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Abstract—Accurate and strategic placement of wave-

dissipating blocks is essential for effective coastal protection 

structures. Current supervised learning-based approaches 

have achieved precise single-block placement. However, they 

inherently suffer from significant limitations, such as a lack of 

adaptability to environmental and structural changes, an 

inability to optimize sequences of multiple-blocks, and a heavy 

reliance on extensive pre-generated labeled data. This paper 

identifies the key limitations inherent in supervised 

Convolutional Neural Network methods and proposes a novel 

reinforcement learning (RL)-based approach to address these 

issues. By illustrating how RL naturally provides adaptability, 

strategic multi-block placement, and reduced reliance on 

labeled data, this early-stage idea is expected to contribute to 

the integration of simulation methodologies and machine 

learning approaches.  

Keywords-wave-dissipating blocks; reinforcement learning; 

simulation; automatic stacking. 

I.  INTRODUCTION 

Wave-dissipating blocks play a pivotal role in coastal 
engineering, protecting infrastructure by effectively 
dissipating wave energy. The optimal placement of these 
blocks significantly influences the overall stability, 
compactness, and performance of breakwater structures. 
However, the installation of wave-dissipating blocks still 
heavily depends on the empirical knowledge and experience 
of skilled workers. To overcome the limitations, Xu [1] 
achieved accurate single-block placements using supervised 
Convolutional Neural Network (CNN) methods. Albeit, his 
methods may suffer from inflexibility in adapting to 
structural changes and an inability to perform long-term 
optimization. In this paper, we explore an automatic stacking 
method for wave-dissipating blocks using Reinforcement 
Learning (RL) in our self-developed 3D-BW (3-Dimensional 
BreakWater Simulator) [2]. This RL-based method offers 
enhanced flexibility and adaptability, enabling the learning 
agent to optimize long-term structural integrity and 
dynamically adapt to changes in block types, structure 
geometry, and target goals. 

In Section 2, we review related works, particularly 
focusing on supervised learning-based approaches for block 
placement and their limitations. In Section 3, we present our 
proposed methodology based on reinforcement learning, 
detailing the motivation, agent design, and inherent 
challenges. Finally, Section 4 concludes the paper by 

summarizing key contributions and outlining future 
directions for integrating reinforcement learning into coastal 
block placement simulations. 

 

II. RELATED WORKS 

Accurate placement of wave-dissipating blocks has been 
studied using several computational approaches, with 
supervised learning being one of the most explored methods. 
Xu [1] achieved accurate single-block placements using a 
supervised Convolutional Neural Network (CNN) trained on 
labeled data generated from a physics-based simulator. 

A. Xu’s Supervised CNN Approach 

The process consisted of three phases. 

1) Data Generation & Pose Labeling: A sliding window 

extracted 512 × 512 depth patches from the structure’s 

surface. For each patch, 1000 simulated drops were tested at 

varying poses. Two criteria were evaluated:  

• Compactness: measurement by comparing the 
placed block’s position against the target height 
map, calculating insufficient volume (gap filling). 

• Stability: horizontal displacement determination 

after settling (displacement ≤ 0.2m). 

Then, the best performing pose becomes the ground-truth 
label for CNN training. 

2) CNN Training: The network learned to predict 

optimal translation and rotation from depth patches, 

minimizing supervised loss between predictions and labels. 

3) Real-Time Inference: The CNN predicted poses for 

each patch and placed blocks iteratively until the structure 

was completed.  
This approach achieved high local accuracy and fast 

inference, making it suitable for controlled, static 
construction conditions. However, it has limitations: 

• Dataset Dependence: Requires extensive pre-
generated labeled data for each structural 
configuration. 

• Lack of Adaptability: Cannot generalize new block 
types or changing conditions without retraining. 

• Greedy Placement Strategy: Optimizes only 
immediate placement, ignoring long-term structural 
goals. 

 

40Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-300-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation



B. Other Relevant Approaches 

Beyond CNN-based placement methods, other 
computational strategies have been explored for similar 
optimization problems. Physics-based heuristic approaches 
use deterministic rules to maximize local compactness and 
stability. However, their performance tends to degrade in 
dynamic or unpredictable environments. In the field of 
robotics, reinforcement learning has been successfully 
applied to adaptive planning tasks, such as object 
manipulation, grasping, and stacking under uncertainty [5][6]. 
Hybrid methods that combine CNN-based perception for 
accurate pose estimation with RL-based decision-making 
have also been proposed [7], enabling both precision and 
adaptability, although these approaches face scalability 
challenges when applied to large, irregular structures. 

C. Summary of Achievements and Research Gap  

Supervised CNN methods, such as that of Xu [1], have 

demonstrated high placement accuracy for static, controlled 

conditions, but their lack of adaptability and inability to 

perform strategic optimization over multiple steps remain 

significant drawbacks. In contrast, RL-based methods learn 

directly from interactions with the environment, removing 

the dependence on fixed datasets, and can evaluate the 

consequences of each placement in the context of a long-

term construction sequence. They are also inherently more 

flexible, adapting to changes in block geometry, 

environmental constraints, and overall structural goals 

without the need for complete retraining. Nevertheless, Xu’s 

dataset suffers from limited diversity, being tailored to 

specific block types and structural configurations. 

Incorporating data augmentation techniques, such as 

introducing synthetic noise, randomizing textures, and 

perturbing poses could improve the robustness of both 

supervised and RL-based methods, and in the RL case, 

could be integrated into pretraining phases, such as 

behavioral cloning to accelerate convergence. 

III. PROPOSED METHODOLOGY: REINFORCEMENT 

LEARNING (RL)-BASED BLOCK PLACEMENT 

To address the limitations identified in [1], we introduce 
a RL-based approach using Unity ML-Agents [3] and 
Proximal Policy Optimization (PPO). The method leverages 
the interaction-based learning paradigm inherent to RL to 
dynamically adapt and optimize the strategic placement of 
wave-dissipating blocks. 

A. Motivation of Utilizing RL 

RL allows a learning agent to iteratively obtain an 
optimal policy by interacting directly with its environment, 
receiving feedback through reward signals, and adapting 
actions accordingly. Unlike supervised methods that depend 
on extensive pre-labeled data, RL’s ability to continuously 
refine its strategies based on outcomes makes it uniquely 
suited to scenarios that involve complex and dynamic 
decision-making, such as block stacking in coastal 

engineering. The primary reasons for employing RL in this 
research include: 

• Adaptability: the RL agent dynamically adapts to 
structural or block-type changes. 

• Strategic Long-Term Optimization: RL considers 
the implications of each block placement in a multi-
block scenario, addressing global objectives, such 
as porosity reduction and structural stability. 

• Reduced Data Dependency: the agent learns from 
interaction outcomes rather than extensive 
simulations, reducing the need for dataset 
preparation. 

B. RL Agent Design 

The RL agent operates within our self-developed 3D-BW 
environment, performing iterative block placements by 
observing the current structural state using data 
representations, such as gap maps and depth maps derived 
from discretized grid cells. Figure 1 illustrates a bird's-eye 
view visualization of a gap map. Based on these observations, 
the agent selects a discrete placement coordinate (x, z) and a 
rotation angle, then drops a block from a predetermined 
height.  

 

 
The agent aims to optimize multiple explicit and 

adaptable objectives, including compactness, stability, 
overflow penalty, and porosity. After multiple block 
placements, the Proximal Policy Optimization algorithm [4] 
updates the policy parameters based on the observed rewards 
and outcomes. Through iterative learning, the agent is 
expected to gradually improve its strategic placement 
capabilities.  

C. Limitations 

While RL offers significant potential advantages, several 
challenges must be acknowledged: 

• Increased Training Complexity: potentially requires 
substantial computational resources and training 
time. 

• Reward Function Sensitivity: strong dependency on 
effective reward design, potentially challenging to 
tune accurately. 

• Exploration Efficiency: initial random placements 
may cause slow training convergence, necessitating 
strategies like curriculum learning or behavioral 
cloning to mitigate this issue. 

Figure 1. Visualization of gap map of breakwater structure 
from a bird-eye view 
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IV. CONCLUSION 

This idea contribution proposes an RL approach as an 
innovative, adaptive, and strategic method for optimizing the 
placement of wave-dissipating blocks. By leveraging Unity 
ML-agents, physics-based simulations, and well-designed 
reward functions, RL demonstrates significant potential to 
overcome the inherent limitations of supervised learning 
methods. Although challenges remain regarding 
computational resources and careful reward design, these 
issues may be mitigated by incorporating techniques, such as 
behavioral cloning. This approach lays the groundwork for 
more autonomous and efficient block placement strategies in 
future coastal engineering applications.  
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