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Abstract—Simulating modern cloud systems requires tools
that balance precision, extensibility, and reproducibility. Existing
simulators often target specific use cases or rely on monolithic
designs, which hinder the integration of alternative models for
workload generation, resource allocation, or cost estimation. We
present a modular and reproducible architecture for a cloud
simulation framework, implemented in a functional prototype,
and designed to support composable experimentation through a
plugin-based approach. Simulation scenarios are defined declar-
atively, specifying interchangeable components, such as alloca-
tors, load balancers, workload injectors, and cost models. This
architecture enables the systematic exploration and evaluation
of diverse cloud management strategies, offering full support for
event traceability, component reuse, and seamless integration into
scientific workflows.

Keywords-Cloud simulation; Discrete-event simulation; Repro-
ducible research; Workload modeling; Plugin-based architecture.

I. INTRODUCTION

Cloud computing has become the dominant paradigm for
deploying scalable and elastic services. However, the grow-
ing heterogeneity of modern infrastructures, including con-
tainer orchestration platforms, serverless computing, and hy-
brid cloud-edge deployments, introduces new challenges for
modeling and evaluating such systems in a systematic and
repeatable manner. In this context, discrete-event simulation
remains a fundamental tool for studying resource allocation
policies, autoscaling strategies, load balancing mechanisms,
and cost evaluation models.

This paper introduces a declarative, plugin-oriented archi-
tecture for cloud simulation and evaluates it using Nuberu,
an internal prototype that embodies the proposed design.

The main contributions of this paper are:
• The design of a modular and reproducible simulation

architecture based on dynamic plugin discovery and de-
coupled component integration.

• An extensible plugin system that supports declarative
simulation configuration through YAML (Yet Another
Markup Language) files and static interface validation
through Python Protocols.

• A practical validation scenario that demonstrates the
framework’s support for traceability, component reuse,
and reproducibility, and showcases its applicability across
diverse runtime configurations.

The remainder of this paper is organized as follows: Sec-
tion II reviews related simulation frameworks; Section III
presents the simulator architecture; Section IV details the
plugin system and extensibility model; Section V provides a
simple yet comprehensive use case to validate the architectural
design; and Section VI concludes the paper, summarizing key
findings and outlining directions for future work.

II. RELATED WORK

Simulation has long been a fundamental tool for evalu-
ating cloud infrastructures, as real-world experimentation is
often prohibitively expensive, time-consuming, and difficult
to reproduce. Numerous simulation frameworks have been
developed to support the study of cloud systems, each focusing
on specific aspects, such as resource provisioning, scheduling
policies, or cost modeling.

CloudSim [1] is one of the most established simulators,
providing a general-purpose Java framework for modeling
datacenters, Virtual Machines (VMs), and application work-
loads. Despite its configurability, CloudSim lacks a plugin
architecture, is tightly coupled to Java workflows, and requires
code modification to explore alternative policies, which limits
its adaptability and reproducibility.

SimGrid [2] is another mature toolkit for modeling large-
scale distributed systems, supporting diverse paradigms, such
as High Performance Computing (HPC) and Grid computing.
While it enables precise modeling of network and computing
resources and has been widely adopted in the systems research
community, its focus is broader than cloud infrastructures, and
its extensibility relies on low-level Application Programming
Interfaces (APIs) rather than composable modules.

Beyond these foundational tools, several recent surveys [3]–
[7] systematically review cloud simulation frameworks, iden-
tifying common limitations and areas for future research.
Mansouri et al. [3] evaluated 33 simulators and concluded
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that no single tool covers all required dimensions, calling
for improvements in Mobile Cloud Computing (MCC) [3][8],
federated environments [9], and emerging paradigms, such
as edge, fog, and Internet Of Things (IoT) [10][11]. Other
studies [4][5] stress the lack of integrated support for security,
dynamic behavior, or complex task prioritization, and empha-
size the need for reproducibility, flexibility, and modularity in
future frameworks.

More recently, several simulators written in Python have
gained attention for their accessibility and extensibility. Yet
Another Fog Simulator (YAFS) [10] simulates microservice
deployments over user-defined network topologies, using the
SimPy engine, and supports modular control over service
placement and routing policies. Although it exhibits high
flexibility for customizing placement, routing, and schedul-
ing strategies, allowing dynamic scenario definition via class
extension and functions integration, it lacks an explicit plu-
gin system for external and decoupled integration of new
core components. As a result, adding new functionality in
YAFS often requires more intrusive modifications to the
core codebase. Cloudy [12], by contrast, introduces a hybrid
discrete-time and event-driven simulator with native Graphics
Processing Unit (GPU) support and integration plans for
optimization and machine learning (ML) libraries. However,
its extensibility depends on manual template duplication, and
it lacks a unified declarative configuration system. Finally,
ECLYPSE [13], a preprint that has not undergone peer review,
focuses on simulating composable cloud architectures with
an emphasis on reproducibility. Its extensibility is achieved
through a highly modular architecture that leverages object-
oriented design principles, such as inheritance, and Python’s
dynamic capabilities, such as decorators, rather than relying
on an explicit, separate plugin ecosystem.

These Python-based initiatives highlight the community’s
growing interest in modern, flexible, and scriptable simulation
platforms. However, to the best of our knowledge, none of
them adopts a modular, plugin-based architecture as the one
we propose for simulating cloud environments. This makes
our approach a novel contribution to the field.

Table I summarizes and contrasts key features of repre-
sentative simulators in the domain, highlighting their sup-
port for modularity, configuration mechanisms, extensibility,
and reproducibility, along with their limitations and typical
application areas. As shown, none of the existing solutions
fully meets all desired characteristics, especially in terms of
reproducibility and plugin support.

III. SYSTEM ARCHITECTURE

The proposed architecture targets cloud simulation and
centers on a discrete-event simulation engine, a global event
bus, and a set of pluggable components. This design minimizes
coupling between simulation logic and system policies, allow-
ing researchers to prototype, compare, and reproduce complex
deployment strategies with minimal implementation effort.

Figure 1 shows a conceptual view of the architecture, struc-
tured in layers of abstraction. The uppermost layer corresponds
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Use Cases

CloudSim # # # G# (a) VM scheduling, provisioning
SimGrid G# G# G# G# (b) HPC, distributed simulation
YAFS G# G# #  (c) Fog, IoT strategy evaluation
Cloudy G# # # G# (d) Cloud + ML, GPU workloads
ECLYPSE  # G#  (e) Edge-cloud prototyping
Nuberu (proto)     (f) Reproducible workflows

Legend of symbols:
 Fully supported
G# Partially supported
# Not supported

Limitation notes:
(a) Rigid architecture, low modularity.
(b) Low extensibility, low-level abstractions.
(c) No plugin interface, core modification required.
(d) No declarative config, manual extension required.
(e) Tightly coupled modules, no plugin API.
(f) See Section VI.

YAML Configuration
+

Plugin selection
(Allocator, WoklaodInjector, etc.)

Simulation Kernel
(asynchronous SimPy + EventBus)

Allocator (Plugin)

Execution (Events + Processes)

Logs / Metrics / Output

WorkloadInjector
(Plugin) CostModel (Plugin)......

Figure 1. Conceptual high-level architecture

to the declarative experiment definition, where the simulation
scenario and plugin selection are specified. The simulation
kernel is responsible for orchestrating component instantiation
and execution using asynchronous event-driven logic. Plug-
ins encapsulate functional policies and interact only through
the EventBus. The bottom layer collects structured outputs,
thereby enabling traceability and reproducible analysis.

A. Core Simulation Engine

The simulation kernel follows a discrete-event model sim-
ilar to SimPy library [14], but adopts Python’s native
async/await syntax instead of generator-based event han-
dling. This design choice significantly improves the readability
and maintainability of complex simulation flows, particularly
those that involve multiple concurrent components, such as
virtual machines, containers, and request dispatchers.
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B. Component Model and Plugin Architecture

This architecture distinguishes between two user roles: de-
velopers, who create alternative implementations of pluggable
components by writing plugins that conform to predefined
interfaces, and analysts, who design simulation scenarios by
selecting among available plugins without modifying the core
system. In practice, a single user may assume both roles, devel-
oping custom components and designing simulation scenarios.

The simulation framework distinguishes between core com-
ponents, which define the structure and control flow of the sys-
tem, and pluggable components, which encapsulate specific,
customizable behaviors. Core components include the discrete-
event simulation engine, the communication primitives (e.g.,
event bus and channels) and essential modules, such as the
workload injector, allocator, and infrastructure manager. These
components are not pluggable themselves, but delegate criti-
cal functionality—such as workload characteristics, allocation
strategy, or cost modeling—to user-defined plugins.

The mechanisms for dynamic discovery, registration, and
static validation of these plugins are detailed in Section IV.

C. Event Bus and Inter-component Communication

Components communicate through a central event bus,
implemented as a publish/subscribe mechanism over asyn-
chronous message queues. Each event is categorized by a pre-
defined topic (e.g., VM_STARTED, REQUEST_COMPLETED)
and includes metadata, such as simulation time, origin, and
payload. This decoupled communication model ensures that
components remain independent and composable, facilitating
experimentation and instrumentation without introducing tight
coupling or global state dependencies.

The event bus is not limited to simulation components: addi-
tional observers (e.g., loggers, metric collectors, or debugging
tools) can be implemented and subscribed to relevant event
topics at runtime without modifying existing logic.

D. Simulation Configuration

The simulation runtime is configured declaratively via a
YAML specifying parameters such as the simulation duration,
the names of the plugins to be loaded for each functional
component, and the input data, such as workloads, infrastruc-
ture specifications, performance data or allocation strategies.
It can also define external data sources, such as workload
traces in custom formats, to be parsed and injected at runtime
by compatible plugins. This enables integration with external
tools, such as cost optimizers, whose solutions can be imported
through the appropriate plugin.

The architecture follows a microkernel-inspired design, in
which the simulation engine acts as a lightweight orchestrator.
Pluggable components are dynamically instantiated, operate
in isolated asynchronous processes, and communicate exclu-
sively through event-based interactions. This design allows
for flexible composability and simplifies the development and
integration of experiment-specific logic without entangling it
with the simulation kernel.

IV. PLUGIN SYSTEM AND EXTENSIBILITY

A. Plugin Discovery and Registration

The architecture uses the pluggy library [15] to support
dynamic plugin discovery using Python’s entry_points
mechanism. Each plugin is an installable python package
which registers itself in the pyproject.toml file under
a specific namespace (e.g., application_model.llm,
cost_model.default), which enables the simulation
framework to identify the type and logical name of each
component. Once installed in the Python environment, plugins
are automatically discovered at runtime without requiring any
additional code modification.

Multiple plugins of the same type can be installed and
selected declaratively through the YAML configuration file.

If a plugin declared in the YAML configuration cannot
be found or does not conform to the expected interface, the
simulation engine is designed to abort execution and issue a
descriptive error. This validation occurs at startup time, before
any event execution, ensuring that core simulation behavior
remains consistent and reproducible, even when user-defined
extensions are used in the configuration. Non-essential third-
party plugins, such as auxiliary observers or loggers, may fail
gracefully with a warning, allowing the simulation to proceed
when their absence does not compromise correctness.

B. Interface Contracts via Protocols

Each pluggable component in the architecture adheres
to two complementary interface mechanisms. First, a hook
specification (hookspec) is defined using pluggy, which
declares the methods that a plugin must implement to
be properly registered and invoked at runtime. Second
a Python Protocol interface is used for each plugin
type, enabling static type checking and improved devel-
oper experience. These protocols specify the required meth-
ods (e.g., get_workloads(), apply_allocation(),
compute_cost()) and allow for static verification using
tools, such as mypy.

This dual-layer interface ensures runtime compatibility via
pluggy, while also providing static guarantees, editor sup-
port, and better documentation through Protocol. Together,
these mechanisms improve reliability, reduce integration er-
rors, and facilitate the rapid development of new components.

V. EXPERIMENTAL VALIDATION: COMPARING OPTIMIZED
ALLOCATIONS WITH SIMULATED BEHAVIOR

To demonstrate how the proposed architecture supports
rigorous, scenario-driven evaluation, we present a case study
executed with Nuberu, a prototype that instantiates our design.
The goal is to show how the framework can expose hidden
assumptions in external decision-making tools, such as math-
ematical optimizers, and thus guide their refinement.

Optimizers based on mathematical models, such as lin-
ear programming, often rely on idealized assumptions about
workload, resource performance, and system behavior. This
section investigates to what extent such optimized allocations
remain effective when deployed in a more realistic simulated
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TABLE II. PERFORMANCE IN REQUEST PER SECOND (RPS) OF EACH
CONTAINER CLASS ON EVERY VM INSTANCE CLASS

C. Class cc
0a

pp
0

cc
0a

pp
1

cc
1a

pp
0

cc
1a

pp
1

cc
2a

pp
0

cc
2a

pp
1

VM I. Class

c5.2xlarge 2.10 0.46 4.30 0.96 6.35 1.63
c5.large 2.10 0.46 4.30 0.96 6.35 1.63
c5.xlarge 2.10 0.46 4.30 0.96 6.35 1.63
c6i.2xlarge 2.29 0.50 4.71 1.02 6.82 1.76
c6i.large 2.29 0.50 4.71 1.02 6.82 1.76
c6i.xlarge 2.29 0.50 4.71 1.02 6.82 1.76

environment. By simulating the deployment plan produced by
the optimizer under multiple runtime conditions, we aim to
identify discrepancies, stress points, and potential modeling
oversights. This not only validates the practical viability of the
computed solution but also highlights the role of simulation
as a complementary tool for refining optimization strategies.

A. Description of the scenario to simulate

The scenario to be simulated is the output of an optimizer,
Conlloovia [16], that solves a linear programming problem
to allocate container replicas on VMs to minimize cost while
ensuring the throughput of each application reaches or exceeds
its 95th percentile over the forecast load trace. Inputs include:

• VM instance classes (including cost, cores and memory),
• container classes (defining CPU/memory requirements),
• and throughput performance matrices for each container

class/VM instance class pair (see Table II).
As an example, we analyze a one-hour segment from one of

the scenarios presented in Section 5.4 of [16]. It involves two
deployed applications, app0 and app1, each with a one-hour
request trace that exhibits different dynamics: app0 maintains
a stable average load of 39 rps with a 95th-percentile (p95)
of 44 rps, whereas app1 shows a variable load whose average
rate changes over time, with a p95 of 117 rps (see Figure 2).
The optimizer’s solution deploys 38 VMs across three instance
types and 126 container replicas from three classes (one for
app0 and two for app1), as depicted in Figure 3.

Using a custom plugin, the simulator can read this allocation
directly from the files generated by Conlloovia and use it to:
bootstrap the VMs, start the containers, inject traffic (using a
user selected mode), and route requests through a configurable
load balancer. Each container simulates service time based on
the performance data, and metrics are collected throughout.

B. Experimental design

To assess the flexibility and analytical power of the simu-
lator, we simulate the same scenario under 16 configurations
combining four binary dimensions

1) Load injection (Load): either from the original trace
(replaying realistic variability) or as a synthetic Poisson
process which ensures the same p95 throughput value
used by the optimizer.

(a) Workload for app0

(b) Workload for app1

Figure 2. Plot of the workloads for each application

LoadBalancer

25 × c6i.2xlarge VMs12 × c6i.xlarge VMs

1 × c6i.large VM

app1
injector

app0
injector

cc1app0
cc0app1
cc1app1

Container Images

... 

Figure 3. Scenario to simulate

2) Load Balancing (LB): either a simple Round-Robin
(RR) or a Smooth Weighted Round-Robin (SWRR), as
the one used in nginx [17], which takes into account the
performance differences between containers to assign
appropriate weights.

3) Queuing model (Q): either none (requests are dropped
if busy) or bounded queues of size 1000 per container.

4) Termination policy (Term): either ‘hard’ (containers
are terminated immediately) or ‘drain’ (containers are
kept alive to complete queued requests).
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TABLE III. SUMMARY OF KEY METRICS (SUCCESS RATE AND TOTAL
COST) FOR THE 16 SIMULATION SCENARIOS.

app0 app1 cost
Q Term LB Load

0 drain RR poisson 82.6% 95.0% $10.66
trace 100.0% 98.5% $10.63

SWRR poisson 82.6% 94.8% $10.66
trace 100.0% 94.4% $10.63

hard RR poisson 82.6% 94.9% $10.62
trace 100.0% 98.5% $10.62

SWRR poisson 82.6% 94.8% $10.62
trace 100.0% 94.3% $10.62

1000 drain RR poisson 100.0% 99.8% $16.56
trace 100.0% 99.8% $16.53

SWRR poisson 100.0% 100.0% $10.66
trace 100.0% 100.0% $10.63

hard RR poisson 100.0% 99.2% $10.62
trace 100.0% 99.2% $10.62

SWRR poisson 100.0% 100.0% $10.62
trace 100.0% 100.0% $10.62

This design allows us to evaluate how an optimized deploy-
ment responds under diverse execution settings and policies.

Each of the 16 simulations is defined through a YAML
file that declares the scenario parameters, input data sources
(e.g., system specification and optimal allocation), and the
plugin components responsible for parsing external formats,
such as Conlloovia. All experiment definitions, input traces
and simulation results used to create the tables and figures in
this paper are available in a public repository [18].

C. Discussion

Table III summarizes two key metrics obtained from the
16 simulated scenarios: the percentage of completed requests
and the total simulated cost. The results provide a compact
overview of how different combinations of runtime param-
eters affect system performance. Configurations that include
queueing, and SWRR load balancing consistently deliver the
highest completion rates. By contrast, in scenarios with no
queues, only the ones which use the actual traces achieve
high completion rates. Poisson arrivals degrade performance,
because the optimal solution generated by Conlloovia relies
on very high container utilization, which in turn presupposes
perfectly synchronized request arrivals.

Queues absorb demand spikes and improve request comple-
tion, though at the cost of higher response times. The drain
policy avoids loss of in-flight or queued requests but prolongs
VM usage and increases cost.

Interestingly, the simulated costs match exactly the opti-
mizer’s predictions in all scenarios using hard termination,
since containers are shut down precisely as scheduled. How-
ever, in scenarios with drain termination, VMs remain active
longer to complete pending requests, resulting in slightly
higher costs. The RR scheduler results in the highest cost be-
cause it ignores container performance, leading to long queues

(a) Synthetic workload with Poisson arrivals

(b) Trace based workload

Figure 4. Response time and number of requests completed for the scenarios
with SWRR balancing, large queues and ‘hard’ termination (last two rows

of Table III)

of pending requests in the slower containers. These take longer
to drain at the end of the simulation, thereby increasing the
cost. SWRR balancing proves superior in these scenarios by
distributing the load more proportionally across containers
with heterogeneous performance, resulting in shorter queues.

Figure 4 shows the evolution of average response times
and request completion rates for the SWRR load balancer
under a ‘hard’ termination policy. Subfigure 4a corresponds
to a synthetic workload generated as a Poisson arrival process
with λ = 34.563 rps for app0 and λ = 100.718 rps for
app1, ensuring a p95 of 44 rps and 117 rps, respectively,
matching the throughput guaranteed by Conlloovia’s solution.
Subfigure 4b uses a trace-based workload from [16], where
the number of requests per second varies over time and is read
from Comma Separated Values (CSV) files. In this case, the
request rate can be at times above the p95 throughput expected
by the solver. This is most noticeable for app1, which experi-
ences pressure during the initial minutes, resulting in increased
response times. In contrast, app0 remains stable throughout,
even during short periods when its demand exceeds the p95
threshold.

Together, these results confirm the value of simulation
not just for performance validation but as a diagnostic tool
to uncover modeling assumptions that may not hold under
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realistic or adverse conditions.

VI. CONCLUSION AND FUTURE WORK

This paper has introduced a modular, extensible architecture
for cloud simulation frameworks that is explicitly designed
to support reproducible and composable experimentation.
Based on decoupled components, dynamic plugin discovery,
and declarative configuration, the design enables researchers
to prototype and compare alternative models for workload
generation, resource allocation, and cost evaluation without
modifying the simulation core.

By capturing the experimental setup in version-controlled
configuration files and generating structured simulation traces,
the proposed architecture aligns with the FAIR principles,
Findable, Accessible, Interoperable, and Reusable [19]. This
foundation enables both local reproducibility and broader
community validation of alternative orchestration strategies.

The framework is under active development, with future
releases providing curated plugins and scenarios. This work
serves as a foundation for reproducible and extensible cloud
simulation. Although the current prototype does not yet
simulate network communication, I/O operations, or energy
consumption, and no validation against real cloud deployments
has been performed, it can already handle hundreds of VMs
and thousands of requests with acceptable overhead. A com-
plete evaluation of scalability and runtime efficiency is planned
as part of future work. Upcoming extensions will enable more
complex simulation scenarios. Firstly, we plan to incorporate
models for network and I/O operations to support richer
and more realistic simulations. Secondly, we will expand the
plugin ecosystem with curated modules for common use cases,
including auto-scalers, Large Language Model (LLM) serving
patterns, spot-instance strategies, and multi-tenant execution.
Finally, we will validate the architecture through large-scale
comparative studies and evaluate its suitability for hybrid
cloud-edge deployments.
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