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Abstract: Carbon dioxide (CO₂) remains the leading 

contributor to greenhouse gas (GHG) emissions in the United 

States, with passenger vehicles playing a significant role. As 

emerging transportation technologies introduce Autonomous 

Vehicles (AVs) into the existing fleet, understanding their 

impact on urban traffic systems becomes increasingly 

important. This study presents a simulation-based analysis of 

the effects of AVs on urban mobility, fuel consumption, and CO₂ 

emissions under mixed traffic conditions. Utilizing the Planung 

Transport Verkehr(PTV) Verkehr In Städten - 

SIMulationsmodell (VISSIM) microscopic traffic simulation 

platform, integrated with the Bosch Environmentally Sensitive 

Traffic Management (ESTM) module; designed for high-

resolution simulation of traffic-related emissions; vehicle 

behaviors and emissions at a representative U.S. urban 

signalized intersection is evaluated. The simulation framework 

models ten AV market penetration scenarios, ranging from 0% 

to 100% in 10% increments, and captures behavioral 

distinctions between Autonomous and Human-driven Vehicles 

through calibrated adjustments to the Wiedemann 99 car-

following parameters and vehicle speed distributions. Results 

indicate that higher AV penetration leads to improved traffic 

flow and significant reductions in CO₂ emissions. This study 

highlights the power of high-fidelity, integrated simulation-

based methods in assessing future transportation systems and 

informing sustainable urban mobility planning.   

Keywords- Microsimulation; Autonomous Vehicles; Mixed 

Traffic Flow; Fuel Consumption; CO2 Emission; VISSIM; 

Bosch; Driving Behavior 

I.  INTRODUCTION  

Autonomous vehicles (AVs), also known as self-driving 
cars, are transforming transportation through advanced 
technologies that enable them to operate with minimal or no 
human intervention. It is anticipated that privately owned 
Level 4 AVs, which denote high automation will make up 
approximately 24.8% of vehicles on roadways in America by 
2045 [1]. These vehicles utilize Artificial Intelligence (AI) 
and machine learning (ML) algorithms to perceive their 
environment and make informed driving decisions. Equipped 

with an array of sensors, such as cameras, radar, lidar, and 
ultrasonic devices, AVs continuously monitor their 
surroundings to detect objects, interpret traffic signals, and 
anticipate the actions of other road users. By processing real-
time data, they can react faster than human drivers, making 
them less susceptible to errors caused by distraction, fatigue, 
or emotion. This technology is expected to enhance road 
safety, reduce collisions caused by human error, improve 
traffic flow, and offer greater mobility for individuals who are 
unable to drive due to age, disability, or other limitation [2].  

There has been a growing emphasis on the impact of 
driving behavior on fuel efficiency and vehicular emissions in 
the literature investigating models and approaches for 
assessing the air quality, as well as the carbon footprint of 
transportation sector across different levels of analysis. These 
include microscopic levels [3], [4] [5], mesoscopic levels [6], 
[7], and macroscopic levels [8]- [10]. Aggressive driving is 
consistently linked to higher fuel consumption and pollutant 
emissions, while eco-driving improves energy efficiency and 
reduces CO₂ output [11], [12], [13], [14]. Alessandrini et al. 
[11] introduced the Eco Index, showing up to 30% CO₂ 
reduction at low speeds through eco-driving, though benefits 
diminish above 80–90 km/h. Szumska et al. [15] found urban 
aggressive driving increases emissions by around 40%. Miotti 
al.[13] highlighted the emission-reducing potential of manual 
and automated eco-driving. Suarez et al. [14] reported up to 
5% more CO₂ from aggressive acceleration using Worldwide 
Harmonized Light Vehicles Test Procedure (WLTP), the 
European standard for measuring vehicle fuel consumption 
and CO₂ emissions and CO₂MPAS data (results from the 
European Commission’s simulation tool that converts type-
approval CO₂ values from the former NEDC test cycle into 
the WLTP framework). 

As AVs are expected to play a central role in future urban 
transportation systems, recent research has shifted its focus 
from conventional traffic networks to mixed traffic flows, 
where AVs operate alongside human-driven vehicles in both 
freeway and urban environments. A common method in the 
literature for assessing the carbon footprint of such mixed 
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traffic involves the integration of traffic simulation models 
with external emission calculation tools [16] [17]. These 
methods often require extensive data processing, and in cases 
involving tools like Motor Vehicle Emission Simulator 
(MOVES), the development of intermediary software is 
necessary to link mobility and emissions models effectively 
[5], [18]. Moreover, the process becomes increasingly 
complex when incorporating multiple simulation scenarios, 
such as different AV penetration rates or varying road and 
weather conditions; making it time-consuming, prone to error, 
and occasionally impractical depending on the software used.  

Several studies have explored these integrated modeling 
approaches. Olia (2016) [19] utilized the PARAMICS 
microsimulation platform combined with the CMEM 
(Comprehensive Modal Emissions Model) to continuously 
estimate fuel consumption and pollutant emissions based on 
vehicle characteristics, such as type, age, fuel system, and 
emissions control technology. The study found that increasing 
the penetration of Connected Autonomous Vehicles (CAVs) 
leads to emission reductions, with the most substantial 
benefits occurring at around 50% CAV adoption. Later, 
Stogios et al. [20] employed the VISSIM microscopic traffic 
simulation tool integrated with the MOVES model to assess 
vehicular emissions under different traffic conditions and AV 
penetration levels. Their work incorporated eight car-
following and two lane-changing parameters to simulate AV 
behavior, revealing that headway time had a significant 
impact on emissions. In the same year, Conlon et al. [21] used 
the SUMO traffic microsimulation framework together with 
the Newton-based Greenhouse Gas Model (NGM) to estimate 
CO₂ emissions in congested urban road networks. Their 
findings showed that emissions initially rose at low levels of 
AV penetration due to interaction inefficiencies between 
human drivers and AVs, but significant emission reductions 
emerged at higher penetration levels, eventually plateauing 
between 40% and 90% AV market share.  

These studies collectively highlight the critical role of 
accurately integrating traffic flow simulation with emission 
modeling in understanding the environmental implications of 
AV deployment within mixed traffic ecosystems. They also 
emphasize the complexity involved in integrating multiple 
simulation tools, particularly when assessing emissions from 
modeled traffic flows under various AV penetration scenarios 
and dynamic traffic conditions, which requires substantial 
computational resources, data harmonization, and custom 
interfacing between platforms.   

To tackle challenges of complex integration of traffic and 
external emission models, the extensive and error-prone data 
processing required, and the limited ability to evaluate CO₂ 
emissions across different AV penetration scenarios, this 
paper employs a new emission simulation tool in combination 
with an established traffic simulation platform. Specifically, 
this study utilizes the Bosch ESTM Module, which was 
developed in Germany through a collaboration between 
Robert Bosch GmbH and PTV Group [22], alongside VISSIM 
2022 to investigate CO₂ emissions from light-duty passenger 
vehicles in mixed traffic flows, ranging from the early stages 
of AV deployment to a fully automated network. We 
hypothesize that autonomous vehicles (AVs), when 

introduced at varying penetration levels, will alter traffic flow 
efficiency and CO₂ emissions due to differences in car-
following behavior, and that the integrated VISSIM–Bosch 
ESTM framework can provide accurate predictions of 
emissions and fuel consumption in parallel with mobility 
results. The model assumes Level 4 AVs operate under the 
“AV normal” profile calibrated from the CoExist project, 
balancing efficiency and caution in traffic flow. 

The research focuses on the behavioral differences 
between human drivers and AVs and implements an 
integrated methodology for emissions estimation. To the best 
of the authors’ knowledge, this study is among the few[16] 
that apply the Bosch ESTM module for project-level CO₂ 
emissions estimation in mixed traffic flows within an urban 
setting. This integration with VISSIM enables a detailed 
comparative analysis of how different AV penetration rates 
affect emissions and how these outcomes correspond with 
results from previous studies using alternative emission 
modelling tools. This study’s methodology provides 
transportation professionals and urban planners with valuable 
insights into applying the Bosch ESTM module within the 
widely adopted VISSIM microsimulation platform. The 
consistency of the results with previous research; despite 
using different emission modeling tools; demonstrates the 
reliability of this integrated approach. Furthermore, the 
findings offer Infrastructure Owners and Operators (IOOs) a 
clearer understanding of how AV behavior can lower 
emissions besides contributing to the smooth urban traffic 
flow. These insights support the need for IOOs to begin 
preparing existing infrastructure to accommodate high AV 
penetration rates in the near future, given the significant 
potential benefits for both mobility and environmental 
sustainability.  

 To guide the reader through the remainder of this paper, 
the structure is organized as follows. Section II presents the 
methodology. Section III describes the simulation results, 
covering traffic mobility measures, fuel consumption, and 
CO₂ emissions. Section IV provides a detailed discussion of 
the findings, comparing AV and human-driven vehicles 
performance. Section V outlines potential directions for future 
work. Finally, Section VI concludes the paper with key 
insights and contributions of this study. 

II. METHODOLOGY 

This study employs an integrated simulation approach 
using PTV VISSIM 2022 and the Bosch Environmentally 
Sensitive Traffic Management (ESTM) module to assess 
traffic flow, fuel consumption, and CO₂ emissions at a 
congested signalized intersection in Saratoga Springs, Utah. 
The focus is a key intersection where two major five-lane 
arterials; Redwood Road (north-south) and Pioneer Crossing 
(east-west); converge. A detailed VISSIM model of the 
intersection and adjacent road segments was developed using 
links and connectors in Figure 1 to accurately represent the 
roadway network [23]. Traffic signals were modeled using a 
ring-and-barrier structure and in accordance with the Utah 
Department of Transportation’s traffic signal timing 
guidelines [24]. 
 

61Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-300-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation



 
 

Fig.1. VISSIM Model of the Study Intersection: (a) Top View, (b) 

Perspective View 

 
Real-world traffic volume data from UDOT’s ATSPM 

system [25] was used to replicate 1.5 hour of weekday 
evening peak-hour conditions (4.00-5.30 pm). We modeled 
scenarios with AV penetration rates ranging from 0% to 
100%, in 10% increments. Automated vehicles (AVs) and 
human-driven vehicles were simulated using distinct 
Wiedemann 99 car-following parameters. The AVs followed 
the “AV normal” profile, which represents automated 
vehicles with driving behavior comparable to human drivers. 
This profile incorporates standard car-following and lane-
changing patterns, avoiding both excessive conservatism and 
aggressiveness. The parameters were adopted from the 
CoExist project [26], an EU Horizon 2020 initiative that 
developed simulation frameworks and guidelines to assess 
mixed traffic environments involving both conventional and 
automated vehicles. Human-driven vehicles used calibrated 
values from previous simulator-based research efforts [27]. 
Speed distributions were assigned based on naturalistic 
driving data for human-driven vehicles [28] and tightly 
constrained profiles for AVs [26]. Table 1 presents the 
categories and definition of each parameter, alongside the 
adopted values for the Wiedemann 99 car-following model 
for both AVs and Human-Driven Vehicles in the simulation 
model. 
 

TABLE I: ADOPTED DRIVING PARAMETER VALUES FOR 

HUMAN-DRIVEN AND AVS 

 

Parameter 

Category 

W99 Car 

following 

Parameter 

Definition 
AVs 

(normal) 

Human-

Driven 

Vehicle 

 

Thresholds for 

Safety Distance 

(∆x) 

CC0 (m) 
Standstill 

Distance 
1.5 4.45 

CC1(s) Headway Time 0.9 0.87 

CC2 (m) 
Following 

Variation 
0 5.28 

CC3 (s) 

Threshold for 

Entering 

Following 

-8 -7.92 

Thresholds for 

Speed (∆v) 

CC4 (m/s) 

Negative 

Following 

Threshold 

-0.1 -1.52 

CC5 (m/s) 

Positive 

Following 

Threshold 

0.1 1.52 

CC6 (-) 

Speed 

Dependency of 

Oscillation 

0 0.71 

Acceleration 

Rates 

CC7 (m/s2) 
Oscillation 

Acceleration 
0.1 0.31 

CC8 (m/s2) 
Standstill 

Acceleration 
3.5 1.03 

CC9 (m/s2) 

Acceleration at 

Speed of 80 

km/h 

1.5 0.33 

The parameters are grouped into three main categories: 
thresholds for safety distance (∆x), thresholds for speed (∆v), 
and acceleration rates. Each scenario was simulated 10 times 
at 10 Hz resolution. Emissions were calculated through the 
Bosch ESTM cloud-based tool, which has a separate license 
to processes second-by-second vehicle trajectory data 
directly from VISSIM; eliminating the need for external data 
conversion [29][30]. Bosch provides VISSIM with a JSON 
file containing emission data for multiple vehicle classes. 
These classes are defined by six elements: Emission vehicle 
category, Emission vehicle class, Emission stage, Fuel type, 
Size class, and Use class, which differentiate vehicles based 
on their emission characteristics. During simulation, VISSIM 
generates a trajectory for each vehicle, which is then 
transferred to ESTM for emission calculation. The driving 
behavior element that most impacts emissions in Bosch 
ESTM is the dynamic profile of vehicle movement; 
particularly accelerations, decelerations, and stop-and-go 
patterns [29]. Bosch also offers lane-level visualization and 
real-time emission mapping across the network. For emission 
class distribution, the predefined MOVES-based 2022 profile 
for light-duty gas and diesel passenger vehicles was applied, 
representing U.S. fleet composition from 1992–2020. This 
approach ensures that emission outcomes isolate the effects 
of AV behavior and driving patterns, independent of 
variations in fuel or engine types. 

III. SIMULATION RESULTS 

For each scenario, 10 simulation repetitions were 
conducted following the recommendation in the VISSIM 
manual by MDOT [23]. This approach ensured that our 
results met established best practices and provided stable, 
representative averages. The results showed negligible 
variation across runs; therefore, the average values 
presented in Figures 2-5 are considered representative, 
with minimal variability observed across repetitions.” 

a) Top View 

b) Perspective View 
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A. Mobility Results 

As AV penetration increases, traffic performance 
improves across all metrics. According to Figure 2, the 
average number of stops shows an overall decline, with a 
slight increase at 10% AV, a significant reduction from 
10% to 90%, and a minor uptick at 100% penetration. 
Average delay drops sharply from 440 seconds at 0% AV 
to a minimum of below 380 seconds at 50% penetration 
rate, then fluctuates slightly, stabilizing near 382 seconds 
at full penetration (Figure 3). Similarly, average speed 
increases from 62.38 km/h at 0% AV to 71.81 km/h at 
50%, reaching a maximum of 73.92 km/h at 100% AV 
(Figure 4). 

 

 
Fig.2. AV Penetration vs. Average Number of Stops (-) 

 

 
Fig.3. AV Penetration vs. Average Delay (s) 

 

 

 
Fig.4. AV Penetration vs. Average Speed (km/h) 

The mobility results of the baseline scenario (0% AVs) 
simulation were validated using Utah ATSPM peak-hour 
traffic data (4:00–5:30 PM). The recorded approach speed 
(38 mph/61 km/h), shown in Figure 5, closely matched the 
simulated average (38.7 mph/62.38 km/h), yielding 97.78% 
accuracy. Similarly, the average vehicle delays from 
simulation (38 s) aligned with ATSPM data (39 s), 
confirming the reliability of the results. This validated 
baseline therefore serves as the benchmark for evaluating the 
subsequent scenarios. 

 

Fig.5. Chart of the Average Approach Speed of Vehicles During Peak 
Hour; Example of Westbound Through (WBT)- Utah ATSPM[25] 

B. Fuel Consumption and CO2 Emission Results 

The emission results are not computed by VISSIM itself. 
VISSIM was used to simulate vehicle trajectories, and these 
outputs were then processed in the Bosch Environmentally 
Sensitive Traffic Management (ESTM). The Bosch ESTM 
applies vehicle-specific fuel consumption and emission 
models to the VISSIM trajectory data. The reported results 
represent aggregated outputs from Bosch ESTM, averaged 
over ten independent simulation runs of 1.5-hours (5400s) 
each per scenario and vehicle class. A warm-up period of 
900s was applied at the beginning and the end of each 
simulation run, in accordance with the PTV VISSIM Manual, 
to ensure that the results capture stabilized traffic conditions 
[31].  

Bosch results show a direct relationship between 
increasing AV penetration and decreasing fuel consumption 
and CO₂ emissions. As AV penetration rises from 0% to 
100%, CO₂ emissions decrease by approximately 54.51%. 
However, the rate of reduction varies across different 
penetration levels. From 0% to 20% AV penetration, 
emissions drop by about 8%. Between 20% and 50%, 
emissions decline by around 12.5%. The most pronounced 
reduction occurs from 50% to 100%, with a drop of roughly 
34%. A sharper decline is observed particularly between 70% 
and 100%, highlighting the potential for greater 
environmental gains as AV usage nears full saturation. The 
line chart in Figure 6 clearly illustrates CO₂ emission levels 
across different stages of AV penetration, from 0% to a fully 
autonomous network. 
 

 
Fig.6. AV Penetration vs. Average CO2 Emission (g/km) 
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As illustrated in the emission distribution maps generated 
within the VISSIM interface (Figure 7a–c), which use distinct 
color gradients to represent CO₂ emission levels across road 
segments, a 50% AV penetration leads to an approximate 
25% reduction in emissions compared to the baseline 
scenario with 0% AVs. At 100% AV penetration (Figure 7c), 
emissions are reduced by approximately 55% relative to the 
mixed traffic scenario with equal shares of AVs and human-
driven vehicles (HDVs) shown in Figure 7b. 

                                                       

  
(a) 100% HDV, 0% AV                      (b) 50% AVs, 50% HDVs 

  

(c) 100% AVs, 0% HDV            (d) Legend of CO2 Distribution Map(g/km) 

Fig. 7. CO2 emission comparison at the intersection for three AV 
penetration rates: (a)100% Human-driven Vehicles (HDVs) ,0% AVs; 

(b)50% AVs,50%HDVs; (c)100% AVs,0%HDV 

The findings of our study on CO₂ emissions and fuel 
consumption at signalized intersections align with previous 
literature. According to the U.S. Environmental Protection 
Agency [32], the average CO₂ emission from vehicles is 
248.5 g per kilometer (approximately 400 g per mile). Our 
simulation results under the baseline scenario, showing a 
43% increase compared to this benchmark, are validated by 
Szumska and Jurecki [12], who concluded that driving 
behavior near intersections can increase CO2 emissions by 
39–46% relative to calm driving. Furthermore, our results on 
emission patterns in the presence of Automated Vehicles are 
consistent with Tomas et al. [33], who found that automation 
at penetration rates of 30% or below yields only modest 
reductions. Similarly, the studies by Conlon et al. [21] and 
Rezaei et al. [34] demonstrated that the greatest fuel savings 
and CO₂ reductions occur within a fully autonomous 
network. 

IV. DISCUSSIONS 

By examining the W99 car-following parameters and 
their influence on network performance in mixed traffic flow, 
this study reveals a dual impact of AV behavior at signalized 
intersections. AV behavior not only improves overall traffic 
flow but also significantly reduce CO₂ emission levels. Table 
2 provides a comparison of driving behaviors for AVs and 
human-driven vehicles in car-following scenarios. It also 
presents comparative mobility and emission outcomes across 
two network types as an example: one composed solely of 
human-driven vehicles and another with mixed traffic. For 
each parameter, the greater absolute value; whether 
associated with AVs or human-driven vehicles; is highlighted 
in color, making performance contrasts visually clear. The 
table demonstrates that AVs consistently outperform human 
drivers across key behavioral metrics, resulting in smoother 
traffic dynamics which resulted in reduced CO2 Emission.  
 

TABLE II. COMPARISON OF DRIVING BEHAVIOR, MOBILITY, 

AND EMISSIONS IN AV AND HUMAN-DRIVEN TRAFFIC 

SCENARIOS 

Parameters AVs 
Human-Driven 

Vehicles 

Level of Caution 

(CC0, CC1, CC2) 
  

Level of Perception-
Reaction (CC3) 

  

Level of Sensitivity to the 

Dec/Acc (CC4, CC5) 
  

Level of Acceleration 
Oscillation (CC7) 

  

Level of Standstill 

acceleration (CC8) 
  

Speed Distribution    

Mobility Measures 
Mixed Traffic 

Flow 

Traditional 

Network 

Average Speed (km/h)   

Average Stops (-)   

Average Delay(s)   

Bosch Emission Measures   

CO2 Emission   

Fuel Consumption   

 
The analysis of car-following behavior differences 

between human drivers and AVs across (CC0–CC9) 
parameters in Table 2, also provides a clearer understanding 
of the observed results. Human drivers tend to exhibit more 
cautious behavior, maintaining higher standstill distances 
(CC0) and longer headway times (CC1), which results in 
larger safe following distances. They also require more extra 
distance (CC2) before moving closer to a lead vehicle, 
whereas AVs typically operate with a CC2 value close to zero. 
In terms of perception and reaction, AVs demonstrate quicker 
responsiveness, indicated by lower CC3 values, while human 
drivers generally respond more slowly, contributing to 
frequent stops and delays. Human drivers also display greater 
sensitivity to the acceleration and deceleration of leading 
vehicles, reflected in higher absolute values of CC4 and CC5. 
This heightened sensitivity causes frequent fluctuations in 
speed, reducing traffic flow efficiency. In contrast, AVs 
respond more smoothly, which helps maintain steady traffic 
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movement. During stop-and-go scenarios, human drivers tend 
to accelerate more aggressively (higher CC7), leading to 
erratic driving patterns, whereas AVs show much lower 
acceleration oscillations, resulting in smoother motion. 
Additionally, AVs exhibit stronger acceleration capabilities 
both from a standstill (CC8) and at higher speeds, 80 km/h 
(CC9), further contributing to consistent and efficient driving 
behavior.   

These behavioral differences have direct implications for 
traffic flow and environmental impact. Human-driven traffic 
is characterized by frequent stop-and-go movements, abrupt 
accelerations, and longer delays, all of which lead to higher 
fuel consumption and CO₂ emissions. Simulation results from 
Bosch confirm that such inconsistent driving behavior 
significantly increases emissions and energy use in networks 
dominated by human drivers. In contrast, traffic scenarios 
incorporating AVs demonstrate improved mobility, greater 
energy efficiency, and lower environmental impact. The 
higher the proportion of AVs in the urban network, the more 
pronounced the reductions in fuel consumption and emissions. 
In fully autonomous networks, the most substantial benefits 
are observed, with CO₂ emissions and fuel usage reduced by 
over 50%. These improvements are largely due to the 
smoother, more homogenous, and consistent traffic flow 
facilitated by AVs. However, these results reflect the 
assumption that AVs operate with “normal” driving behavior, 
balancing efficiency and caution. What if the AV fleet 
exhibited heterogeneous driving styles, with some vehicles 
programmed conservatively and others more aggressively? 
This indicates that fleetwide behavioral programming should 
be studied as a critical determinant of outcomes. Furthermore, 
the present analysis assumed AVs were not connected to 
infrastructure. If AVs were integrated with adaptive signal 
control in a fully automated network, vehicle-to-infrastructure 
(V2I) connectivity could enable smoother progression 
through intersections, further reducing unnecessary stops and 
acceleration spikes, and potentially amplifying emission 
reductions beyond the levels observed here Another 
consideration is the infrastructure readiness at lower 
penetration levels. What if modest AV adoption (e.g., 30-
40%) were paired with adaptive infrastructure? Could such a 
scenario achieve mobility and emission outcomes comparable 
to, or even surpassing those of a fully automated network 
operating without infrastructure modifications? This 
possibility indicates that investing in infrastructure to support 
AVs during transitional phases may be as important as 
advancing the vehicle technology itself in realizing 
sustainable benefits. 

V. CONCLUSION AND FURURE WORK 

This study applied an integrated VISSIM–Bosch ESTM 
framework to evaluate the impacts of Level 4 automated 
vehicles (AVs) on traffic performance, CO₂ emissions, and 
fuel consumption at a congested urban intersection. The 
results confirmed substantial environmental benefits, with 
emissions reduced by more than 50% at full AV adoption. 
Improvements were modest at low penetration rates, while the 
steepest benefits occurred between 70% and 100% adoption. 
At 100% AV penetration, a slight increase in vehicle stops 

was observed, suggesting potential operational challenges in 
fully autonomous environments. This indicates that the full 
benefits of AV technology depend not only on high adoption 
rates but also on supportive infrastructure, realistic driving 
profiles, and well-designed policy frameworks. Low levels of 
AV integration may yield only incremental improvements, 
while complete automation could introduce new challenges, 
particularly if overly cautious driving behaviors or induced 
demand leads to increased travel. These findings highlight the 
importance of coordinated planning, where technological 
advances in automation are integrated with traffic 
management strategies, upgrades to both physical and digital 
infrastructure and built environment, and policies that prevent 
rebound effects. Furthermore, the consistency of Bosch 
ESTM emission estimates in AV-integrated networks with 
previous studies; reporting similar reductions on both 
congested and uncongested roadways using alternative 
simulation models[34], [35]; underscores the reliability of 
Bosch ESTM. This provides a robust foundation for future 
research to apply and extend this approach in broader 
contexts. 

Future work will extend the analysis to multiple 
intersections and scenarios and will include comparisons of 
Bosch ESTM+VISSIM with alternative tools, such as 
VISSIM+MOVES to provide insights. Furthermore, future 
research will develop a digital twin of the modeled 
intersection to enhance validation. Although current low AV 
market penetration limits direct validation at higher adoption 
levels, this approach will improve calibration of baseline and 
early-stage scenarios, strengthening the reliability of projected 
mobility and emission results. Future work should also 
evaluate human comfort in relation to the AV calibration used 
in this study. As a complement to Winkel et al. [36], real-
world experiments or simulators with larger motion envelopes 
are needed to capture a wider range of motion pulses, 
including abrupt braking and acceleration events. This would 
overcome the limitations of restricted simulators and allow 
refinement of AV calibration parameters to balance traffic 
efficiency with passenger comfort. 

ACKNOWLEDGMENT 

This work was supported in part by the National Science 
Foundation (NSF) EPSCoR RII Track-2 Program under 
Grant No. OIA-2119691, and in part by the U.S. Department 
of Transportation through a University Transportation Center 
for multi-modal mobility in urban, rural, and tribal areas. The 
authors thank the PTV Group for providing technical support 
with the VISSIM and BOSCH License used in this study.  

REFERENCE 

 

[1] P. Bansal and K. M. Kockelman, “Forecasting Americans’ long-

term adoption of connected and autonomous vehicle 
technologies,” Transp Res Part A Policy Pract, vol. 95, pp. 49–63, 

Jan. 2017, doi: 10.1016/j.tra.2016.10.013. 
[2] M. Ansarinejad, K. Ansarinejad, P. Lu, Y. Huang, and D. Tolliver, 

“Autonomous Vehicles in Rural Areas: A Review of Challenges, 

Opportunities, and Solutions,” Applied Sciences, vol. 15, no. 8, p. 
4195, Apr. 2025, doi: 10.3390/app15084195. 

65Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-300-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation



[3] K. Zhang, S. Batterman, and F. Dion, “Vehicle emissions in 

congestion: Comparison of work zone, rush hour and free-flow 
conditions,” Atmos Environ, vol. 45, no. 11, pp. 1929–1939, Apr. 

2011, doi: 10.1016/J.ATMOSENV.2011.01.030. 

[4] H. Abou-Senna, E. Radwan, K. Westerlund, and C. D. Cooper, 

“Using a traffic simulation model (VISSIM) with an emissions 

model (MOVES) to predict emissions from vehicles on a limited-
access highway,” J Air Waste Manage Assoc, vol. 63, no. 7, pp. 

819–831, 2013, doi: 10.1080/10962247.2013.795918. 

[5] X. Xu et al., “Estimating project-level vehicle emissions with 

Vissim and MOVES-Matrix,” Transp Res Rec, vol. 2570, pp. 107–

117, 2016, doi: 10.3141/2570-12. 
[6] A. Papson, S. Hartley, and K. L. Kuo, “Analysis of emissions at 

congested and uncongested intersections with motor vehicle 

emission simulation 2010,” Transp Res Rec, no. 2270, pp. 124–

131, Jan. 2012, doi: 10.3141/2270-15. 

[7] K. Kutlimuratov, S. Khakimov, A. Mukhitdinov, and R. Samatov, 
“Modelling traffic flow emissions at signalized intersection with 

PTV vissim,” E3S Web of Conferences, vol. 264, pp. 2–9, Jun. 

2021, doi: 10.1051/E3SCONF/202126402051. 

[8] H. C. Chu and M. D. Meyer, “Methodology for assessing emission 

reduction of truck-only toll lanes,” Energy Policy, vol. 37, no. 8, 
pp. 3287–3294, Aug. 2009, doi: 10.1016/J.ENPOL.2009.03.058. 

[9] D. Choi, M. Beardsley, D. Brzezinski, J. Koupal, and J. Warila, 

“MOVES Sensitivity Analysis: The Impacts of Temperature and 

Humidity on Emissions,” U.S. Environmental Protection Agency, 

2011. 
[10] Y. Xu et al., “Clearer skies in Beijing-revealing the impacts of 

traffic on the modeling of air quality,” HuMNet Lab, pp. 4–6, Jan. 

2016, Accessed: Aug. 17, 2025. [Online]. Available: 

http://humnetlab.berkeley.edu/wp-content/uploads/2020/02/air-

quality-trd.pdf 
[11] A. Alessandrini, A. Cattivera, F. Filippi, and F. Ortenzi, “Driving 

style influence on car CO2 emissions,” U.S. Environmental 

Protection Agency, p. 11, 2012, Accessed: Jun. 16, 2025. [Online]. 

Available: 
https://www3.epa.gov/ttnchie1/conference/ei20/session8/acattive

ra.pdf 

[12] E. M. Szumska and R. Jurecki, “The Effect of Aggressive Driving 

on Vehicle Parameters,” Energies 2020, Vol. 13, Page 6675, vol. 

13, no. 24, p. 6675, Dec. 2020, doi: 10.3390/EN13246675. 
[13] M. Miotti, Z. A. Needell, S. Ramakrishnan, J. Heywood, and J. E. 

Trancik, “Quantifying the impact of driving style changes on light-

duty vehicle fuel consumption,” Transp Res D Transp Environ, 

vol. 98, no. August, p. 102918, 2021, doi: 

10.1016/j.trd.2021.102918. 
[14] J. Suarez et al., “Benchmarking the driver acceleration impact on 

vehicle energy consumption and CO2 emissions,” Transp Res D 

Transp Environ, vol. 107, pp. 9–12, Jun. 2022, doi: 

10.1016/J.TRD.2022.103282. 

[15] E. M. Szumska and R. Jurecki, “The effect of aggressive driving 
on vehicle parameters,” Energies (Basel), vol. 13, no. 24, Dec. 

2020, doi: 10.3390/en13246675. 

[16] M. Mądziel, “Vehicle Emission Models and Traffic Simulators: A 

Review,” Energies (Basel), vol. 16, no. 9, 2023, doi: 

10.3390/en16093941. 
[17] N. F. F. Yaacob, M. R. M. Yazid, K. N. A. Maulud, and N. E. A. 

Basri, “A review of the measurement method, analysis and 

implementation policy of carbon dioxide emission from 

transportation,” Jul. 01, 2020, MDPI. doi: 10.3390/su12145873. 

[18] H. Abou-Senna and E. Radwan, “VISSIM/MOVES integration to 
investigate the effect of major key parameters on CO2 emissions,” 

Transp Res D Transp Environ, vol. 21, pp. 39–46, 2013, doi: 

10.1016/j.trd.2013.02.003. 

[19] A. Olia, “Modelling and assessment of the transportation potential 

impacts of connected and automated vehicles,” Jul. 2016. 
[20] C. Stogios, D. Kasraian, M. J. Roorda, and M. Hatzopoulou, 

“Simulating impacts of automated driving behavior and traffic 

conditions on vehicle emissions,” Transp Res D Transp Environ, 

vol. 76, pp. 176–192, Nov. 2019, doi: 
10.1016/J.TRD.2019.09.020. 

[21] J. Conlon and J. Lin, “Greenhouse Gas Emission Impact of 

Autonomous Vehicle Introduction in an Urban Network,” Transp 

Res Rec, vol. 2673, no. 5, pp. 142–152, May 2019, doi: 

10.1177/0361198119839970. 
[22] “Bosch and PTV Group: Alliance for better air - Bosch Media 

Service.” Accessed: Jan. 07, 2025. [Online]. Available: 

https://www.bosch-presse.de/pressportal/de/en/bosch-and-ptv-

group-allicance-for-better-air-226240.html 

[23] WSP Michigan Inc. and MDOT, “VISSIM Protocol Manual,” 
Detroit, Aug. 2020. 

[24] Utah Department of Transportation (UDOT), “Traffic Signal 

Timing Guidelines | UDOT.” Accessed: Oct. 24, 2023. [Online]. 

Available: 

https://drive.google.com/file/d/1cxW0FMXTX08yEz09ULQZhf
gQpWGKA5I8/view 

[25] “UDOT Automated Traffic Signal Performance Measures.” 

Accessed: Jul. 24, 2025. [Online]. Available: 

https://udottraffic.utah.gov/atspm/ 

[26] P. Sukennik, “Micro-simulation guide for automated vehicles-
final,” Feb. 2020. 

[27] C. Chen, X. Zhao, H. Liu, G. Ren, Y. Zhang, and X. Liu, 

“Assessing the Influence of Adverse Weather on Traffic Flow 

Characteristics Using a Driving Simulator and VISSIM,” 

Sustainability 2019, Vol. 11, Page 830, vol. 11, no. 3, p. 830, Feb. 
2019, doi: 10.3390/SU11030830. 

[28] M. Nasim Khan, A. Das, and M. M. Ahmed, “Non-Parametric 

Association Rules Mining and Parametric Ordinal Logistic 

Regression for an In-Depth Investigation of Driver Speed 

Selection Behavior in Adverse Weather using SHRP2 Naturalistic 
Driving Study Data,” Transp Res Rec, vol. 2674, no. 11, pp. 101–

119, Sep. 2020, doi: 10.1177/0361198120941509. 

[29] “Emissions calculation with PTV Vissim and Bosch ESTM.” 

Accessed: Oct. 24, 2023. [Online]. Available: 
https://www.youtube.com/watch?v=PDtAwS8R8kw 

[30] “Environmentally sensitive traffic management.” Accessed: Oct. 

24, 2023. [Online]. Available: https://www.bosch-

mobility.com/en/solutions/air-quality-solutions/environmentally-

sensitive-traffic-management/ 
[31] PTV Group- Knowledge Base, “Warm-Up Period for Vissim 

Simulation”, Accessed: Sep. 28, 2024. [Online]. Available: 

https://support.ptvgroup.com/en-us/knowledgebase/article/KA-

04927 

[32] Environmental Protection Agency, “Tailpipe Greenhouse Gas 
Emissions from a Typical Passenger Vehicle,” Office of 

Transportation and Air Quality, no. June, pp. 1–5, 2023, [Online]. 

Available: https://www.epa.gov/system/files/documents/2023-

05/420f23014.pdf 

[33] R. F. Tomás, P. Fernandes, E. MacEdo, J. M. Bandeira, and M. C. 
Coelho, “Assessing the emission impacts of autonomous vehicles 

on metropolitan freeways,” Transportation Research Procedia, 

vol. 47, pp. 617–624, Jan. 2020, doi: 

10.1016/J.TRPRO.2020.03.139. 

[34] A. Rezaei and B. Caulfield, “Simulating a transition to 
autonomous mobility,” Simul Model Pract Theory, vol. 106, p. 

102175, Jan. 2021, doi: 10.1016/J.SIMPAT.2020.102175. 

[35] D. Li and P. Wagner, “Impacts of gradual automated vehicle 

penetration on motorway operation: a comprehensive evaluation,” 

European Transport Research Review, vol. 11, no. 1, pp. 1–10, 
Dec. 2019, doi: 10.1186/S12544-019-0375-3/TABLES/4. 

[36] K. N. de Winkel, T. Irmak, R. Happee, and B. Shyrokau, 

“Standards for passenger comfort in automated vehicles: 

Acceleration and jerk,” Appl Ergon, vol. 106, Jan. 2023, doi: 

10.1016/j.apergo.2022.103881. 

 

 

66Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-300-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SIMUL 2025 : The Seventeenth International Conference on Advances in System Modeling and Simulation


	I.  Introduction
	II. Methodology
	III. Simulation Results
	A. Mobility Results
	As AV penetration increases, traffic performance improves across all metrics. According to Figure 2, the average number of stops shows an overall decline, with a slight increase at 10% AV, a significant reduction from 10% to 90%, and a minor uptick at...
	B. Fuel Consumption and CO2 Emission Results

	(c) 100% AVs, 0% HDV            (d) Legend of CO2 Distribution Map(g/km)
	Fig. 7. CO2 emission comparison at the intersection for three AV penetration rates: (a)100% Human-driven Vehicles (HDVs) ,0% AVs; (b)50% AVs,50%HDVs; (c)100% AVs,0%HDV
	IV. Discussions
	V. Conclusion and Furure Work
	Acknowledgment
	Reference


