SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation

PAIRS: Physics-Enabled Al for Real-Time Simulations Surrogates

Zeinab Alfaytarouni and Hamza Ben Ammar
Capgemini Engineering
Toulouse, France
e-mail: {zeinab.alfaytarouni|hamza.ben-ammar}@capgemini.com

Abstract—The development and improvement of complex en-
gineering systems increasingly depend on virtual and hybrid test
benches for validating new designs or modifications to existing
ones. Central to these test benches are simulation models, which
are essential but time-consuming to develop due to their reliance
on domain expertise. Full-fledged simulation models can also
be slow, impeding the validation process that requires real-
time simulation. Conversely, Al surrogate models, derived from
sensor data, face constraints due to insufficient training data and
potentially lacking physical sense. To address these challenges,
we propose the use of physics-enabled AI models as surrogates,
which strike a balance by integrating underlying physical laws
through model equations, thereby requiring significantly less data
for training. Once trained, these models operate in real-time,
expediting the validation process. In this work, we introduce
a Physics-enabled Al surrogate model development process that
augments to the existing Machine Learning Operations (MLOps)
workflow. Our approach employs an ontological framework to
align user needs with a model template. We leverage Physics-
Informed Neural Networks (PINNs) as the core building block for
this template. Once a model structure is selected, the traditional
MLOps process is applied to train and validate the Al surrogate.
This methodology simplifies the model development process and
hence accelerates the overall system development.

Keywords-Physics-enabled AI; Physics-Informed Neural Net-
works; Ontology; Simulations.

I. INTRODUCTION

Advances in Artificial Intelligence (AI) have had a profound
impact across numerous disciplines, including engineering.
One particularly transformative development is surrogate mod-
eling, especially approaches based on Al techniques [1]. Sur-
rogate models offer simplified, fast, and reliable alternatives to
complex, costly, and time-consuming multiphysics simulations
or physical experiments.

The creation of an Al-based simulation model typically
follows a common set of steps, regardless of the specific Al
technique employed. The process begins with a clear definition
of the problem that the model is intended to solve. This is
followed by the acquisition of the necessary data, as well as
the identification of performance requirements and constraints.
The collected data must then be prepared, potentially merged
if sourced from different origins, and cleaned to ensure quality
and relevance. The next step involves selecting an appropriate
model, designing its architecture, fine-tuning its parameters,
and carrying out the training, validation, and testing phases.
The process concludes with the deployment of the model in its
target environment. Once deployed, the model can be moni-
tored to assess its performance under real-world conditions
and to detect any anomalies. One of the most complex tasks
in this process is selecting the appropriate AI model. While

data-driven Machine Learning (ML) algorithms have demon-
strated success in many surrogate modeling tasks, they are
often criticized for operating as “black boxes”, their internal
decision-making processes are difficult to interpret. This raises
concerns about transparency and trust [2]. Additionally, such
models tend to require large volumes of high-quality training
data and significant computational resources, which may not
be feasible in domains where data is scarce or expensive
to acquire [3]. Furthermore, purely data-driven models can
struggle to generalize beyond the specific conditions seen dur-
ing training [2][3]. In response to these challenges, numerous
studies have emphasized the importance of integrating domain-
specific knowledge into machine learning [4] [5]. This integra-
tion improves interpretability, reduces data requirements, and
increases consistency with known physical laws or constraints.
This approach, which combines domain knowledge with data,
is known as a hybrid approach and is gaining increasing
popularity. Among these methods, Physics-Informed Neural
Networks (PINNs) [6] [7] have recently attracted significant
attention and have been applied to a wide range of applications
across various fields. These models incorporate physical laws,
typically in the form of differential equations, directly into the
loss function during training. As a result, PINNs not only offer
better generalization from limited data but also provide more
transparent and physically consistent predictions.

Since the introduction of PINNs by Raissi et al. in 2019
[6], most studies have employed PINNs with feedforward
neural network architectures. However, some researchers have
explored alternative types of neural networks to assess their
impact on overall model performance [8]-[14]. The effective-
ness of a PINN architecture depends on both the data and the
task at hand. This means that certain architectures are better
suited to specific situations, depending on the characteristics
of the data and the nature of the problem to be solved, while
others may perform better in different contexts. Therefore,
selecting a suitable architecture for a PINN is challenging due
to the wide range of available options, from the type of neural
network to various model parameter choices.

To simplify this task, we aim to develop an ontology-
based Recommendation System (RS) to assist in selecting an
appropriate PINN model. This work is part of a broader project
that seeks to streamline and automate the entire process of
developing physics-enabled Al surrogates designed to replace
complex simulations. The primary goal of the project is to
enable domain or simulation experts to build their AI Surrogate
Models (SMs) without requiring extensive expertise in Al

The remainder of this paper is organized as follows. In

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-300-2

43

SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation

Section II, we introduce the concept of Physics-Enabled Al,
with a focus on PINNs. We present an analysis of the key
parameters and structural choices that influence PINN’s per-
formance. Section III provides a literature review of existing
PINN architectures across various applications and domains.
In Section IV, we introduce the concept of ontology-based
recommender systems. Section V details the development and
implementation of our proposed ontology-driven recommenda-
tion system, including the ontology construction process and
the recommender interface that suggests suitable PINN archi-
tectures based on user input. Finally, Section VI concludes the
paper with a summary of our findings and directions for future
work.

II. PHYSICS-ENABLED Al
A. Principle of Physics-Informed Neural Networks

PINNSs [6] are a specialized category of deep learning algo-
rithms designed to tackle both forward and inverse problems.
Unlike traditional neural networks that rely solely on data,
PINNs incorporate prior knowledge of the system, typically
in the form of Partial Differential Equations, directly into the
training process. This is achieved by embedding the governing
equations into the network’s loss function, effectively con-
straining the solution space and guiding the model toward
physically consistent predictions. The primary motivation for
developing these algorithms is that incorporating prior knowl-
edge or physical constraints can lead to more interpretable
machine learning models that require less data and remain
robust in the presence of imperfect data.

PDE: L(u(x,t),0) = g
NN(w, b) Y

Figure 1. Principle of Physics-Informed Neural Networks [15].

As shown in Figure 1, a PINN consists of three main

components:

 An approximation module: the neural network NN (w, b),
parameterized by weights w and biases b, takes as inputs
x and t. Through nonlinear transformations governed
by the activation function o, the network outputs an
approximation of the solution u(x,t).

o A physics-informed module, where the predicted solu-
tion is inserted into the governing Partial Differential
Equation (PDE), expressed as L(u(z,t),8) = g. The
derivatives of u with respect to ¢ and = are computed
automatically through differentiation of the neural net-
work. These derivatives allow evaluation of the residual

R = L(u,) — g, which measure the discrepancy between
the network prediction and the governing equation.

o An optimization module, responsible for minimizing the
loss and ensuring convergence toward a physically consis-
tent solution. The loss is expressed as the Mean Squared
Error (MSE), defined as: MSE = MSEy, pc,icy +
MSER. The term M SEy, pc,rcy measures the discrep-
ancy between the predicted solution and the available
data, including Boundary Conditions (BC) and Initial
Conditions (IC). The second term, M SER, evaluates the
residual of the PDE. By combining both contributions,
the optimization process balances fidelity to the observed
data with consistency to the underlying physics, and
training continues iteratively until the overall loss drops
below a prescribed tolerance e.

While this structure provides a powerful framework, choosing
an appropriate NN architecture and parameters can be a
significant challenge due to the vast number of available
options. As highlighted in Section III, a wide variety of PINN
architectures have been proposed across different industries
and engineering domains. Without extensive experimentation,
it is often difficult to determine the most effective configura-
tion, making the process time-consuming. To address this, the
present article explores various possible architectures to help
guide the selection process based on the available data and
input types.

B. Structure and Parameters

To select the most suitable PINN architecture for a given
problem, several key aspects must be considered:

o Network Type: The architecture should match the task
and the nature of the data.

o Depth and Width: The number of layers and neurons per
layer, along with the choice of activation functions, sig-
nificantly influence the model’s ability to learn complex
representations.

o Optimization Methods: The choice of optimizer and hy-
perparameters, such as the learning rate, plays a crucial
role in the model’s convergence.

« Batch Size and Regularization: Batch size, regularization
strategies (e.g., dropout, L2 regularization), and data nor-
malization are essential for efficient and stable training.

o Performance Enhancements: Techniques like data aug-
mentation and early stopping can improve model perfor-
mance and generalization.

o Hyperparameter Tuning: Methods such as Grid Search,
Random Search, and Bayesian Optimization help in find-
ing the optimal network configuration.

o Hardware Considerations: Available computational re-
sources (e.g., GPUs, TPUs) and compatibility with deep
learning frameworks like TensorFlow or PyTorch are
important for scalability and efficiency.

In summary, designing an effective PINN architecture re-
quires a strategic combination of these elements to ensure
optimal performance.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-300-2

a4

SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation

ITI. LITERATURE REVIEW ON PHYSICS-INFORMED
NEURAL NETWORK ARCHITECTURES

Several neural network architectures have been adapted for
use in PINNS, including: Fully Connected Neural Networks
(FCNNs) [16], Convolutional Neural Networks (CNNs) [8],
Recurrent Neural Networks (RNNs) [13], Long Short-Term
Memory networks (LSTMs) [12], Autoencoders (AEs) [17],
Generative Adversarial Networks (GANSs) [10], Bayesian Neu-
ral Networks (BNNs) [9], Graph Neural Networks (GNNs)
[11], and Residual Networks (ResNets) [14], among others.

Among these, FCNNs are the most widely used. These
networks are frequently employed to approximate solutions to
scalar or vector-valued functions, such as PDEs and Ordinary
Differential Equations (ODEs).

CNNs are designed to efficiently process grid-based data,
such as images. They are widely used in tasks like image
classification, object detection, and image segmentation, and
are also applicable to problems involving spatially structured
data, such as velocity fields in fluid mechanics or temperature
distributions.

RNNs are a type of network where connections between
nodes form directed cycles, allowing information to persist
over time. This architecture is particularly well-suited for tasks
involving sequential data, such as time series forecasting, nat-
ural language processing, and speech recognition. By retaining
a form of memory, RNNs can use past information to influence
current predictions, which is essential for understanding and
generating sequences where context and order matter.

LSTMs, a specialized type of RNN, are designed to address
the vanishing gradient problem in traditional RNNs. They
incorporate gating mechanisms to better capture long-term
dependencies in sequential data, making them especially effec-
tive for tasks such as speech recognition, machine translation,
and sentiment analysis.

GNNs are designed to process data structured as graphs and
are applied to systems where relationships between entities
are important, such as transportation networks or molecular
interactions.

Autoencoders are often used for dimensionality reduction
and anomaly detection in complex physical systems, as well
as for data denoising and generative modeling.

GANSs are widely used to generate realistic images, videos,
and other types of data, or to produce physically plausible
solutions that respect physical constraints.

Bayesian Deep Learning (BDL) is an approach that inte-
grates Bayesian methods into deep neural networks to quantify
uncertainty in predictions. Unlike traditional neural networks,
which provide deterministic predictions, Bayesian models gen-
erate probability distributions over model parameters, allowing
the uncertainty associated with each prediction to be assessed.
BDL is particularly useful in domains where decisions must
be made cautiously and where prediction uncertainty can have
significant consequences.

Finally, ResNets are used for tasks requiring very deep
networks, enabling more stable training and improved perfor-
mance through residual connections.

IV. ONTOLOGY-BASED RECOMMENDER SYSTEMS

In an increasingly data-driven world, organizing knowl-
edge in a structured and meaningful way is essential for
understanding, sharing, and reusing information. Whether in
science, business, or technology, we need systems that help
us make sense of complex domains. To achieve this, various
techniques have been developed to organize knowledge, each
with different levels of complexity and expressiveness. These
include taxonomies, ontologies, and knowledge graphs [18].

A taxonomy is the simplest form of knowledge organization.
It arranges concepts in a hierarchical structure, typically from
general to specific, using parent-child relationships [18]. On-
tologies provide a more expressive and formal way to represent
knowledge. They define concepts, properties, relationships,
and rules within a domain, enabling both humans and ma-
chines to reason about the data. Ontologies are essential in
fields like artificial intelligence, semantic web, and biomedical
informatics [18]-[20]. Knowledge graphs extend ontologies by
linking entities and their relationships in a graph structure [20].

For our project, we aim to develop an ontology-driven
recommender system that suggests the most suitable Neural
Network (NN) architecture based on the user’s data type and
task. This system combines a formally structured ontology,
representing relationships between NN types, data modalities,
and task categories, with a Python-based reasoning and query-
ing engine. The ontology enables semantic inference, while the
Python system handles user input, executes reasoning logic,
and delivers recommendations.

Despite the growing interest in semantic technologies for in-
telligent systems, no published scientific work to date appears
to directly implement an ontology-based recommender system
specifically designed to suggest NN architectures based on the
type of data and the task to be accomplished.

While there are ontologies that describe machine learning
concepts, such as the Machine Learning Schema (MLS) [21],
these are primarily intended for metadata annotation, exper-
iment tracking, or model documentation. They do not aim
to support reasoning or recommendation of neural network
architectures based on task and data characteristics, which is
the focus of our work.

V. RESULTS

A. Guiding PINN Architecture Selection Through Input Anal-
ysis

The developed workflow, named PAIRS (for Physics-
enabled Al for Real-time simulations Surrogates), allows users
to input differential equations along with ICs and BCs, which
can be integrated into the loss function. In addition, users
provide data and specify the type of task to be accomplished.

Differential equations play a significant role in optimiz-
ing the learning process. However, the type of these equa-
tions (whether ODEs, PDEs, or Integro-Differential Equations
(IDEs)) does not influence the choice of the PINN architecture.
In contrast, the types and properties of the data, along with
the tasks to be performed, play a crucial role in this choice.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-300-2

45

SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation

Data can be classified into quantitative and qualitative types,
as well as more advanced forms. Quantitative data refers
to measurable information expressed numerically, such as
discrete or continuous numerical data, and time series data
(linear or nonlinear). Qualitative data includes descriptive
information that cannot be measured numerically but can be
categorized or described, such as categorical data, text, images,
audio, and video. Sensor data may be either quantitative or
qualitative, depending on what is being measured. Graph data
is represented as graphs composed of nodes (or vertices) and
edges (or links) connecting them. This format is particularly
useful for representing complex relationships between entities.

These data types may exhibit various characteristics that
influence their processing and analysis, such as:

o Temporal dependency (Dynamic Data): Data evolves over
time, with short-term or long-term dependencies. This
distinction is crucial for choosing between models like
LSTM and RNN.

o Probabilistic nature: Data may contain uncertainty or
variability.

o High dimensionality: Data with many features or vari-
ables, making processing more complex.

« Noise: Data may include errors, inconsistencies, or irrel-
evant information.

o Heterogeneity: Data from diverse sources and formats,
requiring normalization for coherent analysis.

o Large volume: The data may be massive in scale.

PINNs are primarily applied to solving forward and in-
verse differential equations, including ODEs, PDEs, integro-
differential, and stochastic equations, commonly encountered
in physics and engineering. However, PINNs can also be
applied to many other tasks. Some of these tasks influence the
choice of the most appropriate PINN architecture, while others
can be addressed with any architecture without a specific
preference. Tasks that influence architecture choice include:

« Solving Differential Equations
« Inverse Problems:

— Model Discovery: Identifying underlying models or
physical laws from data

— Parameter Estimation: Estimating unknown parame-
ters in physical or statistical models from observed
data

o Sequence Prediction: Forecasting future values or se-
quences based on time series or sequential data.

o Capturing Long-Term Dependencies: Modeling long-
range dependencies in sequential or temporal data, im-
portant in time series forecasting or text analysis.

« Noise Reduction: Cleaning noisy data to recover the
original signal, using techniques like autoencoders for
image, audio, or other data types.

o Data Generation: Creating synthetic data from a learned
model, especially when real data is scarce or expensive.

« Dimensionality Reduction: Reducing the number of vari-
ables while preserving important features

o Uncertainty Quantification: Estimating the uncertainty in
model predictions.

o Preventing Degradation in Deep Neural Networks: En-
hancing stability and performance in deep networks to
avoid degradation during training, e.g., using ResNets to
address vanishing gradients.

Other tasks, such as classification, predictive maintenance, and
anomaly detection may also arise. For these, the choice of
architecture primarily depends on the data type.

B. Ontology Development and Integration

Protégé [22], a free and open-source ontology editor, is
used to develop the ontology. Created at Stanford University,
Protégé is widely adopted in the semantic web community.
It supports the creation and editing of ontologies in various
formats, including RDF, RDFS, and OWL.

As shown in the Figure 2, in the first stage of ontology
construction, we defined three main classes: Data, Task, and
Neural Net Type. The Data class includes two subclasses:
Type and Characteristics. The data types considered include:
numerical data, sequences (e.g., time series), text, images,
audio, video, and graphs. The characteristics include: tem-
poral dependency, probabilistic nature, high dimensionality,
heterogeneity, and data volume. For the Task class, only tasks
that influence the choice of neural network architecture are
considered. These include: solving differential equations and
inverse problems, sequence prediction, capturing long-term
dependencies, noise reduction, data generation, dimensionality
reduction, uncertainty quantification, and preventing degrada-
tion in deep neural networks. This class represents the user’s
task preferences and requirements. The Neural Network class
includes the architectures shown in Figure 2: FCNN, CNN,
RNN, LSTM, AE, BNN, GAN, GNN, and ResNet. Each class
is defined or described in detail using Annotations in Protégé.
To establish relationships between these classes, four object
properties were defined:

« areBestSuitedForData: Links a neural network type to
data types or characteristics it is particularly well-suited
for. For example, CNNs are best suited for image data,
GNNss for graph-structured data, and RNNs for sequential
data with temporal dependencies.

o canBeUsedForData: Also links neural networks to data
types or characteristics they can be applied to, though
not necessarily in an optimal way.

« areBestSuitedForTask: Indicates that a neural network is
particularly well-suited for a specific task.

o canBeUsedForTask: Indicates that a neural network can
be used for a given task.

The ontology is developed in OWL format, and the Her-
miT reasoner is used to validate its logical consistency by
inferring implicit relationships and identifying contradictions.
This involves checking that the defined classes, properties, and
restrictions do not lead to inconsistencies in class hierarchies
or instances. Queries are also executed using the DL Query
tool in Protégé to ensure that the defined relationships and

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-300-2

46

SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation

* @ nverse_Problem
| &
Daa_Generaion | ’
Solving_Diflere |
nkal Equations &
Noise_Reduction .
_in_Data E Task

Cap\.mng_ Long_
‘erm_Dependenci...

Sequence Predc
Uncertainty_Qua
nEkcation

Dimensionality
Reduction

Prevention_ol_D
egradation_in_D. .

[owl:Thing
| g \

. Neural Neét_Type

4

(ere) (G]
I Categercd
_

mnge
o

N .
Lﬂ'ge m"m o‘ M
Dal-l _Points

Pa.

%E

u

N

- m
G

5 Yy, High_Dimensiona
f A\ ~ iy
G) (rme]

Figure 2. Ontology class diagram generated with OntoGraf, showing the main concepts: Data Types and Characteristics, Tasks, and Neural Network Types,
along with their respective subclasses.

properties yield the expected results. An example of these
queries is shown in Figure 3. All tests conducted during
this phase confirmed that the ontology produces the expected
results, both in terms of logical reasoning and query out-
comes, reinforcing its reliability as the foundation for the
recommendation system. Figure 4 illustrates the complexity of
the ontology, with arrows indicating the links between classes
based on the defined properties.

Query (class expression)

Neural_Net_Type and areBestSuitedForData some Temporal_Dependency and areBestSuitedForTask some
Capturing_Long-Term_Dependencies

Execute, Add to ontology

Query results

Subclasses (2 of 2 Query for

LST™M Direct superclasses

owl:Nothing Superclasses

Equivalent classes
Direct subclasses
v Subclasses

Instances

Figure 3. Example of DL queries used to test the ontology.

C. System Implementation and Recommender Workflow

To develop the recommendation system, user inputs are first
connected to the ontology to extract relevant information. This
linkage enables the system to derive meaningful insights and
generate appropriate model recommendations. The implemen-
tation is carried out in Python, using the Owlready2 library to
load and query the ontology.

The process begins with a user interface developed using
Streamlit, which allows users to input their data, equations, IC,
and BC. The interface also prompts users to specify the task
they aim to accomplish by selecting from a set of predefined
options.

Once the inputs are provided, the system analyzes the data
to identify its type and specific characteristics. These are then
mapped to corresponding concepts in the ontology. Based on
this mapping and the selected task, the system generates a
primary recommendation using the property areBestSuited-
ForData/Task, and suggests alternative models through the
property canBeUsedForData/Task. Users can then select one
of the recommended models that best fits their needs, guided
by detailed descriptions that include relative levels of resource
and time requirements.

After a model is selected, additional parameters—such as
the number of layers, number of neurons, learning rate, and
activation function—are either set to default values or defined
as ranges for exploration through hyperparameter optimization
techniques. The model is then implemented and trained using
PyTorch. During training, validation, and testing, the user-
provided equations and conditions (if available) are incorpo-
rated into the loss function alongside the data loss, ensuring
that the model respects the underlying physics. These steps
can follow a standard MLOps workflow. Once the model is
trained and validated, it can be exported and deployed in its
target environment for further testing and integration.

VI. CONCLUSION AND PERSPECTIVES

This work presents a foundational version of an ontology
designed to support the development of physics-informed Al
surrogates, which aim to provide an alternative to complex,
time-consuming simulations. While this initial version pro-
vides a structured framework, it remains a first iteration that
will require further refinement. In particular, future enhance-
ments should include the integration of additional types of
hybrid models to better reflect the diversity of approaches in
physics-enabled machine learning.

The ontology was constructed following an extensive liter-
ature review aimed at identifying the key factors influencing
the selection of neural network architectures in PINNs. The

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-300-2

a7

| Characiensics I Temgporal_Depend shart{emn dene
ency ndaﬂm

SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation

v —_— rData (D Rang

v — Data(Subclass some)
v — areBestSuitedForTask (Domain>Range)
v — areBestSuitedForTask(Subclass some)
v canBeUsedForData (Domain>Range)
v — canBeUsedForData(Subclass some)
v — canBeUsedForTask (Domain>Range)
v — canBeUsedForTask(Subclass some)

v = has subclass

Figure 4. Diagram illustrating the complexity of the ontology, with arrows indicating the links between classes based on the defined properties.

review involved collecting and analyzing a wide range of
studies that applied different architectures in various industrial
and scientific contexts. Some of the relevant studies reviewed
during this process are mentioned in Section III. Each study
was examined based on architecture type, input/output struc-
ture, data characteristics, governing equations, task type, and
application domain. Technical parameters such as activation
functions, number of layers and neurons, optimization al-
gorithms, learning rates, and performance metrics were also
considered. This structured analysis enabled the classification
of use cases and the identification of patterns linking specific
architectures to particular contexts.

This study revealed that several aspects play a role in this
decision, including the nature and characteristics of the data,
the volume of available data, the complexity of relationships
within the data (e.g., linear, nonlinear, or intricate patterns), the
specific objectives of the modeling task, and the availability
of computational resources and time constraints. The ontology
serves as a structured framework that links the neural network,
the data, and the task. Building on this foundation, a recom-
mendation system suggests the most appropriate models to use,
indicating the relative levels of resource and time requirements
as well as the level of model complexity.

The ontology is currently in its first version and accessible
only within our internal project environment. It is implemented
in OWL format and can be edited using the Protégé tool,
allowing for easy updates and integration with additional
models and parameters. Although the development is ongoing
and the full workflow is not yet complete, the ontology has
been designed with extensibility in mind to support future
enhancements and broader system integration. However, its
current scope is limited to PINNs and does not yet cover the
full spectrum of physics-informed machine learning models.
Moreover, even within the PINNs domain, the rapid evolution
of architectures presents a challenge for keeping the ontology
up to date. Another challenge is integrating this approach
into existing MLOps workflows, which can be complex due
to the need to manage physics-based constraints and ensure
alignment with the ontology.

This contribution is part of a broader initiative aimed

at streamlining and automating the entire process of build-
ing physics-enabled Al surrogates. The primary goal is to
empower domain experts, such as simulation engineers, to
develop and deploy surrogate models without needing deep
expertise in Al

Several key directions are planned to extend this work:

« Automatic updating of the ontology using Generative Al
(GenAl) to reflect evolving model types, as new models
and approaches are constantly emerging in this rapidly
evolving domain.

o Development of a database of pretrained models, facili-
tating reuse and accelerating deployment.

o Integration of GenAl and intelligent agents to assist users
in model selection, configuration, and training.

These future developments aim to create a comprehensive,
user-friendly ecosystem for building and managing physics-
informed Al models, ultimately bridging the gap between sim-
ulation expertise and advanced machine learning capabilities.

REFERENCES

[1] S. Koziel and A. Pietrenko-Dabrowska, “Basics of data-
driven surrogate modeling,” in Performance-Driven Surrogate
Modeling of High-Frequency Structures. Springer International
Publishing, 2020, pp. 23-58, ISBN: 978-3-030-38925-3. DOI:
10.1007/978-3-030-38926-0_2.

[2] G. Marcus, “Deep learning: A critical appraisal,” Jan. 2018.
DOI: 10.48550/arXiv.1801.00631. arXiv: 1801.00631.

[3] N. Thompson, K. Greenewald, K. Lee, and G. Manso, “The
computational limits of deep learning,” in Ninth Computing
within Limits 2023, LIMITS, Jun. 2023. po1: 10.21428/
bf61b269.1f033948.

[4] I Pan, L. Mason, and O. Matar, “Data-centric engineer-
ing: Integrating simulation, machine learning and statistics.
challenges and opportunities,” Chemical Engineering Science,
vol. 249, p. 117271, Nov. 2021. por: 10.1016/j.ces.2021.
117271.

[5] G. Karniadakis et al., “Physics-informed machine learning,”
Nature Reviews Physics, pp. 1-19, May 2021. po1: 10.1038/
s42254-021-00314-5.

[6] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear par-
tial differential equations,” Journal of Computational Physics,
vol. 378, pp. 686707, Feb. 2019. por: 10.1016/j.jcp.2018.
10.045.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-300-2

48

https://doi.org/10.1007/978-3-030-38926-0_2
https://doi.org/10.48550/arXiv.1801.00631
https://arxiv.org/abs/1801.00631
https://doi.org/10.21428/bf6fb269.1f033948
https://doi.org/10.21428/bf6fb269.1f033948
https://doi.org/10.1016/j.ces.2021.117271
https://doi.org/10.1016/j.ces.2021.117271
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045

SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation

(7]

(8]

(9]

[10]

(11]

(12]

[13]

[14]

J. Pateras, P. Rana, and P. Ghosh, “A taxonomic survey
of physics-informed machine learning,” Applied Sciences,
vol. 13, no. 12, 2023, 1SSN: 2076-3417. po1: 10.3390/
app13126892.

X. Zhao, Z. Gong, Y. Zhang, W. Yao, and X. Chen, “Physics-
informed convolutional neural networks for temperature field
prediction of heat source layout without labeled data,” Sep.
2021. por: 10.48550/arXiv.2109.12482.

L. Yang, X. Meng, and G. E. Karniadakis, “B-pinns: Bayesian
physics-informed neural networks for forward and inverse pde
problems with noisy data,” Journal of Computational Physics,
vol. 425, p. 109913, Jan. 2021, 1SSN: 0021-9991. por: 10.
1016/j.jcp.2020.109913.

W. Li, C. Zhang, C. Wang, H. Guan, and D. Tao, Revis-
iting pinns: Generative adversarial physics-informed neural
networks and point-weighting method, 2022. DOI: 10.48550/
arXiv.2205.08754. arXiv: 2205.08754.

D. Dalton, D. Husmeier, and H. Gao, “Physics-informed graph
neural network emulation of soft-tissue mechanics,” Computer
Methods in Applied Mechanics and Engineering, vol. 417,
p- 116351, Dec. 2023. po1: 10.1016/j.cma.2023.116351.

F. Liu, J. Li, and L. Wang, “Pi-lstm: Physics-informed long
short-term memory network for structural response modeling,”
Engineering Structures, vol. 292, por: 10.1016/j.engstruct.
2023.116500.

Y. Zheng, C. Hu, X. Wang, and Z. Wu, “Physics-informed
recurrent neural network modeling for predictive control of
nonlinear processes,” Journal of Process Control, vol. 128,
p- 103005, 2023, 1SSN: 0959-1524. DOTI: https://doi.org/10.
1016/j.jprocont.2023.103005.

T. Shan et al., “Physics-informed supervised residual learning
for electromagnetic modeling,” IEEE Transactions on Anten-

[15]

(16]

(17]

(18]

(19]

[20]

[21]

[22]

nas and Propagation, vol. PP, pp. 1-1, Apr. 2023. por: 10.
1109/TAP.2023.3245281.

X. Meng, Z. Li, D. Zhang, and G. E. Karniadakis, “Ppinn:
Parareal physics-informed neural network for time-dependent
pdes,” Computer Methods in Applied Mechanics and Engineer-
ing, vol. 370, p. 113250, Oct. 2020, ISSN: 0045-7825. DOI:
10.1016/j.cma.2020.113250.

Z. Mao, A. D. Jagtap, and G. E. Karniadakis, “Physics-
informed neural networks for high-speed flows,” Computer
Methods in Applied Mechanics and Engineering, vol. 360,
p- 112789, Mar. 2020. port: 10.1016/j.cma.2019.112789.

C. Tan, Y. Cai, H. Wang, X. Sun, and L. Chen, “Vehicle state
estimation combining physics-informed neural network and
unscented kalman filtering on manifolds,” Sensors, vol. 23,
no. 15, Jan. 2023. por: 10.3390/s23156665.

T. Salatino A.and Aggarwal, A. Mannocci, F. Osborne, and
E. Motta, “A survey of knowledge organization systems of re-
search fields: Resources and challenges,” Quantitative Science
Studies, 2025. DOIL: 10.1162/gss_a_00363.

K. W. Fung and O. Bodenreider, “Knowledge representation
and ontologies,” Clinical Research Informatics, pp. 255-2175,
Jan. 2012. por: 10.1007/978-1-84882-448-5_14.

Nature Research Intelligence, Knowledge graphs and ontolo-
gies in semantic web applications, https://www.nature.com/
research-intelligence/nri- topic- summaries/knowledge- graphs-
and - ontologies - in - semantic - web - applications - micro - 92,
Accessed: 2025-08-18.

J. Braga, J. Dias, and F. Regateiro, A machine learning
ontology, Oct. 2020. DOIL: 10.31226/0sf.i0/rc954.

M. A. Musen, “The protégé project: A look back and a look
forward,” AI Matters, vol. 1, no. 4, 2015. por: 10.1145/
2557001.25757003.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025.

ISBN: 978-1-68558-300-2

49

https://doi.org/10.3390/app13126892
https://doi.org/10.3390/app13126892
https://doi.org/10.48550/arXiv.2109.12482
https://doi.org/10.1016/j.jcp.2020.109913
https://doi.org/10.1016/j.jcp.2020.109913
https://doi.org/10.48550/arXiv.2205.08754
https://doi.org/10.48550/arXiv.2205.08754
https://arxiv.org/abs/2205.08754
https://doi.org/10.1016/j.cma.2023.116351
https://doi.org/10.1016/j.engstruct.2023.116500
https://doi.org/10.1016/j.engstruct.2023.116500
https://doi.org/https://doi.org/10.1016/j.jprocont.2023.103005
https://doi.org/https://doi.org/10.1016/j.jprocont.2023.103005
https://doi.org/10.1109/TAP.2023.3245281
https://doi.org/10.1109/TAP.2023.3245281
https://doi.org/10.1016/j.cma.2020.113250
https://doi.org/10.1016/j.cma.2019.112789
https://doi.org/10.3390/s23156665
https://doi.org/10.1162/qss _a_00363
https://doi.org/10.1007/978-1-84882-448-5_14
https://www.nature.com/research-intelligence/nri-topic-summaries/knowledge-graphs-and-ontologies-in-semantic-web-applications-micro-92
https://www.nature.com/research-intelligence/nri-topic-summaries/knowledge-graphs-and-ontologies-in-semantic-web-applications-micro-92
https://www.nature.com/research-intelligence/nri-topic-summaries/knowledge-graphs-and-ontologies-in-semantic-web-applications-micro-92
https://doi.org/10.31226/osf.io/rc954
https://doi.org/10.1145/2557001.25757003
https://doi.org/10.1145/2557001.25757003

	Introduction
	Physics-enabled AI
	Principle of Physics-Informed Neural Networks
	Structure and Parameters

	Literature Review on Physics-Informed Neural Network Architectures
	Ontology-Based Recommender Systems
	Results
	Guiding PINN Architecture Selection Through Input Analysis
	Ontology Development and Integration
	System Implementation and Recommender Workflow

	Conclusion and perspectives

