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Abstract—The Suppression of Enemy Air Defense (SEAD) 

mission is a critical component of Unmanned Aerial Vehicle 

(UAV) swarm operations, presenting a complex challenge for 

modeling and simulation. Machine Learning (ML), particularly 

Deep Reinforcement Learning (DRL), offers a promising 

approach to enhance UAV swarm SEAD effectiveness through 

intelligent decision-making. This paper, therefore, explores a 

modeling and simulation approach to intelligent combat 

equipment decision-making based on deep DRL. We establish a 

DRL modeling framework grounded in combat simulation and 

specifically construct an intelligent decision-making framework 

for UAV Swarm SEAD. Focusing on the attack decision-making 

problem, we present a case study utilizing the Dueling Deep Q-

Network (Dueling DQN) algorithm for intelligent combat 

decision modeling. Preliminary experimental results 

demonstrate that the ML-based intelligent decision-making 

model achieves superior combat effectiveness compared to 

traditional knowledge engineering-based models. 

Keywords- UAV swarm ;SEAD; decision-making modeling; 

combat simulation ; Dueling DQN. 

I.  INTRODUCTION 

Traditional manned aircraft assault methods face 
significant challenges in ensuring the safety of personnel and 
platforms against the modern air defense system. With the 
rapid development of UAV technology, employing UAV 
swarms is poised to become the predominant approach for 
executing SEAD tasks in the future [1]. 

The core challenge in achieving autonomous mission 
execution for UAV swarms lies in solving the problem of 
intelligent combat decision-making for their operations. 
Conventional UAV swarm combat decision-making primarily 
relies on knowledge engineering techniques, such as 
production rules and expert database systems [2]. However, 
these methods exhibit limitations, including difficulty in 
enumerating the complexity of the situational space, 
challenges in handling the inherent uncertainties of complex 
scenarios, and a lack of adaptive evolution in combat decision 
algorithms. Concurrently, the increasing credibility of 
unmanned combat simulation systems enables the generation 
of vast amounts of offensive and defensive combat data. This 
data can not only be used to evaluate UAV swarm combat 
effectiveness but also serve as input samples for machine 
learning algorithms, supporting the reinforcement learning 
training of combat decision models. This development opens 
new avenues for significantly enhancing UAV swarm combat 
effectiveness. 

In recent years, DRL has achieved remarkable 
breakthroughs in domains such as games, business, and 
control [3], often surpassing human performance and 
demonstrating substantial potential for intelligent decision-
making applications. Within the military domain, research 
utilizing DRL is gaining traction: Reference [4] applied 
heuristic reinforcement learning to air combat intelligent 
decision-making; Reference [5] employed DRL to study 
aircraft air-to-ground combat decision-making; Reference [6] 
implemented cooperative maneuvering decision-making for 
multiple warheads during penetration using DRL, achieving 
superior results compared to rule-based methods in simulation; 
Reference [7] proposed a DRL-based decision-making 
process framework for multi-aircraft cooperative air combat 
and validated its feasibility and practicality on a wargaming 
platform. 

This paper first proposes a general modeling methodology 
for intelligent combat equipment decision-making, integrating 
combat simulation with DRL. Building upon this, we establish 
an intelligent decision-making training and modeling 
framework utilizing the equipment combat simulation system 
WESS. Subsequently, the paper focuses on the specific 
problem of combat decision-making modeling for 
heterogeneous UAV swarm SEAD. We detail the design of an 
intelligent decision-making model framework, investigate 
suitable DRL algorithms, and present a case study on 
intelligent decision-making modeling. The effectiveness of 
the proposed method and algorithm is validated through 
experimental comparisons with traditional knowledge 
engineering-based decision models. 

The remainder of this paper is organized as follows. 
Section II presents the conceptual framework for intelligent 
equipment combat decision-making modeling based on 
combat simulation and DRL, as well as the detailed training 
modeling framework. Section III is dedicated to the decision-
making model framework for UAV Swarm SEAD operations, 
including the operational concept, decision network analysis, 
and the detailed design of the perception, jamming, and attack 
decision networks. Section IV describes the training process 
of the attack decision network based on the Dueling DQN 
algorithm, covering the algorithm summary, network 
structure, and reward design. Section V provides a case study 
to validate the proposed approach, detailing the problem setup, 
rule experiments, pre-training, iterative training, and 
intelligent testing results. Finally, Section VI concludes the 
paper and discusses future work. 
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II. INTELLIGENT EQUIPMENT COMBAT DECISION-

MAKING MODELING FRAMEWORK BASED ON COMBAT 

SIMULATION AND DRL 

A. Conceptual Framework of Intelligent Equipment 

Combat Decision-Making Model Based on Combat 

Simulation 

Within the framework of combat simulation, the entire 
intelligent weapon equipment, including its combat decision-
making algorithm, must be constructed as a combat simulation 
model. This enables its incorporation into the combat 
simulation environment for interactive exploration and 
learning evolution. The weapon equipment model supporting 
combat simulation can be divided into two modules based on 
the operational domain described: the equipment simulation 
model and the operational behavior model. The former 
primarily describes behavior within the physical information 
domain and is responsible for battlefield situation awareness 
and operational command execution. The latter primarily 
describes behavior within the cognitive organization domain. 
It is responsible for analyzing and processing battlefield 
situation information output by the equipment simulation 
model, generating action plans, making operational decisions, 
and passing the resulting commands to the equipment 
simulation model for execution. 

The operational behavior within the cognitive 
organization domain can be further categorized into two types: 
pre-war planning behavior and real-time decision-making 
behavior. The former can be flexibly described using data or 
scripts and implemented as a scripted operational behavior 
model within the combat simulation system. The latter 
requires making ad hoc decisions based on real-time changes 
in the situation and can be described using various decision-
making modeling methods. If knowledge engineering 
methods are employed for decision modeling, it can be 
flexibly implemented as a behavior script. If machine learning 
methods are used for modeling, it is typically implemented as 
a neural network for inference computation, with DRL used 
for training and modeling. Current neural network models are 
generally trained and inferenced using the Python scripting 
language, enabling their integration into the scripted 
description framework of combat behavior. During 
operational simulation, the operational behavior model 
obtains situation information from the equipment simulation 
model and generates operational commands based on this 
information. These commands then drive and control the 
execution of the equipment simulation model, as depicted in 
the simulation loop in Figure 1. The training loop shown in 
the bottom half of the figure indicates that combat simulation 
generates the training sample data required for DRL-based 
intelligent decision-making modeling. An updated intelligent 
decision-making network model is formed through DRL 
training. The generation of subsequent training sample data is 
influenced by this updated model rejoining the combat 
simulation loop, and this process iterates until convergence. 

Reinforcement learning algorithms are categorized into 
two types based on whether the behavior policy and the target 
policy are identical: On-Policy and Off-Policy. In On-Policy 

training algorithms, the policy used to generate samples is the 
same as the policy being optimized. This requires the agent 
training to be executed synchronously with the combat 
simulation. Given the computational complexity of combat 
simulation, On-Policy algorithms are not well-suited for 
parallel execution of simulations. Conversely, Off-Policy 
algorithms represent a more suitable training approach. Off-
Policy training allows the combat simulation and training 
processes to run in parallel. Training samples generated from 
each combat simulation run (termed a round) are written 
concurrently into the corresponding round's sample database. 

 

Figure 1.  Conceptual framework of intelligent equipment operational 

decision-making mode 

B. Intelligent Equipment Operational Decision-Making 

Training Modeling Framework Based on DRL. 

1) Training modeling process: The process is divided 

into four stages as shown in Figure 2: rule experiment, pre-

training, iterative training, and intelligent comparison test. 

Suppose there are m intelligent decision-making networks in 

UAV swarm. 

a) The rule experiment: Aims to optimize the decision 

rules and prepare the pre-training data. By performing Monte 

Carlo experiments on all the rules of the decision problem in 

each training scenario space, a large number of rule 

experiment results data and reinforcement learning round 

sample data are obtained to evaluate the combat effectiveness 

of UAV swarm under each combination rule 𝜋𝑅 =
(𝑅1, 𝑅2, … , 𝑅𝑚), and identifies the optimal rule to serve as the 

benchmark for subsequent intelligent test comparison. 

b) The pre-training: Aims to provide an initial network 

for iterative training. By optimizing the round sample data 

obtained from the rule experiment, the data set with better 

combat effect of UAV swarm is obtained. On this basis, each 

decision network is trained offline to yield 𝜋𝑁
0 =

(𝑁1
0, 𝑁2

0, … , 𝑁𝑚
0 ) . This stage utilizes the sample data 

generated by optimal rule experiments to avoid the "cold 

start" problem in iterative training and improve convergence 

efficiency. 

c) Iterative training: Aims to accumulate experience 

and improve policy through continuous interaction between 

 

16Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-300-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation



the agent and the training scene. On the basis of the pre-

training, the network 𝜋𝑖  is iteratively trained in turn, and the 

rest of the network is fixed in this process. Referring to the 

idea of policy improvement theorem [8], the policy 

improvement point is found in the single policy 𝜋𝑖, so that the 

joint policy 𝜋 is improved. After all the policies are updated, 

the single round of policy iteration training is completed until 

the end conditions are met, such as achieving the desired 

operational effectiveness index or reaching the maximum 

number of iteration rounds, etc.The final optimized policy is 

denoted as 𝜋𝑁
′ = (𝑁1

′, 𝑁2
′, … , 𝑁𝑚

′ ). 

d) The intelligent comparison test: Aims to verify the 

effectiveness of the single-strategy iteration training. Combat 

effectiveness evaluations are conducted for the UAV swarm 

in test scenarios using both the optimized policy 𝜋𝑁
′  and the 

baseline policy 𝜋𝑅 . The experimental results are then 

compared to validate the efficacy of the intelligent decision-

making approach. 

 

Figure 2.  Policy iteration method 

2) Training Support Environment : The reinforcement 

learning training support environment for intelligent 

decision-making based on combat simulation typically 

comprises four modules: combat scenario generation tool, 

combat simulation engine, parallel experiment and training 

management tool, and reinforcement learning training 

algorithm. The architecture of this training support 

environment is depicted in Figure 3. 

a) Scenario generation module: Responsible for 

describing various scenarios that intelligent equipment may 

encounter in actual combat. It provides the diverse situational 

data sources required for decision-making model training. 

b) Combat simulation engine module [9]: Responsible 

for simulating and executing numerous scenarios, generating 

both combat effectiveness data and the round sample dataset 

needed for training. 

c) Parallel experiment and training management 

module: Responsible for managing large-scale parallel 

simulation experiments. It also orchestrates the synchronous 

scheduling of the DRL training algorithm and facilitates 

iterative updates to the decision model during 

experimentation. 

d) Reinforcement learning training module: 

Responsible for implementing the reinforcement learning 

algorithm. It accepts scheduling directives from the parallel 

experiment and training management module and is 

specifically tasked with generating and updating the decision 

network model. 

III. THE DECISION-MAKING MODEL FRAMEWORK OF 

UAV SWARM SEAD OPERATION  

A. Concept of UAV swarm SEAD operation 

In SEAD missions, UAVs must perform reconnaissance, 
jamming/suppression, and strike tasks autonomously [10]. 
This enables the swarm to form a complete kill chain and 
achieve rapid "OODA" cycles. The UAV swarm composition 
typically includes: a reconnaissance aircraft equipped with 
radar pods, a jammer with electronic jamming pods, and an 
attack aircraft armed with multiple anti-radiation missiles. 

The typical mission scenario involves: a number of mobile 
air defense positions (Blue Force) dispersed within a 
designated area. The Red Force organizes a UAV swarm to 
conduct SEAD operation against these positions. The attack 
aircraft form a low-altitude formation. After takeoff from the 
airfield, they proceed to the periphery of the operational area 
and enter a holding pattern. The jammer and reconnaissance 
aircraft form a high-altitude formation. They depart later than 
the low-altitude formation, flying at ultra-low altitude. At a 
predefined waypoint, they execute a pop-up maneuver to 
induce Blue Force air defense radars to activate and reveal 
their positions. The reconnaissance aircraft then detects and 
locates these targets, assigning them to the low-altitude attack 
formation. The primary actions of the attack aircraft (as 
depicted in Figure 4) are: selecting a launch point upon 
receiving assigned targets, proceeding to that location, 
launching missiles, and then entering a holding pattern while 
awaiting battle damage assessment (BDA) results from the 
reconnaissance aircraft to determine whether to conduct re-
attack or proceed to the next target. The jammer continuously 
suppresses Blue Force air defense radars and jams incoming 
missile seekers, creating safer conditions for the low-altitude 
formation and reconnaissance aircraft. The mission concludes 
when: the reconnaissance aircraft is destroyed, all attack 
aircraft missiles are expended, all attack aircraft are destroyed, 
or all enemy targets are eliminated. Following mission 
completion, the surviving assets return to base. The objective 
is to destroy the maximum number of Blue Force air defense 
radars while sustaining minimum losses. 
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Figure 3.  Reinforcement learning training supporting environment for intelligent decision making 

 

Figure 4.  Attack behavior model of attack aircraft

B. Analysis of UAV swarm SEAD operation decision 

network 

The SEAD mission encompasses multiple decision-
making policies for the UAV swarm, such as formation flying, 
low-altitude penetration prior to engagement, electronic 
suppression, detection and perception, fire attack, and target 
assignment during engagement. Of these, the first three 
policies (pertaining to the pre-engagement phase) are 

particularly complex and challenging to describe using rules, 
and their decision outcomes significantly impact battle results. 
These decision problems exhibit the characteristics of a 
Markov decision process, making them suitable for 
description via neural networks and training using DRL. The 
remaining policies are directly modeled as rule-based scripts 
employing knowledge engineering methods. Figure 5 
illustrates the composition structure of the entire UAV swarm 
SEAD operational decision-making model.
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Figure 5.  Operational decision-making structure of UAV swarm 

C.  UAV swarm SEAD operational decision-making 

network model framework 

1) Perception and decision network 

a) Input state space: The perception policy is designed 

to address the global situational awareness challenge for the 

reconnaissance aircraft, providing stable targeting 

information and fire damage assessment to the attack aircraft. 

It selects the following 4-dimensional inputs: 

• Distance and bearing between the reconnaissance 
aircraft and the target group centroid. 

• Distance and bearing between the reconnaissance 
aircraft and the nearest target. 

Given the reconnaissance aircraft’s position (𝑥0, 𝑦0) , the 

target group centroid (R𝑥, R𝑦)  is defined as the weighted 

average of 𝑛 targets' coordinates, with weights determined by 
target importance and threat level. 

 

Figure 6.  State space analysis of UAV 

As illustrated in Figure 6, the distance and azimuth 
between UAV and the centroid of the target group are 
described by two parameters, 𝑑𝑑  and 𝜃𝑑, the nearest target is 
𝑑𝑑

′  and 𝜃𝑑
′ .Taking the former as an example, it is defined as 

(1). 

 {
𝑑𝑑 = √(𝑅𝑥 − 𝑥0)2 + (𝑅𝑦 − 𝑦0)

2

𝜃𝑑 = tan−1 𝑅𝑦−𝑦0

𝑅𝑥−𝑥0

 () 

The input state space of the perception decision network 
can be specifically detailed in Table 1. In practical 
applications, data preprocessing is performed by taking the 
ratio of the azimuth value to π and the ratio of the distance 
value to the radar's maximum detection range (𝐷𝑑𝑚𝑎𝑥) for a 
specific target type, serving normalization purposes. 

TABLE I.  INPUT STATE SPACE PERCEPTION DECISION NETWORK 

DESIGN 

State variables Symbols Data type Preprocessing 

Centroid distance & bearing 𝑑𝑑、𝜃𝑑 double 𝑑/𝐷𝑑𝑚𝑎𝑥  

Nearest target distance & 

bearing 
𝑑𝑑

′ 、𝜃𝑑
′  double 𝜃/180°

 

b) Action space: In the process of fighting, the different 

array have different perception, interference effect, so the 

detection of perception and the output of electronic jamming 

decision network need to be able to reflect the correlation 

matrix of information, the concrete can be described as 

Figure 7. 

 

Figure 7.  Action diagram of array position selection 
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Specifically, a polar coordinate system is established with 
the group centroid as the origin, the vector connecting the 
centroid to the current sensor array position as the zero-
direction, and clockwise orientation as the positive direction; 
the decision network outputs two-dimensional coordinate 
information for the array configuration, which undergoes 
domain-specific processing in operational implementation—
including parameter range bounding for direction 𝜃  and 
distance 𝑑 and value discretization—according to equipment 
capabilities and mission requirements, for example 
constraining the operational distance range to 0.5 times 𝐷𝑑𝑚𝑎𝑥  
to 1 times 𝐷𝑑𝑚𝑎𝑥  (where 𝐷𝑑𝑚𝑎𝑥  denotes the reconnaissance 
aircraft's maximum effective detection range) in actual 
combat scenarios. 

TABLE II.  THE OUTPUT ACTION SPACE DESIGN OF THE PERCEPTION 

DECISION NETWORK 

Decision-making 

action variable 
Range of values Notes 

Array position 

Angle 𝜃 

[−θ𝑚𝑎𝑥, θ𝑚𝑎𝑥] 
𝜃𝑚𝑎𝑥 is the maximum 

Angle delimited 

Array position 

distance 𝑑 
[0.5𝐷𝑑𝑚𝑎𝑥, 𝐷𝑑𝑚𝑎𝑥] 

𝐷𝑑𝑚𝑎𝑥  is the 

maximum operating 

distance 

c) Call time: The invocation opportunity is:  

• When the precise coordinates of the enemy are 
obtained for the first time. 

• When the enemy target is destroyed. 

• Attack aircraft was shot down. 

2) Interfere with the decision network 

a) Interference decision network input state space: The 

jamming policy aims to solve the problem of enemy 

suppression and friendly support. The decision network 

accepts the following state inputs. 

• Distance and bearing between the jammer and the 
centroid of the target cluster. 

• Distance and bearing between the jammer and the 
centroid of the actively engaged target cluster. 

The actively engaged target cluster refers to targets 
currently under attack by strike aircraft. All distance 
parameters are normalized against 𝐷𝑗𝑚𝑎𝑥  (the jammer's 

maximum effective jamming range). 

TABLE III.  INPUT STATE SPACE DESIGN OF JAMMER DECISION 

NETWORK 

State variables Symbols Data type Preprocessing 

Real-time attack target 

group centroid distance, 
bearing 

𝑑𝑗、𝜃𝑗 double 𝑑/𝐷𝑗𝑚𝑎𝑥  

𝜃/180°
 Nearest target distance, 

bearing 
𝑑𝑗

′、𝜃𝑗
′ double 

b) Action space and call timing: During combat 

operations, both the reconnaissance aircraft and the jammer 

operate at high altitude. Their situational updates and 

decision-making actions are synchronized. Consequently, 

they share an identical action space definition and utilize the 

same set of call triggers for their respective decision networks. 

3) decision network attack 
The attack policy aims to solve the attack decision 

problem of each attack aircraft in the low-altitude formation. 
The decision network of each attack aircraft is isomorphic, but 
its execution is asynchronous. 

a) Input state space: The attack decision network 

focuses on the selection of the anti-radiation missile launch 

position, and selects the following 9-dimensional state 

information as input (where 𝐷𝑎𝑚𝑎𝑥  is the maximum range of 

the anti-radiation missile and 𝐻 is the current altitude of the 

attack aircraft): 

• The distance, azimuth, and altitude difference 
between the current position of the attack aircraft and 
the target. 

• The distance, azimuth, and elevation difference 
between the current position of the attack aircraft and 
the maximum threat target (the air defense position 
closest to the current attack target); the launch 
position should avoid this threat as much as possible. 

• The distance and azimuth between the jammer and the 
attack target; the suppression effect of the jammer 
varies with its position. 

• The current attack round count for the target and a flag 
indicating whether the first attack on this target was 
successful, reflecting the target's defensive capability 
strength or weakness. 
All input data undergoes normalization. 

TABLE IV.  ATTACK DECISION NETWORK INPUT STATE SPACE DESIGN 

State variables Symbols Data type Preprocessing 

Target distance, azimuth, 

elevation difference 
𝒅𝒂, 𝜽𝒂, 𝒉𝒂 double 

𝑑/𝐷𝑎𝑚𝑎𝑥 

𝜃/180 

ℎ/𝐻 

Maximum threat distance, 
bearing, altitude difference 

𝑑𝑎
′ , 𝜃𝑎

′ , ℎ𝑎
′  double 

Jammer range, bearing 𝑑𝑎𝑗 , 𝜃𝑎𝑗 double 

Current attack round 𝑛 int —— 

b) Output action space: The outcome of the attack 

decision network is the relative launch position of the attack 

aircraft with respect to the current target, defined by the 

distance and bearing between the launch position and the 

target. This concept mirrors the decision outputs of the 

reconnaissance aircraft. Based on the operational range of the 

anti-radiation missile and the capabilities of the air defense 

systems, the valid ranges for these parameters are defined as 
[𝐷𝑎𝑚𝑖𝑛 , 𝐷𝑎𝑚𝑎𝑥] or distance and [−𝜃𝑎𝑚𝑎𝑥 , 𝜃𝑎𝑚𝑎𝑥] for bearing. 

These ranges are discretized into 𝑁𝑑 + 1  points (i.e., 

endpoints of 𝑁𝑑  segments) for distance and 𝑁𝜽 + 1 points 

(i.e., endpoints of  𝑁𝜽 segments) for bearing, forming a total 

of  𝑁𝑑𝜃  discrete actions. The decision network evaluates the 

value of each discrete action and selects the one with the 

highest value as the optimal decision. This selected action is 

then converted into precise coordinates for the launch 

position. The attack aircraft maneuvers to this position to 

execute the strike. 
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TABLE V.  ATTACK DECISION NETWORK OUTPUT SPACE DESIGN 

Decision action variables Range of values Action parsing 

Launch Position N {0,1, … , 𝑁𝑑𝜃} 

𝑑 =
(𝐷𝑎𝑚𝑎𝑥 − 𝐷𝑎𝑚𝑖𝑛)

𝑁𝑑

× ⌊
𝑁

(𝑁𝜽 + 1)
⌋ + 𝐷𝑎𝑚𝑖𝑛 

𝜃 =
2𝜃𝑎𝑚𝑎𝑥

𝑁𝜃

× (𝑁 𝑚𝑜𝑑 (𝑁𝜽 + 1)) − 𝜃𝑎𝑚𝑎𝑥 

c) Call timing: The invocation of the attack decision 

network is centered on the attack target and requires the anti-

radiation missile's passive seeker to lock onto a stable enemy 

radar beam to ensure attack accuracy. Therefore, subject to 

the preconditions of nonzero remaining ammunition and the 

reconnaissance aircraft being operational, the attack decision 

network is triggered under the following conditions: 

• When the coordinates of the attack target are obtained 
for the first time. 

• Upon attack failure. 

• When successfully switching the attack target after a 
previous attack. 

• Training the attack decision network based on 
Dueling DQN. 

IV. TRAINING THE ATTACK DECISION NETWORK BASED 

ON DUELING DQN 

To illustrate the training of the attack decision network as 
an example of intelligent decision-making, the remaining 
tactics employ the optimal rules. 

A. Summary of Algorithm 

Within the algorithm framework selection, the decision 
networks for each attack aircraft in the low-altitude formation 
are completely homogeneous; that is, they share identical state 
spaces, action spaces, and optimization objectives. This 
scenario can be simplified as a single-agent decision problem. 

For the specific algorithm, addressing high-dimensional 
input, large action spaces, and the need to finely distinguish 
state and action values, the Dueling Deep Q-Network 
(Dueling DQN [11]) method demonstrates strong 
performance. As an improved algorithm over DQN [12], its 
core innovation is the decomposition of the traditional Q-
value into two components: the state value V(𝑠) and the action 
advantage A(𝑠, 𝑎). A dual-branch neural network structure is 
employed to learn these two parts separately. The final action 
value Q(𝑠, 𝑎)  is then calculated using the combination 
formula (2) (where  |𝒜|   represents the size of the action 
space): 

 𝑄(𝑠, 𝑎) = 𝑉(𝑠) + (𝐴(𝑠, 𝑎) −
1

|𝒜|
∑ 𝐴(𝑠, 𝑎′)𝑎′∈𝒜 ) () 

This design enables the model to more effectively capture 
the relationship between state and action. It is particularly 
suitable for environments where the state value remains 

relatively stable while action advantages exhibit significant 
variation, thereby improving the algorithm's learning 
efficiency and stability. 

B. Network Structure 

The Dueling DQN algorithm is value-based. Its neural 
network architecture comprises two Q-networks with 
identical structures: a training network updated in real-time 
and a target network. The target network parameters are 
periodically synchronized with the training network 
parameters every fixed number of steps to enhance training 
stability. As shown in Figure 8, the Q-network utilizes a fully 
connected neural network that takes the 9-dimensional state 
vector as input and outputs Q-values for 35 discrete actions. 
Actions are selected according to a greedy policy, choosing 
the action with the maximum Q-value. This structure enables 
efficient feature sharing and effectively captures the dynamic 
advantages of different actions, making it particularly 
impactful in large-scale discrete action spaces and well-suited 
for the task. 

 

Figure 8.  Dueling DQN decision network structure 

C. Reward Design 

The reward function plays a crucial role in guiding the 
iterative improvement of the decision-making network. 
Aligned with the objective of maximizing the exchange ratio 
and prioritizing the protection of the reconnaissance aircraft, 
the reward function evaluates operational actions based on the 
following dimensions: 1) reconnaissance aircraft survival 
status; 2) attack aircraft survival status. 3) successful missile 
launch; 4) successful missile hit on target. 16 distinct 
operational states are defined, encompassing nine feasible 
combinations of these dimensions. To differentiate between 
initial and supplementary attacks, a unique reward value is 
assigned to each state. 
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TABLE VI.  REWARD DESIGN TABLE  

No State 
Reward Value 

No State 
Reward Value 

No State 
Reward Value 

Initial Follow-up Initial Follow-up Initial Follow-up 

1 [0,0,1,0] -60 -65 4 [0,1,1,1] -2 -4 7 [1,1,0,0] 0 0 

2 [0,1,0,0] -80 -90 5 [1,0,0,0] -70 -75 8 [1,1,1,0] 20 10 

3 [0,1,1,0] -20 -40 6 [1,0,1,0] -5 -10 9 [1,1,1,1] 90 50 

TABLE VII.  FORCES  

Force Units Primary Mission Payload Force Units Primary Mission Payload 

Red Force 

Reconnaissance Aircraft ×1 Radar Pod ×1 

Blue Force 

Early Warning Site ×1 Early Warning Radar ×1 

Jammer Aircraft ×1 Jamming Pod ×1 
Air Defense Positions ×3 

Fire Control Radar ×1 

Attack Aircraft ×2 Anti-Radiation Missiles ×2 Surface-to-Air Missiles ×24 

The states [0,0,0,1], [0,1,0,1], [1,0,0,1], and [1,1,0,1] 
represent "missile launched but not hit" – these are impossible 
because if an attack aircraft is shot down after launch, the 
missile outcome becomes unknowable within the simulation. 
The states [1,0,1,1] and [0,0,1,1] are also impossible because 
the mission turn terminates immediately upon destruction of 
either the reconnaissance aircraft or an attack aircraft, 
precluding subsequent missile impact assessment. 
Additionally, the state [0,0,0,0] (indicating no launch and no 
hits) is impossible as it contradicts the context of evaluating 
attack actions. 

V. SEAD UAV SWARM DECISION TRAINING MODEL 

In the case study design and implementation, the training 
and verification environment was constructed using the 
WESS system developed by the research team [13]. 

A. Case Problem 

The baseline forces for both Red and Blue sides are 
configured as detailed in TABLE VII. The lethality 
parameters are defined as follows: one anti-radiation missile 
is assumed to paralyze an air defense position, and one 
surface-to-air missile is assumed to shoot down one UAV. 

For the Blue Force, early warning radars and air defense 
positions operate as an integrated system. In the absence of 
enemy threats, air defense radars remain silent to conceal their 
positions, while early warning radars—with longer detection 
ranges and wider scanning fields—perform aerial surveillance. 
Upon detecting incoming strikes, the early warning system 
relays target information to air defense positions in real time. 
When activated, air defense positions power on fire control 
radars for aerial search. After target lock is achieved and 
launch readiness confirmed, they intercept aerial targets 
(aircraft or missiles) using either autonomous or third-party 
guidance. If a target is destroyed and additional threats remain, 
engagement continues; if a missile misses, immediate re-
engagement is initiated. Combat concludes when the position 
is destroyed or all airborne threats are neutralized. 

Scenario generation involves six key variables defining 
the initial disposition of three enemy air defense positions. 
Each dimension (representing longitudinal or latitudinal 

coordinate offsets from actual deployment locations) has two 
discrete values, resulting in 64 distinct scenario configurations. 

TABLE VIII.  SCENARIO GENERATION COMBAT SCENARIO   

Intelligence Position 
Longitude Offset 

(minutes) 

Latitude Offset 

(minutes) 

Air Defense Company 1 

(lon1, lat1) 

{−1.58, 1.59} {−2.04, 2.04} 

Air Defense Company 2 
(lon2, lat2) 

{−1.87, 1.91} {−1.94, 2.00} 

Air Defense Company 3 
(lon3, lat3) 

{−1.95, 1.95} {−2.27, 2.22} 

B. Rule Experiments 

The launch distance range [20,40]  km was discretized 
into 5 values and the azimuth range [−30,30] degrees into 7 
values, generating 35 candidate launch positions. Each 
position was evaluated across all 64 scenarios with 10 Monte 
Carlo repetitions per configuration. Combat effectiveness was 
quantified using the average exchange ratio per launch 
position over all experimental runs. This resulted in 
35×64=2,240 scenario-position combinations and 22,400 total 
simulation runs. Key findings, visualized in the heat map of 
Figure 9, are summarized below: 

 

Figure 9.  Specific heat map of regular experiment exchange 
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A The results demonstrate that selecting the launch 
position 20 km from the target at a 30° offset azimuth delivers 
optimal performance, achieving an average exchange ratio of 
1.465. 

C. Pre-training 

1) Hyperparameter configuration : The value network 

was implemented using PyTorch. Core algorithm parameters 

include: 

TABLE IX.  DECISION NETWORK ATTACK DUELING DQN TRAINING 

PART PARAMETER CONFIGURATION 

Hyperparameter Value 

Decision Network 2 hidden layers with 128 and 64 units 

Discount Factor 0.99 

Discount Factor ReLU 

Learning Rate 0.0001 

Experience Replay Buffer Size 100000 

Batch Size 256 

Delayed Update Steps 200 

2) Pre-train : Utilizing data samples where the reward 

value was non-negative, the neural network was trained for 

100 rounds. Each round consisted of 200 training steps. Upon 

network convergence, the resulting model served as the initial 

decision model. 

D. Iterative Training of Reinforcement Learning 

he pre-trained attack decision-making model was loaded. 
For each training scenario, 10 simulation runs were executed, 
and the resulting experience data were stored in the database. 
The reinforcement learning algorithm then extracted batches 
of experience data from this database to train the decision 
network. After each training update, the updated decision 
network was loaded back into the simulation environment. 
This process—completing all scenario experiments—
constituted one training round. The exploration rate was 
decayed by 0.01 per round. Training continued iteratively 
until the reward signal stabilized. 

 

Figure 10.  Schematic figure 10 reward (red curve) and loss (blue curve)  

As shown in Figure 10, the average reward per round 
(calculated over 640 simulation runs) and the loss (mean 
squared error (MSE) between predicted and target Q-values) 
converged over the training process. After 38,235 training 
iterations spanning 200 rounds, the results stabilized: the 
average reward plateaued around 79. In the training scenarios, 
the attack aircraft demonstrated effective decision-making, 
achieving successful target hits both during initial 
engagements and follow-up attacks, while significantly 
improving the survival rate of the reconnaissance aircraft. 

E. Intelligent Testing 

The pre-trained attack decision-making model was loaded. 
For each training scenario, 10 simulation runs were executed, 
and the resulting experience data were stored in the database. 
The reinforcement learning algorithm then extracted batches 
of experience data from this database to train the decision 
network. After each training update, the updated decision 
network was reloaded into the simulation environment. This 
process—completing experiments across all scenarios—
constituted one training round. The exploration rate was 
decayed by 0.01 per round. Training continued iteratively 
until the reward signal stabilized. 

As shown in Figure 11, a total of five distinct test scenarios 
were constructed. The target locations of the three air-defense 
batteries remained consistent across scenarios. The actual 
deployment positions within each scenario corresponded to 
the vertices of the depicted rectangles. Brown markers 
represent training scenario positions, while other colors 
denote test scenario positions. To ensure simulation fidelity, 
each air-defense battery possessed four distinct disposition 
patterns. The combination of these patterns across the three 
batteries generated 64 unique Blue Force deployment 
configurations.

 

Figure 11.   Intelligence test scenario 1-5 
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TABLE X.  COMBAT SCENARIO TESTING SCENARIO GENERATION DESIGN  

Scenario 
Company 1 Company 2 Company 3 

Longitude Offset Latitude Offset Longitude Offset Latitude Offset Longitude Offset Latitude Offset 

1 {−0.90,2.10} {−2.70,1.50} {−1.26,2.52} {−2.54,1.40} {−1.38,2.52} {−2.87,1.63} 

2 {−2.22,0.96} {−1.50,2.70} {−2.34,1.44} {−1.34,2.60} {−2.58,1.32} {−1.67,2.83} 

3 {−2.70,2.70} {−2.70,3.30} {−2.82,3.18} {−3.00,3.00} {−2.76,2.94} {−3.06,3.54} 

4 {−1.92,0.60} {−2.40,1.02} {−2.22,2.52} {−2.40,0.60} {−2.34,0.78} {−2.76,0.66} 

5 {−1.20,2.16} {−1.20,3.06} {−1.08,2.70} {−1.20,2.34} {−1.02,2.22} {−1.38,3.00} 

TABLE XI.  STATISTICS OF STRIKE EFFECTS 

Engagement Policy Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

Optimal Rule-Based Policy 1.286765 1.102233 0.853608 1.276376 0.934328 

Intelligent Decision Policy 1.503086 1.383281 1.039818 1.765705 1.19802 

Performance Improvement 16.81% 25.50% 21.81% 38.34% 28.22% 

For each of the 64 deployment configurations, 10 
simulation runs were conducted. The resulting damage data 
for both Red and Blue forces across all 640 experiments were 
recorded and aggregated to calculate the exchange ratio. 

As can be seen from the experimental results, in the new 
scenario, the exchange of the intelligent decision rules are 
better than decisions, verify the advantages of the intelligent 
decision. 

VI. CONCLUSION 

This paper addresses the intelligent decision-making 
problem for UAV Swarm SEAD missions. A decision 
modeling approach combining DRL with combat simulation 
is proposed, a corresponding modeling framework is 
constructed, and attack decision modeling based on the 
Dueling DQN algorithm is implemented. Leveraging the 
structured WESS system as a reinforcement learning training 
environment and designing a case study, experimental results 
verify that the DRL-based intelligent decision-making 
approach yields superior decision quality compared to 
traditional knowledge engineering-based methods. 

For UAV Swarm SEAD tasks, this paper designs a 
comprehensive simulation scenario framework, successfully 
integrates the intelligent decision model, and demonstrates the 
feasibility of the DRL method. This work provides a training 
environment for subsequent intelligent decision-making 
research concerning reconnaissance and jammer aircraft 
within the swarm. Furthermore, it contributes to enhancing the 
overall intelligence level of UAV Swarms in SEAD missions 
and offers valuable insights for UAV Swarm decision 
modeling in other operational scenarios. 
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