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Abstract—Underwater Wireless Sensor Networks
(UWSNs) have attracted considerable attention for decades,
owing to their broad spectrum of application areas.
Despite technological advances, designing energy-efficient
underwater communication architectures remains a key
challenge due to the harsh and dynamic environment.
Among the various factors influencing the performance of
UWSNs, data traffic load emerges as a critical component,
particularly in relation to the operational lifetime.
Additionally, with their increasing deployment, Autonomous
Underwater Vehicles (AUVs) are integrated into UWSNs
in various roles. However, their presence introduces
new challenges that require the design of robust sensor
network configurations capable of effectively detecting
and interacting with AUVs. This paper addresses a novel
simulation-driven and uncertainty-aware design scheme for
energy-efficient UWSNs. Building on prior studies of data
traffic uncertainty in wireless sensor networks and AUV
mobility, this paper employs a simulation environment
that captures the integrated interactions among mobile
targets, sensor nodes, and seabed topography to evaluate
the proposed network model. Furthermore, recognizing that
the unrestricted mobility of navigating vehicles can cause
variations in data generation rates across the network, we
apply balanced 3D K-means partitioning to structure the
network for uncertainty modeling. The proposed robust
optimization framework is evaluated against a deterministic
baseline under varying traffic conditions induced by
vehicle movement. To capture uncertainty at multiple
scales, we incorporate parameters representing sensor-
specific deviations and regional conservativeness, enabling
examination of their impact on solution stability. Results
indicate that the robust framework consistently outperforms
the deterministic approach across varying levels of traffic
deviation under the applied spatial partitioning scheme.

Keywords-Simulation; spatial partitioning; underwater wire-
less sensor networks; traffic uncertainty; robust optimization.

I. INTRODUCTION

Underwater Wireless Sensor Networks (UWSNs) have
become essential for diverse underwater applications, in-
cluding environmental monitoring, offshore exploration,
scientific investigation, and marine operations involv-
ing submarine detection, AUV-assisted monitoring, and
maritime observation for situational awareness [1]–[4].
Comprising spatially distributed acoustic sensor nodes,
UWSNs are designed to observe and transmit underwater
phenomena to a base station, often through multi-hop
communication schemes. Due to the inherent challenges
in accessing and replacing deployed sensor nodes, energy
efficiency is a critical design consideration.

Recent advancements in underwater acoustic commu-
nication and the integration of heterogeneous underwater
platforms have significantly expanded the capabilities of

UWSNs. Nevertheless, these networks still face persis-
tent operational challenges, especially in dynamic and
mission-oriented environments. The need to detect and
track mobile entities such as submarines and AUVs creates
sensing demands that vary spatially and temporally. As
these entities move through the monitored area, nearby
nodes experience fluctuating sensing activity, resulting in
uneven data generation and shifting traffic patterns. Such
imbalances result in localized energy depletion, reduced
network availability, and premature degradation of system
performance [5]. Therefore, understanding how target mo-
bility affects sensing dynamics and communication load
is crucial for developing resilient UWSNs.

Our primary goal is to design an event-driven UWSN
capable of monitoring a designated underwater area
through a robust optimization approach. For a com-
prehensive literature review on the topic, the interested
reader is referred to [6], where a preliminary formulation
was introduced to address uncertainty using a global
robustness framework. Building upon this foundation, the
current study extends the analysis by incorporating spatial
heterogeneity through a region-based modeling strategy.
To better capture spatial variability in uncertainties, we
partition the 3D underwater network into sub-regions,
allowing region-wise deviations for detailed analysis of lo-
calized uncertainties. Several spatial partitioning methods,
such as grid-based schemes, clustering algorithms, and
Voronoi tessellations, have been explored in underwater
studies [7]–[9]. In this study, we adopt a balanced 3D
K-means clustering approach to achieve spatial division
that reflects the structure and operational characteristics
of underwater environments. This method provides a
practical and effective means to form spatially compact
and evenly sized regions, facilitating the application of
localized deviation scenarios and enabling clearer analysis
of their region-specific impacts on network behavior [10].

More specifically, we address the problem of minimiz-
ing the maximum initial battery allocation to sensors while
ensuring sustained network operation over a specified time
period. The robust design framework determines energy
allocations that remain feasible across all admissible data
rate variations, guided by a reference lifetime defined
during the configuration phase. In contrast, the nominal
design which does not consider uncertainty may lead to
premature network failure under slight deviations from
expected sensing rates. Subsequent evaluation shows that
the robust design consistently achieves network lifetimes
at or near the reference lifetime, demonstrating improved
resilience and reliability compared to the nominal ap-
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proach.
Finally, we present detailed analyses illustrating the

performance of both robust and deterministic designs
during the implementation phase, based on comprehensive
tests conducted across a wide range of scenarios.

The major contributions of this study are as follows:
• We utilize a comprehensive simulation framework

that integrates underwater vehicle movements, sensor
deployment, and detailed seabed topography derived
from real-world bathymetric data. This allows real-
istic estimation of sensing rates as they vary with
sensor locations and target trajectories, forming a
critical input for our robust model.

• We introduce a novel robust optimization framework
for UWSNs featuring balanced 3D K-means spatial
partitioning. This approach captures localized un-
certainty and traffic load variations more precisely,
enhancing the network’s resilience and performance.

• We present comprehensive test results on the per-
formances of the nominal design made without con-
sidering the uncertainty in the configuration phase
and the robust design under a polyhedral uncertainty
definition in different sensing rate scenarios when
they are put into practice. The test results indicate
that minor variations in sensing rates substantially
impair the performance of the deterministic design,
whereas the robust design consistently preserves
the expected performance and extends operational
longevity relative to the deterministic approach.

The remainder of this paper is organized as follows.
Section II presents the main components of our optimiza-
tion framework. We begin by introducing an optimization
model for the deterministic design of underwater net-
works in Section II-A, followed by the robust counterpart
formulation that enables analysis under uncertainty in
Section II-B. Section II-C then describes the simulation
environment used to derive sensor data generation rates.
Computational results and performance analysis are pro-
vided in Section III, organized around the configuration
and implementation phases. Finally, Section IV concludes
the study with a summary and directions for future re-
search.

II. PROBLEM DEFINITION

A. The Network Model

In this section, we will first present the classical math-
ematical model for the problem of efficient energy alloca-
tion to sensors. Next, we will block out how we integrate
the uncertainty in detection rates into the model within
the framework of robust optimization. In all models, we
assume that the sensors and sink possess all the necessary
capacity to process the data that they are supposed to
transmit and receive, respectively. As indicated in [11]
and [12], we consider only transmitting and receiving
energy consumption, which are dominant with respect to
other forms of consumptions like sensing and processing.
The channel characteristics are considered ideal and the
number of retransmissions due to failures is negligible
[13]. We present the notation used in the paper in Table I.

Given the data sensing rates of the sensors, the fol-
lowing mathematical model (Edet

max) aims to determine the

TABLE I. SETS, PARAMETERS, AND DECISION VARIABLES.

Sets

N Set of sensor nodes
NG Set of all nodes in the network, i.e., N ∪ {BS}, where BS denotes the base station
R Set of sensor subsets (regions), i.e., R = {R1, R2, . . . } with Rj ⊆ N
Rj A subset of sensors forming region Rj , i.e., Rj ∈ R
J Index set of regions, i.e., J = {1, 2, . . . , |R|}
S Set of sensing rate vectors within feasible intervals satisfying regional sum constraints
A Set of directed one-hop connections: A = {(i, j) : i ∈ N, j ∈ NG \ {i}, dij ≤ R}
G Directed graph representing the network, i.e., G = (NG, A)
U Uncertainty set of feasible sensing rate vectors

Parameters

dij Euclidean distance between i ∈ N and j ∈ NG

T Default network lifetime in configuration
R Transmission range for sensors (m)
eTX
ij Energy cost of transmission from i ∈ N to j ∈ NG per bit (mJ/bit)
eRX
ji Energy cost of reception by i ∈ N from j ∈ N per bit (mJ/bit)
sk Sensing rate of sensor k ∈ N (bit/s)
sknom Nominal sensing rate of sensor k ∈ N (bit/s)
skdev Sensing rate deviation of sensor k ∈ N (bit/s)
α Regional uncertainty budget
βkj Binary parameter indicating whether sensor k belongs to region Rj , where j ∈ J

Variables

fk
ij Proportion of sk sensed by k ∈ N transmitted on (i, j) ∈ A
ei Initial energy to be allocated to i ∈ N (mJ)
erob
max Maximum energy assigned to a sensor in N under the robust model (mJ)
edet
max Maximum energy assigned to a sensor in N under the deterministic model (mJ)
µik , λik Deviation duals
θji Regional budget dual variable

initial energy allocations for the sensors, which ensures
the energy-efficient operation of the network over default
network lifetime T :

min edet
max (1)

s.t.

∑
(i,j)∈A

fk
ij −

∑
(j,i)∈A

fk
ji =


1 if i = k

−1 if i = BS

0 otherwise

∀i ∈ NG, k ∈ N (2)∑
k∈N

 ∑
(i,j)∈A

TeTX
ij fk

ijsk +
∑

(j,i)∈A

TeRX
ji fk

jisk


≤ ei ∀i ∈ N (3)

edet
max ≥ ei ∀i ∈ N (4)

fk
ij ≥ 0 ∀(i, j) ∈ A, k ∈ N (5)

ei ≥ 0 ∀i ∈ N (6)

B. The Network Model for Polyhedral Sensing Rates

The polyhedral uncertainty model is widely adopted in
robust optimization due to its favorable balance between
computational efficiency and strong worst-case protection.
It enables reformulation into linear programs, preserv-
ing the complexity of deterministic models and allowing
scalable solutions using standard optimization techniques.
Compared to ellipsoidal sets [14], which require second-
order or semi-definite programming, the polyhedral ap-
proach offers greater tractability [15].

Unlike probabilistic methods that rely on distributional
assumptions and often lead to nonconvex or chance-
constrained formulations, the polyhedral model guarantees
feasibility without stochastic knowledge [16]. It also flex-
ibly captures parameter dependencies, supporting diverse
use cases.

To apply localized uncertainty, sensor nodes were
partitioned into spatially compact, equally sized groups
using the balanced K-Means method, which has demon-
strated effectiveness across various domains [17][18]. This
structure facilitates region-specific deviation modeling in
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underwater network design by minimizing intra-cluster
distances while maintaining uniform group sizes.

The balanced K-Means algorithm divides the sensor
set N into k clusters of equal size ni, minimizing intra-
cluster variance. At each iteration t, cluster centroids are
updated as Ci(t + 1) = 1

ni

∑
j∈Ci(t)

xj . Sensors are
then reassigned via a weighted bipartite matching process
that minimizes the total squared distance to centroids,
subject to |Ci| = ni. This is achieved using a virtual
slot index a ∈ [1, n] with edge weights defined as
W (a, i) = dist(xi, C(a mod k)+1)

2 for all i ∈ [1, n] [10].
Unlike standard K-Means, the equal-size constraint

introduces global dependencies, requiring iterative reas-
signments to balance cluster sizes and minimize variance.
This ensures a fair and symmetric robustness formulation
by avoiding region-specific scaling and simplifying con-
straints [10][19].

Under this formulation, deviations are restricted to one
region at a time. To prevent over-conservatism from overly
broad uncertainty sets, we adopt a region-based version
of the Γ-uncertainty model [15], enabling tractable and
focused robustness without excessive conservatism.

We define the polyhedron of feasible sensing rates as
the set of all sk satisfying snomk ≤ sk ≤ snomk + sdevk

for each sensor k ∈ N , and for all regions Rj ∈ R,
the sum of sensing rates within Rj satisfies

∑
k∈Rj

sk ≤
(1 + α)

∑
k∈Rj

snomk . More explicitly, U = {sk ∈ S :

snomk ≤ sk ≤ snomk + sdevk ∀k ∈ N ;
∑

k∈Rj
sk ≤

(1+α)
∑

k∈Rj
snomk ∀Rj ∈ R}. This formulation allows

for individual deviations while controlling aggregate sens-
ing rates regionally, balancing robustness with practical
conservatism.

The worst-case realization of the left-hand side in the
energy constraint leads to the robust counterpart constraint
maxs∈U

∑
k∈N sk · aik ≤ ei, where U is the uncer-

tainty set defined by the intervals and regional budget
constraints, and aik denotes the energy consumption at
node i associated with the sensing activity of node k, rep-
resented in the original constraint as

∑
(i,j)∈A TeTX

ij f
k
ij +∑

(j,i)∈A TeRX
ji f

k
ji. We now dualize the inner maximiza-

tion problem. The primal form of this inner maximization
is:

max
sk

∑
k∈N

sk · aik (7)

s.t.

snom
k ≤ sk ∀k ∈ N (8)

sk ≤ snom
k + sdev

k ∀k ∈ N (9)∑
k∈N

βkjsk ≤ (1 + α)
∑
k∈N

βkjs
nom
k ∀j ∈ J (10)

βkj ∈ {0, 1} ∀k ∈ N, ∀j ∈ J
(11)

Introducing dual variables µik ≥ 0 for the upper
bounds, λik ≥ 0 for the lower bounds, and θji ≥ 0 for the
regional constraints, the dual of this linear maximization
becomes:

min
µ,λ,θ

∑
k∈N

µik(s
nom
k + sdev

k )−
∑
k∈N

λiks
nom
k

+ (1 + α)
∑
j∈J

θji
∑
k∈N

βkjs
nom
k (12)

s.t.

µik − λik +
∑
j∈J

θjiβkj ≥ aik ∀k ∈ N (13)

µik, λik ≥ 0 ∀i ∈ N, k ∈ N (14)
θji ≥ 0 ∀j ∈ J , i ∈ N (15)

Consequently, replacing the original constraint with its
dual leads to the robust energy constraint. The resulting
compact LP model, which represents the robust counter-
part of Edet

max, is denoted by Erob
max:

min erob
max (16)

s.t.∑
k∈N

[
µik(s

nom
k + sdev

k )− λiks
nom
k

+
∑
j∈J

θji(1 + α)βkjs
nom
k

]
≤ ei ∀i ∈ N (17)

erob
max ≥ ei ∀i ∈ N (18)

(2), (5), (6), (13)− (15).

C. Simulation Model

The simulation framework developed for underwater
sensor networks encompasses several critical stages to
capture the complex interactions between sensors, under-
water vehicles, and the seafloor environment. These stages
ensure realistic modeling of detection processes and yield
the data generation rate as a key uncertainty parameter to
support the accuracy of robust network model.

Figure 1. Trajectories of AUVs in 3D underwater environment

The process begins with generating detailed bathymet-
ric maps to accurately characterize the underwater terrain.
Underwater vehicles are initialized at random locations,
and their trajectories are simulated based on predefined
mobility rules formulated to emulate smooth underwater
motion. A network of 40 sensors is deployed in a grid-like
fashion with terrain-aware feasibility checks and appropri-
ate detection radii to ensure sufficient coverage [20]. Each
sensor is assumed to possess both an absolute detection
area, which is designed to be tangential to those of
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neighboring nodes, and a surrounding probabilistic zone
where the likelihood of detection decays with distance due
to signal attenuation. This dual-layer sensing model cap-
tures detection uncertainty beyond the immediate sensing
range, resulting in a more precise representation of sensing
behavior.

Sensor detection durations are evaluated over discrete
time intervals, integrating continuous environmental mon-
itoring with event-driven sensing triggered by the tran-
sitions of underwater vehicles. In each run, a total of
100 underwater vehicles follow their trajectories, during
which sensors remain actively engaged in monitoring and
record the cumulative durations of the detection process.
These values are normalized by the total simulation time
to compute individual data generation rates. To account
for environmental variability, the process is independently
repeated 30 times using different random seeds, and the
consistency observed across these repetitions confirms
the reliability of the estimated sensing rates used in the
optimization model. The modular simulation framework,
implemented in Python and conceptually detailed in [6],
supports flexible modeling of sensor coverage, AUV mo-
bility, and energy-aware operations, thereby providing a
reliable foundation for both current analyses and potential
extensions involving more detailed energy models. The
energy model adopted in this study is based on the 10-
level discrete power scheme described in [21], in which
each level defines a communication range along with the
corresponding energy cost per bit for both transmission
and reception, thereby capturing distance-dependent en-
ergy consumption. Figure 1 presents an overview of the
simulation environment along with the intruder trajecto-
ries.

III. COMPUTATIONAL RESULTS

In this section, we present the results of numerical
experiments conducted in two main phases. First, we
examine the impact of incorporating uncertainty into en-
ergy allocation decisions during the configuration phase.
Second, we compare the performance of robust and
deterministic network designs in terms of operational
lifetime once deployed. These analyses aim to evaluate
the network’s capability to maintain performance when
exposed to potential uncertainties after configuration.

In the deterministic model, all parameters are assumed
to be known with complete accuracy. In contrast, the
robust model takes into account possible deviations in
the data generation rate, which is based on event-driven
measurements observed throughout the simulation. The
maximum battery allocations for both the deterministic
and robust models are obtained by solving their respective
linear programming formulations, denoted as Edet

max and
Erob

max, respectively. The goal in both cases is to minimize
the highest amount of energy allocated to any single
sensor. As expected, the robust model does not yield a
better objective value than the deterministic one, since
it is designed to handle more demanding and uncertain
conditions. Then, we evaluate the practical performance
of both configurations by comparing their optimal results
across various cases to assess trade-offs and identify the
most effective design strategy.

We performed all computations on a 2.50 GHz machine
with 16 GB. The optimization problems were solved by
IBM ILOG CPLEX Optimization Studio Version: 20.1.0
under a runtime limit of 720 seconds.

A. Configuration Phase: Maximum Energy Allocation

The aim of this section is to analyze how variations
in data generation rates, characterized by different uncer-
tainty sets, affect the maximum battery allocation values
(Emax) as determined by both the deterministic model
(Emax

det ) and the robust model (Emax
rob ) during the configu-

ration phase. In both models, the default network lifetime
is fixed at 100 seconds.

To assess the sensitivity of the robust framework in
comparison to the deterministic one, we vary the regional
uncertainty budget α ∈ {0.01, 0.05, 0.10, 0.20} within
a selected region. Additionally, sensors are allowed to
deviate individually by up to three standard deviations
(σ) to reflect node-specific uncertainty bounds. For each
(α, σ) combination, a robust provisioning is generated to
enable lifetime analysis in Section III-B.

These uncertainty parameters determine the level of
conservatism in the robust design: larger values lead to
broader uncertainty sets, thereby requiring more energy
provisioning to guard against adverse scenarios. Although
the robust model yields more conservative objective values
during the configuration phase, it consistently ensures
reliable performance in implementation. In contrast, the
deterministic design shows greater performance degrada-
tion even under minor deviations.

At this stage, considering the standard deviation bands
σi (for i = 1, 2, 3) with σ1 < σ2 < σ3, it is observed that
the maximum battery capacity increases against higher σj ,
while all other parameters remain constant. A similar trend
is evident across the localized conservativeness levels
αi, though the growth follows a sublinear pattern in
percentage terms. This suggests that higher regional con-
servativeness entails relatively modest additional battery
provisioning during the configuration phase, while still
ensuring robustness. Although variations in α contribute
to the observed gains, the deviation level σ emerges as the
primary factor driving regional disparities, as illustrated in
Figure 2.

In this context, for the least conservative scenario
(α = 0.05, σ1), the average increase in maximum battery
allocation under the robust configuration relative to the
deterministic baseline is 2.97%. Under the most conser-
vative setting (α = 0.20, σ3), this increase reaches 9.85%.

Region-wise analysis further reveals that sub-region
R1 consistently requires the highest battery allocation,
whereas R3 necessitates the lowest, across all σ levels.
This pattern is likely related to the higher sensitivity of
critical constraints in R1 to input deviations. In particular,
several nodes in R1 appear to operate near their feasibility
limits. In such cases, even small perturbations can activate
binding constraints with high dual values, amplifying
their influence on battery provisioning and, in turn, the
objective function.

B. Implementation Phase: Network lifetime

This section analyzes the performance of networks
designed with both models, as described in Section
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Figure 2. Percentage change of optimal battery capacity across different α and σ values in each sub-region Rj .

III-A, under predetermined parameter combinations. Con-
sequently, given the battery capacities of the sensors and
the data transmission paths, the functional duration of each
design will be calculated under different data sensing rates
and compared with the reference lifetime value T , speci-
fied during the design phase. Based on the uncertainty set
encompassing the applicable sensing rate vectors for the
given network configuration, and for specified values of
σ, we generate the set s′ = {s′k : k ∈ N} by selecting
sensors whose sensing rates are allowed to deviate from
their nominal values and reach the corresponding upper
bounds within the predefined sub-regions.

Then, we solve formulations (19) and (21) to determine
the lifetime of the deterministic and robust designs in
each case, respectively. Herein fk

ij,det and fk
ij,rob denote

the transmission paths, while eidet and eirob represent the
battery capacities obtained by solving Edet

max and Erob
max.

Hence, we solve LP models since the only unknowns are
Tdet and Trob.

max Tdet (19)
s.t.∑
k∈N

 ∑
(i,j)∈A

Tdete
TX
ij fk

ij,dets
′

k +
∑

(j,i)∈A

Tdete
RX
ji fk

ij,dets
′

k


≤ eidet ∀i ∈ N (20)

and

max Trob (21)
s.t.∑
k∈N

 ∑
(i,j)∈A

Trobe
TX
ij fk

ij,robs
′

k +
∑

(j,i)∈A

Trobe
RX
ji fk

ij,robs
′

k


≤ eirob ∀i ∈ N (22)

The sensor network is partitioned into four disjoint
regions Rj ⊆ N (for j = 1, 2, 3, 4), satisfying

⋃4
j=1 Rj =

N and |Rj | = 10 for each j. Deviation bands are
applied precisely to the sensors within each active Rj ,
consistent with the robust configuration. The network
lifetime achieved under the robust configuration closely
approaches or slightly underperforms the reference life-

time value of 100 seconds across all cases, as observed in
Figure 3.

Under nominal conditions, where no deviations occur,
higher values of α in the robust configuration extend net-
work lifetimes by provisioning additional capacity. When
deviations arise, as illustrated in Figure 3, increased α
enhances the model’s ability to maintain feasible operation
durations and mitigate premature battery depletion. This
adaptive behavior is achieved by conservatively allocating
battery capacity, selectively restricting the total magnitude
of deviations within regions characterized by spatially
correlated risks.

Building on this, the analysis based on parameters α
and σ highlights the critical importance of incorporating
sensing rate variability through robust optimization to
enhance network availability and reliability under high
uncertainty. For instance, in the baseline scenario with
(α = 0.05, σ1), the deterministic configuration exhibits
network lifetimes approximately 9.44%, 11.15%, 11.94%,
and 11.97% shorter across regions R1 to R4, respectively,
compared to the robust model. As uncertainty intensifies,
reflected by larger α and σ values, these differences
increase substantially, reaching reductions of 14.72%,
17.93%, 15.30%, and 21.75% in the most extreme cases.
From the α perspective, the robust design closely ap-
proaches the reference lifetime under low σ conditions.
However, as σ increases, the model requires more con-
servative allocations to accommodate higher uncertainty,
making it more difficult to achieve the reference lifetime.
This reflects the inherent trade-off between robustness
and performance in the presence of increased variability.
Ultimately, region-wise analysis indicates that lifetime
variability increases across each region as the levels of
α or σ increase.

Together, these findings confirm that the robust design
effectively sustains network lifetime close to the reference
target despite any considered level of uncertainty, balanc-
ing conservatism with operational efficiency.

IV. CONCLUSION AND FUTURE WORK

This paper proposes a robust optimization framework
for the design of an UWSN focused on target detection,
ensuring energy efficiency and network reliability under
uncertainty. Utilizing a simulation-based robust optimiza-
tion framework with real-world bathymetric data, we
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Figure 3. Comparison of deterministic and robust lifetime performance for a 40-sensor network across varying parameters

address uncertainties in sensing rates stemming from both
regional and individual sensor deviations, and evaluate
their impact on overall network performance. To enhance
this framework, we integrate a region-based deviation
model that provides a more comprehensive assessment of
spatial vulnerabilities across the network.

This study develops an uncertainty set grounded in
system-specific data obtained through simulation, leverag-
ing a polyhedral formulation that improves the scalability
of the proposed method and enhances its suitability for
practical applications.

Results from comprehensive tests indicate that even
minimal variations in sensing rates can severely compro-
mise deterministic designs, causing early network failures.
In contrast, the robust design consistently delivers sus-
tained long-term performance, substantially exceeding the
reliability of deterministic methods, even in the presence
of varying regional and localized spatial instabilities.

Following the worst-case scenario implementations that
are localized within one of the designated regions, future
work may explore more comprehensive deviation models
to address increasingly complex and unstructured condi-
tions across networks with varying numbers of sensors.
These include sensors deviating outside the active region,
mixed-region cases, and over-budget scenarios exceeding
the predefined uncertainty limits. Additionally, alternative
deployment and partitioning strategies can be employed
to evaluate their impact on robustness and enable com-
parative analyses.
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