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Abstract—Maritime search and rescue constitutes a complex
multi-variable decision-making problem, where the dynamic
drift trajectory of overboard targets is influenced by various
uncertain factors including ocean currents, wind forces, and
temperature. This paper proposes a maritime rescue path
planning decision algorithm based on uncertainty simulation,
which achieves real-time optimization of rescue paths by
constructing a dynamic drift characteristics model for
overboard targets combined with dynamic optimization theory
from operations research. Simulation experiments demonstrate
that compared to traditional static path planning algorithms,
the proposed method significantly improves both rescue
success rate and time efficiency.

Keywords-maritime search and rescue; uncertainty
simulation; dynamic optimization; path planning; drift modeling.

I. INTRODUCTION
Maritime Search and Rescue (MSAR) represents a

critical component in ensuring the safety of ocean activities,
with thousands of maritime distress incidents occurring
globally each year[1]. The survival window for overboard
individuals is limited, making rapid and accurate rescue path
planning directly determinant of rescue success rates.
However, the complexity and uncertainty of marine
environments pose significant challenges to rescue decision-
making.

Traditional rescue path planning predominantly relies on
static environmental assumptions, neglecting the dynamic
variability characteristics of marine environments. The drift
trajectory of overboard targets on the sea surface results from
the combined influence of multiple factors including current
fields, wind fields, and waves, all of which exhibit notable
spatio temporal variability and uncertainty. Furthermore,
physiological conditions of overboard individuals, clothing
circumstances, and seawater temperature also affect their
drift characteristics in water.

Addressing these challenges, this paper proposes an
integrated maritime rescue simulation decision framework
combining uncertainty modeling with dynamic optimization.
By constructing a probabilistic model of dynamic drift for

overboard targets and incorporating Markov decision
processes with dynamic programming theory, we achieve
real-time optimization of rescue paths that accounts for
environmental uncertainties.

The remainder of this paper is structured as follows:
Section II reviews related work, Section III details problem
modeling, Section IV presents the algorithm, Section V
discusses simulations, and Section VI concludes.

II. RELATEDWORK

Research on maritime rescue path planning has primarily
focused on three aspects. Environmental modeling efforts,
such as the drift prediction models based on numerical ocean
models by Allen et al. [2], often insufficiently account for
model uncertainties. Davidson contributed a modified
Leeway model through investigating drift characteristics
under coupled wind-wave effects. In terms of optimization
algorithms, traditional approaches predominantly employ
heuristic methods like genetic algorithms and particle swarm
optimization to derive optimal search paths [3], while
reinforcement learning has recently demonstrated promising
potential for dynamic path planning [4]. Regarding
uncertainty simulation, some studies utilize Monte Carlo
methods to address environmental uncertainties, though at
high computational cost [5], and probabilistic graphical
models such as Bayesian networks are applied in uncertainty
reasoning yet face computational bottlenecks in real-time
decision-making [6]. Existing research still exhibits gaps in
integrating multi-source uncertainties and real-time dynamic
optimization.

III. PROBLEMMODELING

This section establishes the mathematical foundation for
representing the drifting targets and rescue vessels under
environmental uncertainty, setting the stage for robust path
planning.

A. Drift Dynamics Model for Overboard Targets
The motion of overboard targets can be decomposed into

active drift and passive drift components[1]. Let the target
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position at time t be ( ) [ ( ), ( )]Tt x t y tr , with the dynamic
equation:

( ) ( ) ( ) ( ) ( )c w d
d t t t t t
dt

   
r v v v ξ  

where ( )c tv means current velocity, ( )w tv means wind-
induced drift velocity, ( )d tv means active swimming
velocity, ( )tξ means random disturbance term.

B. Uncertainty Modeling
Considering marine environment complexity, each

influencing factor exhibits uncertainty. Current uncertainty is
modeled using Gaussian random fields,

( ) ~ ( ( ), ( ))c c ct t tv μN . Wind field uncertainty accounts for
random variations in wind speed and direction,

( ) ( ( ), ( ))w windt f t tv V , where wind speed and direction
follow joint distributions. Furthermore, the uncertainty in
human physiological parameters, such as swimming
capability and energy consumption, is modeled as a time-
varying stochastic process.

C. Rescue Path Planning Formulation
Define the rescue vessel set as 1 2{ , , , }ms s s S , with

each vessel i at time t having
state ( ) [ ( ), ( ), ( ), ( )]Ti i i i it x t y t v t tx , including position,
velocity and heading. The rescue path planning objective
minimizes expected rescue time:

min [ ( )] min min arrival
rescue i iT T       S (2)

Constraints include vessel dynamics, collision avoidance,
fuel consumption.

IV. DYNAMIC OPTIMIZATION ALGORITHM DESIGN

This section presents a real-time decision-making
framework that integrates forecasting, uncertainty
propagation, and iterative optimization to adaptively plan
rescue paths.

A. Receding Horizon Optimization Strategy
Formulate the rescue path planning as a Partially

Observable Markov Decision Process (POMDP). Adopt a
Model Predictive Control (MPC) framework, solving finite-
horizon optimization at each decision epoch:

* ( ) argmin [ ( , )]
t H

t
t R x u  








  , (3)

where H is the prediction horizon length. Real-time path
adjustment through receding horizon optimization
accommodates dynamic environmental changes.

B. Uncertainty Propagation and Bayesian Update
Employ particle filtering for state estimation and

uncertainty propagation. Predict next-state distribution using
dynamics model and current particle distribution.
Incorporate observation information to update posterior
distribution via Bayes' theorem. Prevent particle degeneracy
and maintain particle diversity.

V. SIMULATION EXPERIMENT DESIGN

We build a simulation environment based on real ocean
data. HYCOM (Hybrid Coordinate Ocean Model) provides
global ocean current reanalysis data at a spatial resolution of
1/12° . ECMWF ERA5 offers meteorological reanalysis
wind data with a temporal resolution of one hour. Significant
wave height and wave period data are sourced from the
Wave Watch III model.

Design three typical rescue scenarios, including
nearshore rescue, open-ocean rescue and beyond 50 nautical
miles offshore. Compare the proposed dynamic optimization
algorithm against baseline methods: Greedy algorithm: Each
vessel selects nearest target. Static A* algorithm: Plans
shortest path based on current environment state. Genetic
algorithm: Heuristic method for global optimization.
Reinforcement learning: End-to-end Deep Q-Network based
approach.

In an academic research setting, our method benefits
from high-performance computing resources, including
multi-core CPUs, large RAM ( ≥ 256GB), and high-end
GPUs (e.g., NVIDIA A100), which support rapid iteration
and model development through distributed deep learning
frameworks such as PyTorch. For practical real-time
deployment, however, we emphasize a cloud-edge
architecture. Optimized models can be deployed on low-
power edge devices (e.g., NVIDIA Jetson Orin) for
millisecond-level inference, while cloud-based GPUs
facilitate periodic retraining. This balance ensures scalability
and responsiveness in harsh maritime environments.

VI. CONCLUSION AND FUTUREWORK

This paper proposes a dynamic optimization algorithm
for maritime rescue path planning based on uncertainty
simulation, with main contributions. Developed
comprehensive multi-source uncertainty drift model
improving drift prediction accuracy. Designed Markov
decision process-based dynamic optimization framework
enabling real-time path adjustment. Implemented particle
filtering for uncertainty propagation effectively handling
high-dimensional uncertainties. Validated algorithm efficacy
through large-scale simulations demonstrating significant
improvements over traditional methods.
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