efforts to embed information technology into the built
infrastructure to make it smart provides a unique opportunity
to address this sustainability challenge by promoting efficient
use of resources and providing critical services that enhance
safety and human well-being. Thus, an important metric to
consider for smart infrastructure is sustainability, which re-
quires a thorough understanding of the interactions between
built, natural and social systems [9]. In this paper, we would
like to make a small beginning by considering the impact of
human behavior on the resource usage and the corresponding
carbon footprint. We illustrate the considerations involved in
doing so, and then propose a simple metric for capturing the
resource use efficiency in smart infrastructures.

The organization of the paper is as follows. Section II
discusses the role of smart infrastructure in sustainability
and points out the need for modeling human behavior. Sec-
tion III takes the example of smart-grid where metrics are
well developed and points out their deficiencies in capturing
the human behavior. Section IV then identifies the basic
issues that need to be considered in adequately considering
the long-term sustainability aspects for smart infrastructures.
Section V develops simple equations for characterizing the
impact of human behavior on energy consumption and carbon
footprint of smart grid and shows some sample results. Finally,
section VI concludes the paper.

II. SUSTAINABILITY AND SMART INFRASTRUCTURE

It is well recognized that the legacy infrastructure, includ-
ing power grid, transportation infrastructure, vehicles, homes,
buildings, factories, etc. can be quite wasteful of resources,
and an embedding of intelligence in form of active monitoring,
management and coordination of distributed resources could
substantially increase the efficiencies. For example, Smart grid
enables the integration of many disparate sources of energy
from rooftop solar in a home to large electric utility installa-
tions. Smart grid can also keep track of energy consumption
profiles and thereby direct energy where it is needed and in
the process reduce peak generation and storage requirements
and hence the ultimate cost to the consumers.

Although the efficient energy use and reduction of waste
contribute to sustainability, the smart-grid by itself does not
provide any mechanism to reduce consumption of energy.
Smart grid only enhances flexibility and lowers cost for the
consumer (in terms of avoidance of local storage and ability
to sell excess energy back to the utility). Following the well
known Jevon’s paradox[6], or the rebound effect, the enhanced
flexibility and lower cost will invariably spur the consumer to
increase the energy consumption. In particular, if the lowered
cost is ploughed back into additional energy purchase, the
result could be net increase in peak energy draw, in plant
size, and the carbon emissions. Thus, understanding human
behavior is crucial to evaluating the long-term sustainability
impact of the smart grid [3], [8], [13]. Understanding human
behavior is even more important under disaster scenarios to
avoid instabilities in the grid and make the most effective use
of the surviving infrastructure – although we do not address
this aspect in the paper.

Similar arguments hold for other smart infrastructures as
well. A smart transportation system can provide congestion
alerts, determine optimal routes, help avoid accidents and
hazardous conditions, etc. The resultant reduction in fuel
consumption and shorter trip to the destination can reduce
carbon impact of the trip and make the roads much safer.
Nevertheless, the additional infrastructure itself may contribute
to additional carbon footprint; the increased travel demand
prompted by reduced travel time, less congestion, and safer
travel could have an even greater impact.

Smart buildings and homes provide an interesting example
of infrastructure where the main objective of the intelligence
is to reduce consumption of resources such as energy or water.
While turning off cooling/heating/lighting in unoccupied areas
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can surely reduce energy consumption substantially, this ap-
plies only to buildings with low occupancies and highly gran-
ular controls. In other instances, the automated control could
well result in higher energy consumption than a conscious
manual control by the occupants. Once again, understanding
human behavior and accounting it in the evaluation is crucial
for assessing the overall benefit.

III. CURRENT METRICS AND THEIR DEFICIENCIES

Since smart grid has been advocated as a significant im-
provement over the existing and well entrenched power grid
of yesterday, the issue of metrics to quantify the cost-benefit
trade-off of the smart grid has been a topic of substan-
tial current interest. In particular, the investment grants and
demonstration projects funded by US Department of Energy
(DOE) and Electric Power Research Institute (EPRI) have
required evaluation of the projects along a variety of metrics
that they have defined. In the following, we review these
and related metrics and point out their deficiencies from the
sustainability perspective. Similar observations can be made
about other infrastructures as well.

The DOE analytical framework for smart-grid [1] estab-
lishes around 25 benefit metrics. These relate to costs, loading
of different components, reliability, power quality, losses,
power factor control, etc. A few of the metrics also relate
to sustainability and concern capacity deferral and emission
reduction due to smart energy management and integration of
distributed renewable energy.

There are several other evaluation attempts for smart grid in
the literature. In particular, Faruqui [4] shows the advantages
of reduction in peak energy production, energy efficiency
and distributed generation. Miller [10] provides a conceptual
framework with multiple metrics under the broad categories
of system efficiency, economic issues, reliability, security,
environmental issues and safety. There are several other metric
related studies, as summarized in the EPRI document [2]. Most
of these metrics are effectively similar in nature, and they
all lack consideration of long-term sustainability issues and a
detailed understanding of the human behavior.

IV. UNDERSTANDING HUMAN BEHAVIOR

In understanding human behavior relevant to resource use,
we need to address the following aspects of smart infras-
tructures: demand shaping mechanisms, extent of customer
compliance with behavior monitoring, social influence, and
behavior shifting over time. In the following subsections, we
explain these and discuss how we plan to account for them. It
is important to note here that although there is a rich literature
to understand human behavior at a more detailed and elemental
level (cultural, social, cognitive, and psychological) [11], our
interests are at a higher level here. The more detailed models
could presumably be used in deriving some of the parameters
that we desired here.

A. Demand Shaping

Demand shaping refers to user’s response to non-coercive
mechanisms designed to influence the resource usage. (We

only consider non-coercive mechanisms since the main issue
with coercive mechanisms is compliance, which is covered
in the next subsection.) The most common example of de-
mand shaping is demand sensitive pricing. Another common
example is to provide appropriate feedback to the user on its
resource consumption. We discuss these in the following.

Demand shaping via dynamic pricing is a well known
mechanism that is already being used to some extent in the
current power grid. Studies show a 50% increase in price
reduces household energy demand by only 11-15% and the
tripling of price reduces consumption by 29-36% [13]. While
pricing is an effective tool for smoothing out short-term
demand variations, the rate regulations often come in the
way of using it as a longer-term demand shaping mechanism.
For example, while a utility can charge more during peak
consumption periods, it often cannot raise the rate uniformly
over long periods. As distributed generation takes hold, where
the consumer generates its own energy, there is less role for
pricing based behavior change.

Providing energy use feedback to user is a well known
technique for influencing energy consumption behavior. It is
important to note that feedback is not simply about providing
information – the form in which the information is provided,
the way it is presented, and how it is reinforced are crucial to
making an impact on the energy consumption. The granularity
of feedback is also critical – making a customer aware of using
too much energy on hot water is far more useful and actionable
than simply providing the overall increase in energy usage.
It is also important to note that a feedback with the intent
of decreasing energy consumption could sometimes have an
opposite impact. This happens when the user determines that
its consumption is lower than its peers or the effort to reduce
consumption did not really make much difference to the energy
bill. Experiments show that feedback can result in change in
energy consumption from -5% to +20% [3].

Voluntary demand shaping depends on the choices made
by the user, and an understanding of how users react to
such mechanisms can improve predictability and ultimately the
design of the mechanisms. Unfortunately, humans cannot be
modeled as rational actors that simply maximize their utilities,
even though a lot of pricing driven models assume this to
be the case [12]. Users are often influenced by a host of
factors, many of which may be ephemeral. For example, the
adoption of an energy conservation idea or technique by an
individual could depend on such diverse things as mood or
emotional state, the way the idea is presented, prevalent social
and cultural norms, ease of understanding the benefits, novelty,
etc. [13].

B. User Compliance

The operation of a smart infrastructure involves collection
of a variety of data about the way customers use it and often
generates advisory data to enable them to make better choices.
User compliance in terms of both accurately providing the
requested data (input side) and following the advisory (output
side) is crucial for smooth operation and resource efficiency
of the entire system.
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Let use start with the input side. A significant advantage
over of smart grid over the current power grid is the active
monitoring of the energy demand that allows a better manage-
ment of the flow of energy and hence less conservative sizing
of the facilities. However, the key question is whether the
customer would feel comfortable with the active monitoring
and what kind of data he/she will allow to be collected? The
granularity of data collection acceptable to the user affects
the advantage that can be derived from it. For example, if
the customer is unwilling to allow individual monitoring of
major energy consuming systems in a home/building, it is
not possible to generate customized strategies for reducing the
energy consumption. Similar comments apply to other smart
infrastructures. In the smart transportation system context, if
the drivers are unwilling to share their destinations and planned
routes, the system cannot derive very accurate information
about expected delays and future congestion.

There is a similar compliance issue on the output side. If a
smart transportation system provides drivers feedback regard-
ing the desirable routes or routes to avoid, but such feedback
is ignored, the system will not be able to do a good job of
managing delays and congestion irrespective of how much
information it collects or how good an analysis job it does.
In fact, erratic compliance could occasionally lead to traffic
and congestion that is much worse than the one without any
intelligent monitoring. Similarly, if the smart grid generates
sound advice on how to smooth out the energy consumption
profile w/o sacrificing comfort, and the advice is poorly used,
it could lead to worse supply-demand mismatches.

Another area where compliance is an issue are legal mech-
anisms that prohibit wasteful use or mandate frugal use of
resources. However, such mechanisms are normally viable
only in cases of extreme resource shortages which we do not
consider here.

C. Social Influence
An individual’s behavior is often driven by the behavior

of others around it, either in form of imitation/conformance
or as a contrarian. For example, a driver that sees a lot
of other people exiting the road may either also decide to
exit (conformance or herd behavior) or decide to stay (to
potentially benefit from the herd behavior exhibited by others).
Similarly, people may imitate or contradict other people in
their neighborhood in terms of energy or water use.

The characterization of social influence is itself a challeng-
ing problem but has been studied extensively particularly in
the context of “herding behavior” that is routinely seen in
complex adaptive systems such as investing, driving/walking,
emergency evacuation, etc. [14]. As with other parameters,
devising general model for it is extremely difficult. Even a
direct measurement could be somewhat challenging since it
may not be clear if the observed behavior represents herding
or something else.

The social influence can be exploited to nudge people
towards sustainability, though it could also prove ineffective.
For example, if home-owner is simply provided data about
the energy consumption of other similar homes in the neigh-
borhood, the effect is likely to be conformance rather than

reduction in energy consumption. In particular, those with
high energy consumption may reduce it, but those on the
lower end may increase their consumption. However, creative
mechanisms for feedback and positive reinforcement could
help lower the consumption on the higher end without raising
the lower end.

D. Behavior Shifting

This aspect directly relates to the long-term shift in the re-
source usage that may be triggered by the smart infrastructure
itself. The qualification here is essential since we do not want
to include influence of other extraneous factors such as rising
incomes of the population served by the smart infrastructure.
Thus the primary mechanism for behavior change considered
here is the rebound effect. This is likely to be mostly cost
driven – the lower cost brought about by improved efficiencies
and ability of customer to sell power to utilities could make
them gradually increase their consumption. However, other
factors may also play a role. For example, the “feel good”
emotion about locally harvested renewable power may make
people more comfortable with increasing their energy con-
sumption. Generally, such behavior shifting will have a long
time constant. It is generally very difficult to characterize since
the impact depends on a large variety of poorly understood
human behavior issues; therefore, we merely illustrate it here
without making any claims regarding the definitiveness of our
assumptions.

Wang [13] contains a wealth of information regarding the
behavioral impact on energy consumption. It also quotes data
from 20 different studies to quantify the magnitude of the
rebound effect in the context of energy use for various pur-
poses. The high variability in the estimates in these studies (not
included here for brevity) reflects the difficulty in ascertaining
the impact of human behavior.

E. Human Behavior Centric Efficiency Metric

In this section, we propose a new metric that accounts for
the influence of the above factors with respect to resource
consumption and hence sustainability. The goal of the metric
is to quantify to what extent human factors can increase or
decrease the resource consumption (or its carbon footprint).
The metric thus provides an estimate of what can be achieved
by putting more effort into influencing human behavior.

Let R0 denote the baseline resource consumption and Rx

the modified resource consumption due to influence x where
x takes the following values:
• x = pf : Influence of private feedback to customer on

his/her resource consumption. Here, “private” means that
a user receives data on his own consumption, and not that
of others.

• x = si: Influence of feedback that compares a customer’s
resource consumption against that of his/her peers.

• x = bs: Influence of long-term behavior shifting (primar-
ily rebound effect).

The three factors above have been defined in such a way
that they are reasonably independent of one another. It must
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be acknowledged, however, that seemingly independent human
behavior factors could be related in complex ways; therefore,
one cannot claim complete independence. For example, it is
possible that the extent of behavior shift depends on how much
resource reduction we start out with. Nevertheless, we assume
independence for simplicity.

Let us now define the metric γx as Rx/R0 which gives
the fractional resource consumption relative to the baseline.
Furthermore, by exploiting the independence assumption, we
also define total metric γt as follows:

γt = γpfγsiγbs (1)

The combined metric γt allows us to assess the net ad-
vantage resulting from the behavioral aspects, with γ < 1
being desirable. All 3 individual factors, and hence γt will
typically vary with time, and may or may not settle to a
long-term value. For example, γpf may go down slowly over
months as consumers begin to react to feedback and then
settle, go down initially and then creep up (initial enthusiasm
for conservation that wanes over time), or show other more
complex behavior. Thus a periodic assessment of the γt metric
may be in order, with the intent that whenever it tends to
inch up significantly, new mechanisms can be tried to drive
it down. From a modeling perspective, we may be interested
in predicted range for γt over the long term either with or
without corrective actions.

The influence of feedback can be attributed to 3 different
factors: (a) The granularity of usage data provided by the
customer, (b) the granularity of feedback provided to the
customer, and (c) the customer compliance, which in turn
depends on the quality and effectiveness of the feedback.
We optimistically assume that (b) is not an issue; i.e., the
system always attempts to generate as granular a feedback
as the monitored data would allow. The user provided data
granularity may be limited due to a variety of factors including
technological, regulatory, or customer choice. Even the tech-
nological factors could be a significant barrier since putting
meters or sensors at multiple points could be expensive or
impractical. In this regard, a significant amount of work exists
on “signature analysis” to identify components of resource
consumption [5]; however, such measurements are prone to
errors. In view of this, it is not useful to determine γpf as a
function of some measure of granularity; instead, it suffices
to estimate typical values of γpf under a couple of scenarios
and best presentational practices.

The metrics γx and γt can also be defined relative to
carbon footprint instead of resource consumption. We denote
these alternate versions as Γx and Γt respectively. The main
advantage of considering these is their ability to distinguish
between various technologies in terms of sustainability (e.g.,
renewable vs. fossil fuel based energy conversion). Note that
the carbon footprint comes not only from the direct use
of the resource (e.g., use of gasoline in the car) but also
from the machinery (e.g., the car itself) and the associated
infrastructure/operations (e.g., extraction and transportation
of materials and fuel). A comprehensive accounting of all
components of the carbon footprint is beyond the scope of
this paper. Instead, we assume that for a given technology,

the carbon footprint can be related to the resource use via a
known constant factor.

V. EFFICIENCY METRIC FOR SMART GRID

In this section we focus specifically on the smart grid and
address the question of under what conditions does smart grid
lead to decrease in the energy consumption and the carbon
footprint? In particular, we compare the sustainability advan-
tages of integrating distributed renewable power generation
by customers into the smart-grid vs. the traditional model of
central utility based power distributed to the customers.1 Our
analysis here is rather simple and is only meant to illustrate the
usefulness of the efficiency metric defined above. It is possible
to take this analysis much further, but that is beyond the scope
of this paper.

Let us assume that a smart grid serves a community of
N homogeneous customers, each of which consumes Rc

units and generates renewable energy Gc, at the cost of ηc
dollars/unit (or KWHr). Of this, a fraction α is sold to the
utility company at the cost of ηcu dollars/unit and the rest
is consumed locally. Note that α is intended to be simply a
long-term average fraction. Depending on the variability of
the demand, the actual energy exported to the utility will vary
with time.

Let Gu denote the required generation capacity of the utility.
We assume that Gu is just enough to satisfy the demands of
all N customers if they do not generate any energy on their
own. The generated amount also includes excess to account
for the transmission and distribution (T&D) losses. Thus, if
fL is the T&D loss fraction, we have:

Gu = NRc/(1 − fL) (2)

Let R′c denote the energy consumption of each customer
under distributed generation. If there is no behavior change,
R′c = Rc, otherwise, the two could be different. Let G′u denote
the central generation requirements in this case. It is easy to
see that:

G′u = N [R′c −Gc(1 − αfL)]/(1 − fL) (3)

Here, R′c − Gc is the amount of energy that the customer
needs from the utility. Furthermore, since the customer feeds
αGc energy to the utility (to be recycled back to same or
different customer), a fraction fL of this is lost and needs to be
generated centrally. Finally, all power generated by the central
utility must be further bumped up by the factor 1/(1 − fL0)
to account for forward T&D losses.

We assume that the utility company generates energy from
non-renewable sources and sells it at the cost of ηuc. It is
assumed that ηcu < ηuc, i.e., the customer receives less from
utility than utility’s energy selling rate. (Although currently
there are instances where the utilities pay more to customers
than their selling rate, this is an unsustainable model in
the long run.) Generally, one would expect that ηc > ηuc,
i.e., small distributed generation is more expensive than the
centralized generation if the up-front, leasing or maintenance

1In what follows, distributed generation is used as a codeword to refer
to smart-grid, whereas centralized-only generation is used to refer to the
conventional grid.
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costs of the infrastructure are also taken into account. With
centralized generation, the energy price paid by a customer,
Pc is given by:

Pc = Rcηuc (4)
With distributed generation, it changes to:
P ′c = [R′c −Gc(1 − αfL)]ηuc +Gc[ηc − α(1 − fL)ηcu] (5)

where the first term represents the cost of buying energy from
the utility, second term the cost of generating it locally, and
third term is the discount for selling energy to the utility. Note
that in the first term, the customer must buy back the energy
it sells to the utility at the regular rate. Also, just like the
customer, the utility pays for only the energy it sees on its
end. Thus, even though the customer sells Gcα, the utility
only sees a fraction (1 − fL) of this.

It is important to note here that it is not so much the actual
cost ηc, but rather the customer perceived cost, say η′c that
matters. As in many other contexts of do-it-yourself scenarios,
the customer often tends to ignore the fixed initial investment
and regular maintenance costs and only considers the running
cost. For example, when considering the cost of driving vs.
taking public transport, people often only consider the fuel
cost of driving. With renewable energy such as solar where the
running costs are essentially zero, η′c can be substantially lower
than ηc, perhaps even zero. In this case, the customer may
perceive as gaining even without selling anything back to the
utility. This aspect is crucial for the rebound effect discussed
below.

Let us now estimate the γt factors for our simplified
situation. We shall assume that the feedback can modestly
lower the energy consumption as reported in [13]. Since we
are considering an idealized situation where all N customers
have equal energy consumption, social influence has little role
to play here, and γsi = 1.

In order to estimate γbs, we assume a limited rebound effect
where the customer increases its energy consumption to match
the cost associated with the case of centralized generation only
(that is, any energy reduction effects due to γpf and γsi factors
still hold). Thus, by equating the costs from eqns 4 and 5 and
setting γbs =

R′
c

Rc
, we have:

γbs == 1 + [α(1 − fL)
ηcu
ηuc

− ηc
ηuc

+ (1 − αfL)]
Gc

Rc
(6)

In reality, there is a limit to how much energy a customer
can consume. We assume that a customer cannot increase his
consumption by more than by a factor denoted as “Limit”.
And finally, γt = γpfγbs.

Let us now consider the estimation of Γt factors. We denote
the carbon footprint of resource R as ζ(R). As discussed
before, we assume that ζ(R) = C R where C is an appro-
priate constant. In particular, we use two constants, Cr for
renewable energy, and Cf for fossil fuel based energy. Both
of these constants would generally depend on the size of the
installation, with larger installations having a lower carbon
footprint per watt. In all cases, the carbon footprint needs to
consider the average energy generation per customer, not just
the consumption. The difference – T&D losses – do contribute
to carbon footprint. With this, and eqn (2), we have:

ζ(Rc) = Cf Gu/N = CfRc/(1 − fL) (7)

In case of smart grid where a customer produces Gc KW
of energy locally and requires generation of G′u/N units
centrally. Therefore, from eqn (3), we have

ζ(R′c) = Cr Gc + Cf G
′
u/N

= Cr Gc + Cf [γbsRc −Gc(1−αfL)]/(1−fL)(8)

Since Γbs = ζ(R′c)/ζ(Rc), it follows that

Γbs =
[Cr Gc(1 − fL) + Cf [γbsRc −Gc(1 − αfL)]]

CfRc

= γbs −Gc/Rc[1 − αfL − Cr/Cf (1 − fL)] (9)

Also, Γt = ΓpfΓbs.
We now show the behavior of γt and Γt as a function of

various parameters. For this, let us first describe the situation
considered in our rather simple model. We assume that the
customer receives power from the utility (ηuc) at the rate of
12 cents/KWHr, and the utility is willing to purchase power
from the customer (ηcu) at 9 cents/KWHr. We assume that the
real cost of locally generated power is 15 cents/KWHr, but
as indicated earlier, the customer may perceive a lower cost.
Since our simple analysis does not use the underlying costs,
the results are the same irrespective of whether the assumed
costs are real or perceived. Therefore, we will show results
for (real or perceived) rates of 0, 5, 10, and 15 cents/KWHr.
We assume that the T&D losses are 20%, which are somewhat
on the optimistic side but perhaps achievable with smart grid.
Finally, we assume that the smart grid can maintain a 5% gain
in efficiency of the regular grid due to continuous customer
feedback. We also assume that the rebound effect is limited to
at most 60% increase in energy consumption over the baseline;
i.e., the “Limit” parameter is set to 1.6.

We assume that a customer generates some percentage of its
requirements Gc/Rc, locally and receives rest from the grid. If
the local generation is small (up to θ0 = 20% in our example),
all power can be used locally and none is sold to the utility. At
higher local generation capacity, we assume that the customer
is able to absorb θ1 = 25% of the excess, and sells the rest.
That is,

α =

{
0 if Gc/Rc ≤ θ0
θ1(Gc/Rc − θ0) otherwise (10)

The parameter θ0 depends on customer’s decision regarding
the sizing of its local generation capability and θ1 indicates
variability of his demand. If the demand is constant, we can
set θ1 = 1; that is, the customer will use all of the local
power up to the limit θ0 and then export all the rest. A local
power storage would allow the customer to reduce θ1 so that
it can keep the local power to handle its short term demand
variations.

For the carbon footprint, we assume that the Cf is relatively
independent of the capacity, but Cr decreases modestly with
the size of the installation. In particular, we assume that as
a function of Gc/Rc, Cr/Cf varies from 0.25 for a small
installation to 0.15 for the case of Gc/Rc = 1. That is, we
are assuming that a large renewable plant has only about 15%
carbon footprint as compared to a conventional plant.

Figs. 1 and 2 show the energy and carbon footprint effi-
ciencies of smart grid (γt and Γt) as a function of Gc/Rc
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and for different costs ηc. Let us first compare the different
curves. As expected, if the perceived or real cost is lower,
the rebound effect prompts the user to consume more energy
(up to 60%), which explains the systematic ordering of the
4 curves. In particular, if the customer thinks that its local
energy costs significantly less than the utility power, the
energy consumption goes higher than that for the centralized
generation case (i.e., more than 1.0). The carbon footprint
shows a similar but somewhat better behavior, as we shall
discuss shortly.

Let us now consider the behavior with respect to Gc/Rc.
When the perceived or real cost of local generation is small,
an increasing Gc implies that the user is able to reduce its
cost which in turn prompts him to consume more energy.
Therefore, the consumption also increases monotonically with
Gc (up to the assumed limit). Note that if the perceive or
real cost of consumer generated power is higher than the cost
of utility power, the net effect is the price based reduction
in consumption as shown by the ηc = 0.15 curve. Not
surprisingly, when the local generation fraction Gc = 0, all
curves merge at the same point. This point is really at 0.95,
rather than 1.0, and reflects the 5% feedback based advantage
of the smart grid.

Fig. 1. Relative Energy Use vs. locally generated power fraction

Fig. 2. Relative Carbon Footprint vs. locally generated power fraction

The primary difference between carbon footprint and energy
use curves is our assumption that the local generation by
the customer uses renewable source which has a much lower
carbon footprint than the utility generated power. This aspect
works against the increase in carbon footprint due to increase

in energy consumption, hence the rather peculiar shape of
the curves. In particular, when ηc is closer to the actual cost,
the carbon footprint actually shows a monotonic decline with
Gc/Rc.

It can be seen that in spite of its simplicity, the model can
be used to address a number of scenarios. The model can
also be tweaked to study a time-series of dynamically varying
demands, though we do not pursue this due to lack of space.

VI. CONCLUSIONS

In this paper, we highlighted the need for metrics that
capture the human behavior in characterizing the resource use
and environmental impact of the smart infrastructure. We also
developed a simple metric for the smart grid and showed
its usefulness in evaluating the sustainability impact of the
smart-grid. Similar analysis can be carried out for other smart
infrastructures as well.

Admittedly, our model and analysis are rather simple, and
the calibration parameters are somewhat arbitrarily chosen.
The future work involves a more comprehensive modeling that
accounts for heterogeneous customer base, a deeper modeling
of the human behavior aspects, and the consideration of
temporal aspect (i.e., the fact that energy demand and even the
customer behavior varies with time). The ultimate worth of this
exercise is to find ways of influencing human behavior in ways
that can lead to more efficient resource usage and reducing its
carbon impact without sacrificing comfort or safety. It is hoped
that a more detailed modeling will provide insights into how
to do this.
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