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Abstract—This study presents a hybrid simulation approach
combining Agent-Based Modeling (ABM) and System Dynamics
(SD) to capture the evolving system behavior through interacting
stakeholders, including airlines, manufacturers, airports, and fuel
suppliers, and to analyze how airlines adopt sustainable aviation
fuels within the broader transition of the Air Transportation
System (ATS). Because the existing models often overlook the
interplay between micro- and macro-level dynamics, this study
addresses that limitation by integrating both agent-level behav-
iors and broader systemic trends, such as passenger demand,
Gross Domestic Product growth, and infrastructure constraints.
SD captures the internal agent dynamics using stocks and flows,
for example, passenger demand shaped by societal and economic
trends. The ABM architecture represents each airline as an
agent, modeled as a key decision-maker that monitors demand
and capacity dynamics and makes strategic investment decisions
in aircraft and fuel technologies. It is designed to represent
how airlines implement and adjust their strategies in response
to internal factors including various operational aspects and
external factors including infrastructure support and sustainable
fuel availability. Integrating ABM and SD enables concurrent
simulation of agent-level behaviors and system-level feedback,
providing a comprehensive view of the sociotechnical components
in the ATS and their decision-making.

Keywords-Air Transportation System; Hybrid Simulation; Sus-
tainability; Agent-Based Modeling; System Dynamics.

I. INTRODUCTION

As climate change is becoming an emerging critical global
challenge, the aviation industry has committed to achieving
net zero CO2 emissions by 2050 [1]. Achieving this goal
requires various technical and operational measures within
Air Transport Systems (ATS) [2], including the adoption of
more sustainable fuels and advanced aircraft technologies
compatible with these fuels with improved energy efficiency.
Furthermore, enabling the transition from kerosene-based fuels
to sustainable fuels involves the establishment of supporting
energy infrastructure, including both the fuel technologies and
the systems required for their deployment, production, storage,
and distribution. To date, Sustainable Aviation Fuel (SAF), liq-
uid hydrogen (LH2), ammonia (NH3), and methanol (CH3OH)
are considered as the potential sustainable fuel options for
increased sustainability, each with its own characteristics in
terms of technological maturity, scalability, environmental
benefits, and transition challenges.

To understand the gradual transition of the ATS from
keronese-based fuels to sustainability comprehensively, as

characterized by the complex sociotechnical interactions and
dynamic behaviors, it is important to adopt methodologies
that can effectively capture inter-dependencies of different
components within the system and their impacts on the overall
system. Simulation-based methods, including Agent-Based
Modeling (ABM) and System Dynamics (SD), are considered
powerful tools for examining and explaining the key mecha-
nisms and interactions within complex sociotechnical systems,
to support the design and analysis of such systems [3]. ABM is
used to simulate the behavior of the emerging system from the
interactions of autonomous agents [4], while SD models the
evolution of the system driven by feedback using causal loop
diagrams and stock flow simulations [5]. Both are widely used
for modeling complex, dynamic systems and support "what-if"
analysis without real-world intervention [6].

The central objective of the present work is to study
how airlines make strategic decisions about adopting more
sustainable aviation fuels. Despite rising interest in sustain-
able transitions, hybrid simulations combining ABM and SD
remain underexplored. Most existing studies either employ
ABM or SD in isolation, and therefore miss the micromacro
interplay which is important for fleet-transition planning that
involves complex interactions among industry stakeholders,
market forces, and policy measures [6][7]. To address this
gap, this paper proposes a novel hybrid simulation approach
that combines ABM and SD to model airline decision-making
processes in sustainable aviation transitions.

The study aims to capture the complex interactions among
technology, industry, markets, and society, and to simulate
airline decision-making processes related to the acquisition of
new sustainable aircraft. ABM and SD methods are comple-
mentary and can be integrated effectively; however, despite the
feasibility, such integration remains rare and has limited appli-
cation [7]. ABM uses a micro-modelling approach, focusing
on the behavior of individual agents, while SD uses a macro-
modeling approach, focusing on the aggregated stocks and
flows that represent higher-level or broader population-level
dynamics [7]. Both are relevant and valuable for analyzing
the aviation transition to more sustainable fuels. The hybrid
ABM and SD approach allows for a more comprehensive and
realistic representation of the sociotechnical elements within
the ATS, their interactions, and decision-making processes. It
enables capturing relevant elements of individual heterogeneity
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and stochasticity of entities and processes [6], such as micro-
level decision behaviors (e.g., individual airline strategies),
while also providing a strategic overview [6] of macro-level
system impacts (e.g., population and GDP trends) for esti-
mating passenger demand, manufacturer capacity, government
support, and infrastructure constraints. This study makes four
key contributions. First, it introduces a conceptual architecture
for a hybrid simulation of the ATS that unifies SD and ABM
principles, providing a clear, holistic picture of how macro-
level stocks-and-flows and micro-level agents interact in a
single framework. Second, the paper specifies the SD side
in-depth, elaborating the governing equations and feedback
loops for core modules, such as fleet capacity, passenger
demand, and environmental constraints, and showing how
these modules shape aggregate system behavior over time.
Third, it sets out a rigorous ABM methodology that captures
the behavior of airlines, airports, regulators, and passengers.
Special emphasis is placed on the airline decision logic for
scheduling, pricing, and fleet deployment, thereby grounding
the model in realistic operational choices. The work describes
an explicit macro-to-micro coupling strategy that synchronizes
SD state variables with ABM agent states, ensuring internal
consistency and enabling the exploration of emergent phe-
nomena across multiple temporal and organizational scales.
Collectively, these advances deliver a reproducible blueprint
for researchers who wish to combine SD and ABM when
analyzing complex socio-technical systems, such as the ATS.

The paper is organized as follows. The overall framework is
presented in Section II. Within this, the high-level SD model-
ing for Society and Airlines agents are outlined in Section
II-A. The focus then shifts in Section II-B to the Agent-
Based Modeling that governs airline decision-making. The
paper concludes in Section III with a discussion of applications
and future work.

II. HYBRID ABM-SD CONCEPTUAL FRAMEWORK

The conceptual framework illustrating different sociotech-
nical elements considered in this study is shown via Figure
1. The figure provides a high-level view of interacting agent
components of the ATS, including Society, Airlines, Aircraft
Manufacturer, Airport and Fuel Supplier, and their underlying
SD modules, forming the conceptual structure of the simula-
tion model.

Within each agent’s block are the names of the specific
SD modules that represent that agent’s internal dynamics. The
agents are connected by arrows illustrating the key flows and
dependencies and indicating how agents interact and influence
each other. The framework highlights the holistic view of
the system and shows how the interactions between various
sociotechnical elements within the ATS together shape and
drive the overall dynamics and evolution of the sustainable
fuel transition. By modeling these key actors as interacting
agents, the framework allows for capturing emergent system
behaviors that arise from the bottom-up interactions of individ-
ual components, providing a powerful mechanism to analyze
the complex pathways and challenges of aviation transition.

Figure 1. Hybrid ABM-SD conceptual framework of the ATS.

A. System Dynamics Modeling: Stock and Flow Diagrams for
Society, Airlines, and Aircraft Manufacturers

The stock and flow diagrams were created to capture the
feedback structure within the Society, Airlines, and Aircraft
Manufacturer agents.

Figure 2. Stock and flow diagram of the Society agent

The stock and flow diagram shown in Figure 2 illustrates
the core dynamics of the passenger demand module within
the Society agent, which aims to simulate passenger demand
and takes into account several key determinants of demand
as contributing factors. Multiple factors have been identified
in the literature that directly or indirectly influence aviation
passenger demand; however, at a broad level, they can be
differentiated into two categories: internal determinants and
external determinants. The internal determinants of demand
mostly cover the service level aspects of the service providers,
including airlines and airports, and thus are related to passen-
ger perception; whereas, the external determinants comprise
demographic and geo-economic factors of a region [8][9].
Amongst all these, ticket prices, system congestion, popula-
tion, and income of the population are selected as these have
been considered important and utilized to estimate aviation
demand in the literature [10]–[13]. To represent the effect of
population income on demand, gross domestic product (GDP)
per capita is employed as a common indicator of average
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income level within a population [14]. These dynamics are
captured in the stock-and-flow structure, which includes two
key stocks: the GDP stock representing GDP and influenced
by the GDP growth rate; and the population stock, representing
the total population of a region, which increases through the
birth flow determined by the birth rate. The relationship is as
follows:

p = K × γgdp × γsc × γfare (1)

where p denotes total aviation demand, K represents popula-
tion size, and γ denotes effect of different factors. The relation
used to estimate factors, such as the effect of GDP, system
congestion, etc., is as follows:

γgdp =

(
A(t)

A

)α

(2)

where the fraction represents the ratio of the current value (at
time t) of the variable with respect to the reference value, and
α denotes the sensitivity factor of the quantity at hand.

Figure 3 depicts the internal dynamic processes within the
Airlines agent. The stock, represented by the ‘operationalFleet’
variable, represents the number of aircraft currently in service.
Within this model, the overall fleet is divided into two sub-
categories based on the fuel type they may be able to utilize,
i.e. the kerosene-based aircraft and the more sustainable fleet
or non-kerosene-based aircraft. Moreover, within each cate-
gory, the aircraft are further classified into the following types:
1) short distance, 2) medium distance, and 3) long distance,
based on the flight haulage. The categorization is crucial as
the seating capacity is different for each of these aircraft types.
These distinctions are hereafter referred to as fuel-based and
distance-based classifications.

The fleet of the airlines is increased by the addition of
newer aircraft procured from the manufacturer, and the rate of
increase is determined by the ’orderFulfillmentRate’ variable.
On the other hand, the ’operationalFleet’ decreases due to
aircraft ’retirement’ flow, governed by the retirement rate (in-
dicated by ‘retirementRate’ variable in Figure 3). Furthermore,
as seen in the figure, Available Seat Kilometers (ASKs) and
Revenue Passenger Kilometers (RPKs) are computed. Both
these quantities are important metrics utilized by airlines to
track their operational performance. ASKs are tracked by
airlines to measure their total passenger carrying capacity,
and RPKs are utilized to assess the volume of passengers
carried by them [15]. These metrics are obtained by using
the following relations:

ASKd = nd × cd × sd (3)

RPKd = pd × sd (4)
where d = {short, medium, long} and corresponds to different
flight distance categories; n is the number of operational
aircraft; c represents the capacity or the number of seats;
s is the average flight distance; and p corresponds to the
demand for the d type of aircraft, obtained by multiplying
the proportion of demand for each flight category with the
total demand.

Subsequently, ASKs and RPKs are used to generate the
passenger load factor (PLF) which is defined as the proportion
of available seats filled with passengers [15] and computed
using the following relation:

PLFd =
RPKd

ASKd
(5)

This metric is subsequently utilized for the estimation of the
total traffic intensity factor. Revenue is estimated as a function
of traffic intensity, RPKs, and the average passenger yield is
categorized according to flight distance. Profit is computed
with revenue and costs as the contributing factors. The overall
airline’s costs are determined by the aggregation of various
cost components, specifically fuel costs, operating costs, and
penalty costs. Furthermore, a penalty is imposed as an external
cost due to deviation from the sustainability target. In other
words, airlines need to maintain a specific proportion of a more
sustainable fleet, and when there is a shortfall in the target,
a penalty is charged. Airline decision on new aircraft orders
is governed by the interaction of variables representing fleet
capacity and the target capacity. When the existing capacity
falls below a pre-specified threshold level, orders are placed
to the Manufacturer agent. This order management is handled
by the agent architecture and is discussed in the next section.

The primary function of the SD module within the Man-
ufacturer agent is to process orders and deliver fleet to the
Airlines agent. As observed from Figure 4, there are two
stocks in the figure: ‘orderStock’, which represents the backlog
of aircraft orders received from the airlines and waiting to
be manufactured. The production rate is controlled by the
capacity variable. ‘finishedOrders’ stock variable accumulates
the aircraft that have been manufactured and are ready for
delivery. This information is then utilized to apprise the
manufacturer about the delivery of aircraft. Conceptually,
the figure outlines orders entering a backlog (orderStock),
being processed through production (reducing order stock and
increasing finished orders stock), and finally being delivered.
The rates of production and delivery are constrained or influ-
enced by the manufacturer’s capacity.

B. Agent Based Modeling: Airlines Decision Making

Agent-based models are composed of individual agents,
each with its own behavior, states, interaction protocols, and
decision-making rules. Elements or components of the ATS are
classified as passive agents and active agents. Both of these
agent types share common features: they are autonomous,
self-directed, interactive, and have explicit goals. Their key
distinction lies in their decision-making ability; an active agent
can learn and adapt its behavior in response to a change in the
environment. Therefore, the Society agent can be categorized
as a passive agent while the Airlines and Manufacturer agents
are modeled as active agents.

As a passive agent, the primary purpose of the Society agent
is to simulate the passenger demand which has been described
in Section II-A; the generated demand is then communicated to
the Airlines agent. Meanwhile, as an active agent, the Airlines
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Figure 3. Stock and flow diagram of the Airlines agent.

agent compares the demand against the capacity. When the
capacity-to-demand ratio reaches a specific threshold, a new
order is placed.

The order-making process for selecting appropriate aircraft
and fuel technology is grounded and structured on two key
factors, including internal and external factors. The internal
factors are those that pertain directly to the airlines’ own
operational context and priorities and reflect internal consid-
erations. J is a set of different fuel technologies modeled
in the paper, and J= {Kerosene, SAF, NH3, CH3OH, H2},
indicating different fuel technologies. Furthermore, internal
factors are denoted using θ and external factors using ϕ
notations, respectively. Also note that both, θ & ϕ ∈ [0, 1]. The
internal factors, described in detail below, relate to variables
intrinsic to the Airlines agent, reflecting operational or strategic
considerations that influence decision-making.

1) Operational cost factor (θoc): This factor focuses on
"per flight cost", encompassing both variable and fixed cost
components of different aircraft types. The operational costs
are represented with C = {cj |j ∈ J}, and the operational cost
factor for a flight of type j is computed using the relation:

θocj =
min{C}

cj
(6)

The aim is to select the aircraft with lower operational expen-
ditures, therefore, the operational cost score is calculated to
reflect this, where a higher score would typically be assigned
to options with lower costs. The expression is used as it

Figure 4. Stock and flow diagram of the Manufacturer agent

normalizes the cost of an option j against the minimum
achievable cost, rewarding lower-cost options.

2) Operational life factor (θol): Similar to the previous
metric (discussed in section II-B1), this factor is used to
capture the impact of the operational life of the aircraft. It
is a relative score that is designed to assign a lower value
to aircraft with shorter operational life and vice versa, as
expressed below:

θolj =
min{L}

lj
(7)

where L = {lj |j ∈ J} representing life in years.
3) Sustainability gap factor (θs): A key consideration

included in the decision-making process accounts for the
airlines’ performance against sustainable fleet targets. It specif-
ically measures the gap between the actual proportion of
sustainable fleet ASKs and the targeted proportion for a given
period. It is to be noted that this factor adds extra weight to
the score of non-kerosene-based aircraft. Thus, it is estimated
using the relation:

θsj =


0, if j = kerosene

1−min

(
f(t)

f
, 1

)
, otherwise

(8)

where f stands for the sustainability target and f(t) is a
function of time and indicates the current proportion of non-
kerosene-based aircraft.

These internal factors are then combined to calculate the
total internal score for all the available aircraft options.

θj = θsj + θolj + θocj ∀j ∈ J (9)

The external factors are those which are external to the Air-
lines agent and concern the wider air transportation ecosystem.
These factors, specifically, originate and depend on Manufac-
turer, Airport, and Fuel Supplier agents.
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4) Order delivery factor (ϕM ): This factor is specific to the
Manufacturer agent. It assesses the manufacturing landscape
by weighing in the expected delivery time of the aircraft order.
The Airlines agent interacts with the Manufacturer agent to
retrieve the order delivery time frame. A long order delivery
time will translate to a lower value of the order delivery factor
for that particular aircraft type. This factor is derived using the
formula:

ϕM
j =

min(T )

tj
(10)

where T = {tj |j ∈ J} denotes time.
5) Infrastructure support factor (ϕInfra): The support in-

frastructure factor is available for a given fuel technology, in
terms of fuel delivery and storage, both currently and in the
future. The idea is to give more weight to technologies with
better infrastructure with potential for future development.
Consequently, this factor has two distinct components: 1)
present (ϕp) and 2) future (ϕz), and is obtained using the
relation:

ϕInfra
j = w1ϕ

p
j + w2ϕ

z
j (11)

where p and z denote present and future, respectively; and w1

and w2 are the weights that sum to 1 and denote the relative
importance of these components. The score for the present
state of the infrastructure support is calculated by considering
the capacity utilization level, with a higher score assigned to
lower capacity utilization values because of its capacity to
accommodate more demand.

ϕp
j = 1− ρj (12)

Where ρj indicates the utilization level of technology j.
The future aspect is included to factor in the prospects of
growth in a specific technology. For example, a higher relative
investment in hydrogen technology signifies stronger future
support and development, leading to a higher score.

ϕz
j =

Qj∑
j Qj

(13)

In this case, Q is the notation to indicate investment.

6) Fuel Supply Factor (ϕFS): This factor covers the supply
side for different fuel types, considering the current availabil-
ity and, the future growth prospects. This encompasses the
assessment of how readily the fuel can be sourced now and the
long-term outlook and the development of the fuel technology.
Technologies that are relatively secure and scalable would be
rated relatively favorably. Similar to the previous case, the
fuel supply factor can be expressed as the weighted sum of
the present availability (denoted as ϕav) and future growth
potential (denoted as ϕfp), as presented:

ϕFS = w1ϕ
av
j + w2ϕ

fp
j ∀j (14)

where w1 and w2 are weights and sum to 1.
The current fuel availability is obtained by taking into

account the fuel production capacities of all the different types
of fuel. The following expression is used to obtain its value:

ϕav
j =

κj

max(κ)
(15)

where κ indicates the current fuel production capacity.
Next, the prospect corresponds to the capital invested or the

planned capital investment in the development of a technology.
This factor is calculated by taking a ratio of capital invested
in a specific technology and the total capital invested across
all the technologies.

ϕfp
j =

Ij∑
j Ij

(16)

Here, the notation I is employed to refer to investment in
fuel technologies. The external factors are then summed up to
calculate the total external score for all the available aircraft
options using the relation:

ϕj = ϕM
j + ϕInfra

j + ϕFS
j ∀j (17)

After which, the internal and external factor scores are
combined for different aircraft alternatives to estimate the
aggregated score, and the option with the maximum score is
selected. The entire decision-making procedure is explained
using a pseudocode shown in Algorithm 1 via Figure 5. Fur-
thermore, individual calculations of internal and external factor
scores are implemented via functions which are presented
using Algorithm 2 in Figure 6.

Figure 5. Algorithm 1: Airlines agent decision making procedure.

III. CONCLUSION AND FUTURE WORK

The hybrid ABM-SD frame provides a means to analyze
how policy instruments or market shocks propagation through
tightly coupled technical and behavioral system elements that
ABM or SD alone can capture. The framework lays the
analytical groundwork for rigorous, whole-system assessments
of sustainable aviation strategies. It offers researchers, in-
dustry stakeholders, and policymakers an extensible tool to
explore how heterogeneous decision-makers, emerging aircraft
technologies, and evolving fuel infrastructures interact over
the multi-decade horizon that separates todays fleet from a
genuinely low-carbon future. By embedding explicit sustain-
ability gap and penalty mechanisms, the framework offers
a transparent way to test how airlines might schedule fleet
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Figure 6. Algorithm 2: Functions for calculating Airlines agent internal and
external factor scores for decision making.

renewal in response to decarbonization targets. The mod-
ular structure facilitates scenario experimentation, allowing
researchers and practitioners to interchange empirically cal-
ibrated sub-models (e.g., refined fuel-supply curves or airport
capacity modules) without re-engineering the whole system.
The current implementation employs stylized parameters for
infrastructure utilization, investment, and fuel production, and
systematic calibration with historical airline, manufacturer,
and energy-market data would strengthen predictive validity.
The future work would aim to expand the models analytical
boundaries by implementing active-agent logic for airports and
fuel suppliers to enable the simulation of richer, co-dependent
strategies, including the effects of slot constraints and supplier
learning curves. Next, the model would be integrated with
the wider energy infrastructure to simulate the cross-sectoral
competition for key inputs, such as electricity and hydrogen,
to identify potential risks and macroeconomic bottlenecks. Fi-
nally, coupling the model with optimization or reinforcement-
learning techniques could support the design of adaptive policy
portfolios that steer the ATS toward net-zero trajectories.
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