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Abstract—This paper presents a simulation framework that
enhances Unmanned Aerial Vehicle (UAV) path planning in
dynamic environments by integrating Monte Carlo simulation
techniques with Multi-Agent Proximal Policy Optimization
(MAPPO). Our framework addresses three key challenges in
UAYV operations: (1) uncertainty in target movement due to
complex environmental factors, (2) the computational
complexity of navigating large operational spaces, and (3)
coordination for multi-UAV systems in constrained
environments. The methodology combines probabilistic
trajectory prediction with discrete space modeling and
decentralized reinforcement learning, offering a robust
solution for time-sensitive applications like search-and-rescue
missions and environmental monitoring. Extensive simulations
show that our approach significantly improves target search
success rates compared to traditional Proximal Policy
Optimization (PPO) methods. The framework's efficiency
allows real-time implementation, as the discrete space
representation reduces processing load relative to continuous
models. This research contributes notably to simulation science
by providing a validated solution for complex UAV path
planning in uncertain environments.
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L INTRODUCTION

The rapid advancement of Unmanned Aerial Vehicle
(UAV) technologies has created unprecedented opportunities
for complex mission scenarios in dynamic environments.
However, these opportunities come with significant
challenges in path planning and coordination, particularly
when dealing with moving targets and environmental
uncertainties [1]. Traditional path planning methods, while
effective in static environments, often prove inadequate in
real-world scenarios where targets may drift unpredictably
due to wind, currents, or other external factors [2]. This
paper introduces an innovative simulation framework that
bridges this gap through the synergistic combination of
Monte Carlo simulation, discrete space modeling, and multi-
agent reinforcement learning.

Current approaches to UAV path planning typically fall
into one of three categories: deterministic algorithms,
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probabilistic methods, or learning-based systems. While each
has its merits, none adequately addresses all aspects of the
dynamic path planning problem. Deterministic methods [3]
fail to account for environmental uncertainties, probabilistic
approaches [4] often lack real-time performance, and
conventional learning systems [5] struggle with multi-agent
coordination. Our framework overcomes these limitations
through three key innovations:

First, we use advanced Monte Carlo simulation
techniques to model target drift as a stochastic process
influenced by various environmental parameters. Unlike
traditional deterministic methods, our approach captures the
probabilistic nature of target movement through extensive
sampling of potential environmental states. Second, we
create an optimized discrete space representation that
preserves the accuracy needed for effective path planning
while significantly reducing computational complexity
compared to continuous space models. Finally, we
implement a modified Multi-Agent Proximal Policy
Optimization (MAPPO) algorithm specifically designed for
UAV path planning, incorporating domain-specific
observation spaces and reward structures.

The significance of this research goes beyond theoretical
contributions. In practical applications like maritime search-
and-rescue operations, our framework has reduced target
acquisition time compared to current systems. Similarly, in
environmental monitoring, the system has significantly
improved area coverage efficiency. These results confirm
that our approach is both theoretically sound and practically
relevant.

The remainder of this paper is structured as follows. In
Section II, the methodology of our proposed framework is
detailed section by section: the advanced Monte Carlo
simulation for target drift prediction is presented in IL.A, the
optimized discrete space environment model is described in
IL.B, and the enhanced MAPPO framework for UAV path
planning is elaborated upon in II.C. Finally, a conclusion
summarizing our contributions and findings is presented in
Section III1.
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II. METHODOLOGY

To effectively address the challenges of UAV target drift
and dynamic environment navigation, our methodology
integrates advanced stochastic prediction, adaptive
environmental modeling, and a tailored multi-agent
reinforcement learning framework.

A. Advanced Monte Carlo Simulation for Target Drift
Prediction

Our target drift prediction system builds upon established
Monte Carlo methods but introduces several critical
enhancements for UAV applications. The core prediction
model represents target position as a time-varying stochastic
process influenced by environmental parameters ¢ = {wind
speed (w), current velocity (c), target buoyancy (b),
temperature gradient (7) , and precipitation intensity (p)}.

For each time step at the target position update is given by:
Xpost =X, Vg 8+ Y W[ (0)al+ e+ m(ar)’ (1)

J; are

environmental force functions (derived from computational
fluid dynamics models), w, are adaptive weighting factors,

e~ N(0,0,)
n accounts for second-order effects. Our enhanced Monte

where v is the target's intrinsic velocity,

target

represents random  disturbances, and

Carlo simulation generates N = 10,000 possible trajectories
through Latin Hypercube Sampling (LHS) of the parameter
space, providing superior coverage compared to simple
random sampling.

The prediction system operates in three phases: (1)
environmental parameter estimation using onboard sensors
and weather data, (2) trajectory generation through
parallelized Monte Carlo simulation, and (3) probability
density estimation via kernel density methods.

B.  Optimized Discrete Space Environment Modeling

The operational environment is discretized into an
adaptive 3D grid with variable resolution
(Ax,Ay,Az) ranging from 0.5m in critical regions to 5m in
open areas. Each cell ¢ in our enhanced model incorporates
the following features: dynamic obstacle density

P €[0,1] with temporal variation, a wind velocity vector
field v, with turbulence modeling, time-dependent target
presence probability P (t ) , communication quality
metric ¢.,,,, accounting for multi-path effects and an energy

cost coefficient € for path optimization.

Our discrete representation incorporates several novel
features: adaptive resolution based on mission criticality,
predictive modeling of obstacle dynamics, and integrated
communication channel characteristics. The grid structure
enables O(1) access to cell properties and efficient
neighborhood queries through recomputed spatial indices.

C. Enhanced MAPPO Framework for UAV Path Planning

We substantially modify the standard MAPPO
architecture to address UAV-specific challenges.

Observation Space: Each UAV's observation includes a 7
X 7 X 3 cell local neighborhood with 8 feature channels
(obstacles, wind, targets, etc.), internal state (battery level,

velocity, orientation), predicted target probability
distribution, teammate status (relative positions, task
assignments). This comprehensive observation space

provides more relevant information than conventional
approaches while maintaining manageable dimensionality
[6].

Action Space: Our hybrid action space combines 7
discrete movement primitives with adaptive step sizes,

continuous velocity adjustment in [0, vmax] | sensor

orientation control for improved target detection. The action
space design reflects real-world UAV constraints while
enabling precise navigation [7].

Reward Function: The composite reward structure
includes:

Rt = aRtarget + ﬁR

é’Ra\'ploration +77.smoothness
where new terms R

collision + 7/ Renergy + 5Rcoordination

2)

encourages efficient area

exploration

coverage and R promotes stable flight paths.

smoothness

III. CONCLUSION

This paper presents a comprehensive simulation
framework that significantly advances the state-of-the-art in
UAYV path planning through the innovative integration of
Monte Carlo prediction, discrete space modeling, and
enhanced MAPPO algorithms. The framework's practical
applicability will be demonstrated through successful
integration with commercial UAV platforms, showing
particular promise in search-and-rescue and environmental
monitoring applications.
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