
Highly-Modular and Immersive Human-in-the-Loop Driving Simulators Using the
CARLA Simulation Environment

Patrick Rebling , Lars Beeh, Philipp Nenninger, Reiner Kriesten
Institute of Energy Efficient Mobility

Karlsruhe University of Applied Sciences
Karlsruhe, Germany

e-mail: {patrick.rebling|lars.beeh|philipp.nenninger|reiner.kriesten}@h-ka.de

Abstract—Driving simulators are a common industry tool for
verifying driver assistance systems with human involvement.
However, there is considerable variation in the hardware and
software specifications of these simulators. Consequently, the
development of such simulators is often a lengthy process due to
the need to create custom software or the high cost of commercial
solutions. The goal of this project is to integrate the simulation
software Car Learning to Act (CARLA) into highly modular and
immersive driving simulators. This will result in the creation of
an open source, reconfigurable hardware abstraction that will
facilitate the easy and rapid construction of driving simulators
that prioritize modularity and extensibility.

Keywords-simulation; testing; human-computer interaction; au-
tomotive.

I. INTRODUCTION

In past years, the development of autonomous driving has
been accompanied by a series of optimistic assumptions [1][2].
However, despite significant progress, the road to fully au-
tonomous vehicles capable of seamlessly handling all possible
driving situations remains an ongoing challenge [3]. One of the
most prominent challenges is the proliferation of mixed traffic
scenarios, in which the road is shared by different entities, in-
cluding automated and autonomous vehicles, cars with human
drivers, as well as vulnerable road users, such as cyclists and
pedestrians. Understanding, predicting, and replicating human
driving behavior in these complex and dynamic environments
has emerged as a central but challenging facet of autonomous
driving research. The need to address this challenge is not
only rooted in safety concerns, but extends to the broader
goals of gaining public acceptance [4] and trust [5] in Artificial
Intelligence (AI), particularly in the area of self-driving cars
[6].

This is the domain in which the Human-In-The-Loop
(HITL) methodology is applicable, which is particularly suited
to understanding human behavior in complex driving situations
without endangering the test subjects. However, there are
several challenges associated with HITL driving simulator
software. Achieving a high level of realism is critical, as
visual, auditory, and tactile feedback must be convincing to
ensure realistic driver responses, which requires high-quality
graphics and precise input/output synchronization. Ensuring
minimal latency between the driver’s actions and the simu-
lator’s responses is essential, as any delay can disrupt the
driving experience and affect the accuracy of the data. The
integration of different subsystems can be complex due to

different communication protocols and data formats, espe-
cially for hardware-related input and output devices, such
as realistically behaving force feedback (FFB) motors, dif-
ferent visualization systems, and different driver positions
and therefore visualization angles. Designing an intuitive and
user-friendly interface is essential for efficient control and
quick adjustments. Overcoming these challenges improves the
test and verification processes for driver assistance systems
in driving simulators, leading to safer and more reliable
automotive technologies. The software must be open and
adaptable to different driving simulators and scalable for future
enhancements without extensive redevelopment.

However, to the best of our knowledge, there is no freely
available open source framework that considers all require-
ments and provides a highly modular hardware abstraction
of components for immersive simulators, including realistic
steering wheel behavior and easily configurable input and
output devices based on the Car Learning to Act (CARLA)
simulation environment [7]. The objective of this research is to
address the above issues by developing a solution that enables
driving simulators to be quickly built and deployed, and that
allows them to be connected all over the world.

Section II presents related work to this paper, including
highlighting new elements and the need for such a modular,
open-source framework for easily integratable driving simula-
tors. In Section III, the approach and implementation of the
modular framework is presented. Section IV concludes this
paper and highlights areas for further research and develop-
ment.

II. RELATED WORK

Modularizing software for abstraction is a common practice
in software development. The use of Hardware Abstraction
Layers (HALs) [8] allows the development of easily re-
configurable software. A popular HAL technology is virtual
machines, which simulate operating systems on different host
systems [9]. Robot Operating System (ROS) [10] is also
widely used for hardware abstraction, as it allows software
to be developed in a modular fashion so that hardware-
related components can be easily replaced. For example,
in the automotive industry, the AUTomotive Open System
ARchitecture (AUTOSAR) [11] standard is a common way
of abstracting hardware. Furthermore, [12] have developed
a HAL for embedded systems with time-triggered hardware

9Copyright (c) IARIA, 2025. ISBN: 978-1-68558-300-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation

https://orcid.org/0009-0007-0132-8373
https://orcid.org/0000-0001-8599-5999

access. Simulation environments, such as CARLA on the
open source side, or SILAB [13] on the commercial side,
often provide a naturally modular architecture with a fo-
cus on software interfaces for testing autonomous driving
functionality and testing driver assistance systems. In 2008,
[14] presented an approach based on MATLAB/SIMULINK
for customizable vehicle dynamics in HITL simulators. In
the context of driving simulators, [15] presented a modular
software-based architecture for integrating developed software
for model-based testing of automated driving functions, but
focused on specific simulator configurations and lacking open
source features. [16] developed modularization in terms of
interchangeability of hardware mock-up modules. For exam-
ple, Realtime Technologies [17] commercially offers its RDS-
Modular simulator mock-ups, which can be assembled from
predefined modules to meet customer requirements.

To the best of our knowledge, there is currently no freely
available open source framework that comprehensively ad-
dresses all potential requirements while providing a highly
modular hardware abstraction for components used in im-
mersive simulators. This includes features, such as realistic
steering wheel behavior and easily configurable input and
output devices, all integrated into the CARLA simulation
environment. This also allows simulators based on the same
simulation environment and framework presented in this paper
to be connected all over the world. Thus, the next chapter
presents an approach to address these challenges by developing
a solution that enables rapid construction and deployment of
driving simulators.

III. APPROACH

The overall concept of our approach for integrating the
CARLA simulation environment into a driving simulator is
shown in Figure 1.

To achieve a high degree of modularity and extensibility, the
processing of driver input, control of environmental variables,
display of images, FFB for the steering wheel, and vehicle
control are divided into several separate ROS nodes as shown
in Figure 2. ROS is a state-of-the-art framework for automated
and autonomous driving research, as it enables highly modular
software design (see, for example, [18]–[20]). Therefore, a
simulator that enables testing of automated driving functions
with HITL should also be based on ROS. The nodes com-
municate via ROS messages with the CARLA-ROS-Bridge
and with each other or, if needed, as clients directly with
the CARLA server via the API. The vehicle control interface
to external driver assistance systems is formed by six ROS
topics, allowing testing of, for example, Cruise Control (CC),
Lane Keeping Assist System (LKAS), and Lane Change Assist
(LCA), and can be easily extended to include further func-
tionality. The following subsections provide a more detailed
explanation of each node.

A. Input handling

The Input Handling node is responsible for handling all
user input from the steering wheel, buttons, pedals, and

keyboard. The Python library Pygame [21] is used because
it is platform-independent and generally compatible with all
game controllers and other input devices. A configuration
file contains the assignment of inputs to various program
functions, such as activating a turn signal, changing gear, or
changing weather conditions. This gives users the flexibility to
change assignments and use hardware with different numbers
of buttons and axes. A ROS message is issued when an input
event occurs. In addition, a CANopen interface is available to
publish Controller Area Network (CAN) messages within the
ROS environment and to control the ego vehicle via CAN.

B. Time and weather control

The Weather Controller node is responsible for controlling
the weather and time of day within the simulation. A con-
figuration file contains an expandable list of preset time and
weather conditions. At the user’s request, the system switches
to the next or previous preset by passing the corresponding
parameter values to the CARLA-ROS-Bridge, where they are
applied to the simulation.

C. Display control

Camera sensors are added to the simulated vehicle at the
start. The number of cameras M is equal to the number of
monitors or video projectors used in the driving simulator. This
value is specified in a configuration file which also contains
information about other parameters, such as the resolution, the
width of the monitor b, the width of the side monitor frame
k, and the distance between the screens and the driver’s head
d as described in Figure 3. The Display Controller node uses
these values to calculate the angle f (see (1) and Figure 3) and
the horizontal rotation angles oi (see (2) and Figure 3) of the
camera sensors, ensuring that the simulated scene is displayed
in a realistic manner.

f = 2 · arctan

((
b
2 − k

)
d

)
(1)

where b is the width of a single monitor, d is the distance
from driver’s head to the monitor surface, and k is defined by
the frame width of the monitor. While f remains constant for
all camera sensors with identical monitors, the rotation angles
oi of these cameras vary by a factor i, where i is calculated
based on whether the number of displays M is an even or
odd integer. Thus, i represents a list of numbers for the partial
rotation of each monitor:

oi = i · 2 · arccos

 d√(
b
2

)2
+ d2

 with

i =

{
±n andn ∈ N0, n ≤ M−1

2 , M mod 2 = 1

±n
2 andn ∈ N, n ≤ M

2 , M mod 2 = 0

(2)

For example, three monitors result in i = {−1, 0, 1}. The
position of the camera sensors is identical to the position of
the driver’s head in the vehicle coordinate system, as specified

10Copyright (c) IARIA, 2025. ISBN: 978-1-68558-300-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation

Custom Driving Simulator Mockup CARLA
Simulation

Custom Input Devices:
steering wheel, touchscreen,
pedals, cameras, keyboard, ..

Hardware
Abstraction

Human-in-the-
Loop

Custom Output Devices:
monitors, projectors, motion
platforms, force feedback, ..

ROSSoftware
Abstraction

Driver
Assistance
Systems

Traffic Simulation

Sensor Simulation

Figure 1. Abstract concept of the open simulation software for seamless and fast integration into custom driving simulators for HITL tests. The two
abstraction modules are presented in this paper.

Pygame

CARLA
server

ROS

Input
Handling

Display
Controller

Weather
Controller FFB Controller Vehicle Controller

Buttons Keyboard Steering
wheel

Accelerator/
brake pedal

Accelerator/
brake cmd.

Steering
cmd.

Indicator
reset cmd.

ADAS
cmd.

Velocity
cmd.

Lane
change req.

Steering
wheel

Displays

CARLA-ROS-Bridge

API

Secondary Disp.
Controller

Further Displays

ROSPython-EvdevPygamePygame

CANopen
Interface

Figure 2. Integration of CARLA into a static driving simulator. Tasks are distributed across multiple ROS nodes (white) that communicate via ROS
messages. Hardware interaction is facilitated by the use of the Pygame and Python-evdev libraries. All interfaces are shown in red.

Center Display

Le
ft

D
isp

la
y

Driver
Head

f

o
d

k

b

Figure 3. Geometrical description of the display setup of driving simulators
with distance from driver head to display d, frame width k, display width b,

horizontal field of view f and horizontal display rotation o.

in the configuration file. For reasons of runtime efficiency, the
images from the camera sensors are not received from the
server via ROS, but via API. They are then displayed side
by side in a Pygame window with the total resolution of the
screens as shown in Figure 4. Taking into account the monitor
frames, rotations and distances, the image from the camera
sensors will appear smooth and without shifting on the driver’s
monitor.

Figure 4. Example of offset compensation for simulators with displays. An
automatically calulated offset based on the user-defined parameters resulting

in a seamless image on the custom hardware setup.

A secondary display shows important information, such as
current vehicle speed, vehicle lighting status, and current gear.
The Secondary Display Controller can be used to integrate
additional displays for mirrors and user interfaces.

D. Vehicle control

The Vehicle Controller node is responsible for controlling
the simulated vehicle’s steering, accelerator, brake, shift, and
lighting functions. As given in the example programs including
the values [22], the steering wheel angle is transmitted non-

11Copyright (c) IARIA, 2025. ISBN: 978-1-68558-300-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation

linearly to the vehicle wheels (see (3)), with slight modifi-
cations to map the steering angle non-linear from -1 to 1.
This results in less sensitive steering behavior at small steering
angles, which helps prevent the vehicle’s lateral dynamics from
becoming unstable.

f(x) = 0.509 · tan(1.1x) (3)

where x is the raw steering angle received from hardware
steering wheel. A similar principle applies to the simulator’s
accelerator and brake pedals. Gears can be shifted manually by
the driver or automatically. While brake lights and rear lights
are activated and deactivated according to the vehicle’s operat-
ing status, most other lights are controlled by the driver, such
as high beams or interior lighting. State machines are used to
ensure that the functionality of the indicators is consistent with
real-world expectations, and to control the switching between
parking, low beam, and fog lights. By way of illustration,
the state machine for the indicators is shown in Figure 5.
It can be seen, for example, that the left-hand indicator is
deactivated when the right-hand indicator is activated, and that
the hazard warning lights can be temporarily deactivated using
the standard indicator switches, but are reactivated when the
indicator is deactivated.

Six ROS topics facilitate external control of the vehicle
by driver assistance systems, in particular CC, LKAS, and
LCA. The node provides the necessary information on whether
the driver has activated or deactivated the above systems and
whether a lane change has been initiated by activating an
indicator. In case of a successful lane change, the indicator can
be reset via an external message. The node also provides the
desired speed of the vehicle, which is the current speed of the
vehicle when CC is engaged. This speed can be increased or
decreased by the driver. The actual positions of the accelerator
and brake pedals are then overwritten by the external values,
except in cases where the driver applies more force to the
accelerator than CC requires, such as when overtaking. CC is
disengaged in the event of a collision or when the brake pedal
is depressed. When LKAS is activated, the actual steering
wheel angle is not overwritten by the external angle. Instead,
the steering wheel is rotated to the correct position using force
feedback effects as described in Subsection III-E. In the event
of a collision, lane keeping is disabled.

E. Force feedback

The FFB Controller node has two tasks: generating force
feedback and controlling the steering wheel angle when LKAS
is enabled. These are achieved by using the Python-evdev
library [23], which is based on the generic Linux input event
interface evdev. This usually ensures compatibility with game
controllers.

The inclined steering axis of a car results in steering
resistance due to the centripetal force acting on the wheels.
Without compensation, the wheels and steering wheel will
automatically align in the center position [24]. The force,
which is proportional to the square of the vehicle’s velocity v,

can be simulated with an autocentering effect. The strength s
of the effect is calculated as follows

s = p · v2 (4)

where p is a user defined constant.
Figure 6 shows the control loop required to turn the steering

wheel to the desired angle. To avoid the nonlinearity inherent
in the nonlinear transmission of the steering wheel angle y
to the wheel angle y∗, the inverse nonlinearity is applied
to w∗ and the resulting steering wheel angle w is used as
the setpoint. The controller output r is the strength of the
constant effect. Note that this strength is not unlimited. It
is reasonable to expect that small disturbances may occur in
the motors or other components of the steering wheel, which
are represented as z. When other force feedback effects are
disabled or compensated, the wheel behaves like an integrator.

IV. CONCLUSION AND FUTURE WORK

This paper presents a highly modular, open source software
architecture designed to increase the flexibility and adapt-
ability of driving simulators by enabling seamless integration
of different hardware configurations and providing a plug-
and-play experience for researchers and developers. By sup-
porting the interchangeability of displays, input devices, and
other peripheral components, the architecture promotes a user-
centric approach that can accommodate different setups with-
out requiring extensive reconfiguration. An additional feature
of the proposed framework is its ability to replicate realistic
steering wheel behavior during active Advanced Driver Assis-
tance Systems (ADAS) operations, including scenarios where
the steering wheel autonomously rotates to reflect real-world
conditions. This enhancement improves the immersive quality
of the simulator and provides a more accurate representation
of ADAS functionalities and their impact on driver control.

The modularity and hardware-agnostic design of the pro-
posed system makes it an ideal choice for HITL simulations
where the flexibility to integrate different input and display
devices is essential. This level of modularity supports dif-
ferent research needs, facilitates the testing and evaluation
of autonomous driving systems across multiple hardware
setups, and allows for easy upgrades or changes to the
simulation configuration. Furthermore, integration with ROS
allows driving data to be captured for further investigation
in specific scenarios. The ScenarioRunner for CARLA [25]
enables efficient, scenario-based testing using OpenDrive [26]
and OpenScenario [27] data. By incorporating an architec-
ture that is compatible with industry-standard hardware and
adaptable to future advances, the framework provides a robust
foundation for the continued development of HITL simulation
environments and is used in our multi-simulator framework at
the Karlsruhe University of Applied Sciences [28].

Future developments will focus on extending the capabilities
of the system through full integration with the D-BOX motion
platforms, providing enhanced physical feedback for even
greater immersion. This addition will allow the simulator to

12Copyright (c) IARIA, 2025. ISBN: 978-1-68558-300-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation

HL

RI

LI

RI

HL

RI || (IR && LCAstate)

LI

HL

LI || (IR && LCAstate)

Hazard Lights

Left indicator on
Right indicator on

Indicators Off

Left indicator off
Right indicator off

HL Left Indicator

Left indicator on
Right indicator off

Right Indicator

Left indicator off
Right indicator on

Left Indicator (hazard)

Left indicator on
Right indicator off

Right Indicator (hazard)

Left indicator off
Right indicator on

RILI

LI || (IR && LCAstate)

RI || (IR && LCAstate)

LI

RI

HL

HL

Figure 5. Indicator System State Machine. Events (rising edges): Hazard Light (HL), Left/Right Indicator (LI/RI), and Indicator Reset (IR). For IR to be
effective, the state Lane Change Assist (LCA) must be active.

Steering
wheel

Digital
controller _

Figure 6. Control loop for steering angle x control according to external
setpoints. The nonlinear steering transmission that would otherwise be

present in the loop is avoided by using inverse nonlinearity.

convey realistic vehicle dynamics and road conditions to the
user, increasing the fidelity of the simulation. In addition,
we plan to develop an open interface to support custom
motion platforms, allowing researchers and developers to use a
variety of motion systems within the simulator framework. By
enabling compatibility with a wide range of motion platforms,
the simulator will offer increased adaptability, positioning it
as a versatile tool for both research and industry applications
in autonomous and assisted driving. Support for Windows de-
vices is also provided by adding a DirectInput mode instead of
the Linux-specific evdev library. The framework will be made
publicly available at https://git.ieem-ka.de/public-repositories/
carla-sim.

ACKNOWLEDGMENT

This work was developed in the project KIIWI (reference
number: 16DHBKI060) which is funded by the German Fed-
eral Ministry of Research, Technology and Space (BMFTR).

REFERENCES

[1] E. Musk, K. Swisher, and W. Mossberg, Interview with Elon
Musk at Code Conference 2016, English, 2016. Accessed:
Aug. 4, 2025. [Online]. Available: https://www.youtube.com/
watch?v=wsixsRI-Sz4.

[2] K. Bimbraw, “Autonomous Cars: Past, Present and Future
- A Review of the Developments in the Last Century, the
Present Scenario and the Expected Future of Autonomous
Vehicle Technology,” ICINCO 2015 - 12th International Con-
ference on Informatics in Control, Automation and Robotics,
Proceedings, vol. 1, pp. 191–198, Jan. 2015. DOI: 10.5220/
0005540501910198.

[3] B. Padmaja, C. V. K. N. S. N. Moorthy, N. Venkateswarulu,
and M. M. Bala, “Exploration of issues, challenges and latest
developments in autonomous cars,” Journal of Big Data,
vol. 10, no. 1, p. 61, May 2023, ISSN: 2196-1115. DOI: 10.
1186/s40537-023-00701-y.

[4] S. Kelly, S.-A. Kaye, and O. Oviedo-Trespalacios, “What
factors contribute to the acceptance of artificial intelligence?
A systematic review,” Telematics and Informatics, vol. 77,
p. 101 925, Feb. 2023, ISSN: 07365853. DOI: 10.1016/j.tele.
2022.101925.

[5] N. Gillespie, S. Lockey, C. Curtis, J. Pool, and Ali Akbari,
“Trust in Artificial Intelligence: A global study,” The Uni-
versity of Queensland; KPMG Australia, Brisbane, Australia,
Tech. Rep., Feb. 2023. Accessed: Aug. 4, 2025. [Online].
Available: http://doi.org/10.14264/00d3c94.

[6] L. J. Molnar et al., “Understanding trust and acceptance of
automated vehicles: An exploratory simulator study of transfer
of control between automated and manual driving,” Trans-
portation Research Part F: Traffic Psychology and Behaviour,
vol. 58, pp. 319–328, Oct. 2018, ISSN: 13698478. DOI: 10.
1016/j.trf.2018.06.004.

[7] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An Open Urban Driving Simulator,” in Proceedings
of the 1st Annual Conference on Robot Learning, S. Levine,
V. Vanhoucke, and K. Goldberg, Eds., ser. Proceedings of
Machine Learning Research, vol. 78, PMLR, 2017, pp. 1–
16. Accessed: Aug. 4, 2025. [Online]. Available: https : / /
proceedings.mlr.press/v78/dosovitskiy17a.html.

[8] A. J. Massa, “The Hardware Abstraction Layer,” in Embedded
software development with e-Cos, ser. Bruce Perens’ Open
source series, Upper Saddle River, NJ: Prentice Hall, 2003,
ISBN: 978-0-13-035473-0.

[9] Y. Li, W. Li, and C. Jiang, “A Survey of Virtual Machine
System: Current Technology and Future Trends,” in 2010
Third International Symposium on Electronic Commerce and
Security, 2010, pp. 332–336. DOI: 10.1109/ISECS.2010.80.

[10] M. Quigley et al., “ROS: An open-source Robot Operating
System,” in IEEE International Conference on Robotics and
Automation, vol. 3, Jan. 2009. Accessed: Aug. 4, 2025. [On-
line]. Available: https : / / api . semanticscholar. org / CorpusID :
6324125.

[11] S. Voget, “AUTOSAR and the automotive tool chain,” in
Proceedings of the Conference on Design, Automation and
Test in Europe, ser. DATE ’10, event-place: Dresden, Germany,
Leuven, BEL: European Design and Automation Association,
2010, pp. 259–262, ISBN: 978-3-9810801-6-2.

13Copyright (c) IARIA, 2025. ISBN: 978-1-68558-300-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation

https://git.ieem-ka.de/public-repositories/carla-sim
https://git.ieem-ka.de/public-repositories/carla-sim
https://www.youtube.com/watch?v=wsixsRI-Sz4
https://www.youtube.com/watch?v=wsixsRI-Sz4
https://doi.org/10.5220/0005540501910198
https://doi.org/10.5220/0005540501910198
https://doi.org/10.1186/s40537-023-00701-y
https://doi.org/10.1186/s40537-023-00701-y
https://doi.org/10.1016/j.tele.2022.101925
https://doi.org/10.1016/j.tele.2022.101925
http://doi.org/10.14264/00d3c94
https://doi.org/10.1016/j.trf.2018.06.004
https://doi.org/10.1016/j.trf.2018.06.004
https://proceedings.mlr.press/v78/dosovitskiy17a.html
https://proceedings.mlr.press/v78/dosovitskiy17a.html
https://doi.org/10.1109/ISECS.2010.80
https://api.semanticscholar.org/CorpusID:6324125
https://api.semanticscholar.org/CorpusID:6324125

[12] G. Simmann, V. Veeranna, and R. Kriesten, “Design of an
Alternative Hardware Abstraction Layer for Embedded Sys-
tems with Time-Controlled Hardware Access,” English, SAE
International, Jul. 2024. DOI: 10.4271/2024-01-2989.

[13] H. Krueger, M. Grein, A. Kaußner, and C. Mark, “SILAB—A
Task Oriented Driving Simulation,” 2005. Accessed: Aug. 4,
2025. [Online]. Available: https : / / api . semanticscholar . org /
CorpusID:11019771.

[14] M. Cipelli, W. Schiehlen, and F. Cheli, “Driver-in-the-loop
simulations with parametric car models,” Vehicle System Dy-
namics, vol. 46, no. sup1, pp. 33–48, Sep. 2008, ISSN: 0042-
3114. DOI: 10.1080/00423110701882280.

[15] M. Fischer et al., “Modular and Scalable Driving Simulator
Hardware and Software for the Development of Future Driver
Assistence and Automation Systems,” de, in New Develop-
ments in Driving Simulation Design and Experiments, A.
Kemeny, S. Espié, and F. Mérienne, Eds., ISSN: 0769-0266,
Paris, Frankreich, Sep. 2014, pp. 223–229. Accessed: Aug. 4,
2025. [Online]. Available: https://elib.dlr.de/90638/.

[16] F. De Filippo, A. Stork, H. Schmedt, and F. Bruno, “A modular
architecture for a driving simulator based on the FDMU
approach,” International Journal on Interactive Design and
Manufacturing (IJIDeM), vol. 8, no. 2, pp. 139–150, May
2014, ISSN: 1955-2513, 1955-2505. DOI: 10 . 1007 / s12008 -
013-0182-3.

[17] R. Technologies, RDS-Modular, 2024. Accessed: Aug. 4,
2025. [Online]. Available: https : / /www.faac .com/realtime-
technologies/.

[18] S. Kato et al., “Autoware on Board: Enabling Autonomous
Vehicles with Embedded Systems,” in 2018 ACM/IEEE 9th
International Conference on Cyber-Physical Systems (ICCPS),
Porto: IEEE, Apr. 2018, pp. 287–296, ISBN: 978-1-5386-5301-
2. DOI: 10.1109/ICCPS.2018.00035.

[19] A.-M. Hellmund, S. Wirges, O. S. Tas, C. Bandera, and
N. O. Salscheider, “Robot operating system: A modular
software framework for automated driving,” in 2016 IEEE
19th International Conference on Intelligent Transportation
Systems (ITSC), Rio de Janeiro, Brazil: IEEE, Nov. 2016,
pp. 1564–1570, ISBN: 978-1-5090-1889-5. DOI: 10 . 1109 /
ITSC.2016.7795766.

[20] M. Maarssoe et al., “ADORe: Unified Modular Framework for
Vehicle and Infrastructure-Based System Level Automation:”
in Proceedings of the 11th International Conference on Vehicle
Technology and Intelligent Transport Systems, Porto, Portu-
gal: SCITEPRESS - Science and Technology Publications,
2025, pp. 571–581, ISBN: 978-989-758-745-0. DOI: 10.5220/
0013405200003941.

[21] P. Shinners, Pygame, 2000. Accessed: Aug. 4, 2025. [Online].
Available: https://www.pygame.org/.

[22] CARLA, Python API examples man-
ual_control_steeringwheel.py, Nov. 2021. Accessed: Aug. 4,
2025. [Online]. Available: https : / / github . com / carla -
simulator / carla / blob / master / PythonAPI / examples / manual _
control_steeringwheel.py.

[23] G. Valkov, Python-evdev Introduction, 2022. Accessed:
Aug. 4, 2025. [Online]. Available: https : / / python - evdev .
readthedocs.io/en/latest/index.html.

[24] C. Smith, Here’s Why The Front Wheels Automatically Return
To Center, Jan. 2019. Accessed: Aug. 4, 2025. [Online].
Available: https://www.motor1.com/news/299470/why-front-
wheels-return-center/.

[25] CARLA Team, ScenarioRunner for CARLA, 2024. [Online].
Available: https://github.com/carla-simulator/scenario_runner.

[26] Association for Standardization of Automation & Measuring
Systems, ASAM OpenDrive, 2024. Accessed: Apr. 28, 2025.
[Online]. Available: https:/ /www.asam.net/standards/detail /
opendrive/.

[27] Association for Standardization of Automation & Measur-
ing Systems, ASAM OpenSCENARIO XML, 2024. Accessed:
Apr. 28, 2025. [Online]. Available: https : / /www.asam.net /
standards/detail/openscenario/.

[28] P. Rebling, R. Kriesten, and P. Nenninger, “Towards the
Interpretation of Customizable Imitation Learning of Human
Driving Behavior in Mixed Traffic Scenarios,” Detroit, Michi-
gan, United States, Apr. 2024, pp. 2024–01–2009. DOI: 10.
4271/2024-01-2009.

14Copyright (c) IARIA, 2025. ISBN: 978-1-68558-300-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation

https://doi.org/10.4271/2024-01-2989
https://api.semanticscholar.org/CorpusID:11019771
https://api.semanticscholar.org/CorpusID:11019771
https://doi.org/10.1080/00423110701882280
https://elib.dlr.de/90638/
https://doi.org/10.1007/s12008-013-0182-3
https://doi.org/10.1007/s12008-013-0182-3
https://www.faac.com/realtime-technologies/
https://www.faac.com/realtime-technologies/
https://doi.org/10.1109/ICCPS.2018.00035
https://doi.org/10.1109/ITSC.2016.7795766
https://doi.org/10.1109/ITSC.2016.7795766
https://doi.org/10.5220/0013405200003941
https://doi.org/10.5220/0013405200003941
https://www.pygame.org/
https://github.com/carla-simulator/carla/blob/master/PythonAPI/examples/manual_control_steeringwheel.py
https://github.com/carla-simulator/carla/blob/master/PythonAPI/examples/manual_control_steeringwheel.py
https://github.com/carla-simulator/carla/blob/master/PythonAPI/examples/manual_control_steeringwheel.py
https://python-evdev.readthedocs.io/en/latest/index.html
https://python-evdev.readthedocs.io/en/latest/index.html
https://www.motor1.com/news/299470/why-front-wheels-return-center/
https://www.motor1.com/news/299470/why-front-wheels-return-center/
https://github.com/carla-simulator/scenario_runner
https://www.asam.net/standards/detail/opendrive/
https://www.asam.net/standards/detail/opendrive/
https://www.asam.net/standards/detail/openscenario/
https://www.asam.net/standards/detail/openscenario/
https://doi.org/10.4271/2024-01-2009
https://doi.org/10.4271/2024-01-2009

	Introduction
	Related Work
	Approach
	Input handling
	Time and weather control
	Display control
	Vehicle control
	Force feedback

	Conclusion and Future Work

