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Abstract—The end-to-end air passenger journey, from travel
planning to arrival at the destination airport, encompasses a
series of interdependent processes in which passenger behavior
and airport infrastructure continuously influence one another.
Passenger decision-making, such as arrival timing, use of services,
and queue preferences, plays a central role in shaping these
dynamics. Conversely, the design and efficiency of airport infras-
tructure can constrain or facilitate behavioral patterns, creating
a feedback loop that is often overlooked in conventional modeling
approaches. This study addresses the critical need to better
understand the bidirectional relationship between passenger be-
havior and airport infrastructure. A hybrid modeling framework
is developed, where Discrete Event Simulation (DES) for airport
infrastructure is used to develop a passenger Agent-Based Model
(ABM) via Markov Decision Process (MDP) formulation and
optimal policy search. The model is informed by empirical
data on passenger profiles, infrastructure configurations, and
behavioral preferences. Preliminary analytical results highlight
how small variations in passenger behavior can impact decision-
making and infrastructure operation. The proposed framework
will facilitate the design of behaviorally-informed, data-driven
planning strategies for more resilient airport systems.

Keywords-Markov Decision Process; Agent-Based Modeling;
Airport infrastructure; Airport passenger; State machine; Decision-
making; SysML; Discrete-Event Simulation; Dynamic Program-
ming; Reinforcement Learning.

I. INTRODUCTION

The passenger journey in air travel encompasses a contin-
uous sequence of phases, from initial planning and booking
to airport arrival, check-in, security screening, boarding, and
ultimately arrival at the destination. This journey represents a
complex dynamic system where passenger decisions and air-
port infrastructure dynamically influence one another [1]. Cen-
tral to this system are key airport infrastructure components,
including check-in counters, security checkpoints, boarding
gates, and waiting lounges, which play a critical role in
determining the overall efficiency of airport operations [2][3].
However, airport infrastructure is increasingly challenged by
systemic issues such as congestion, bottlenecks, and service
delays, especially during peak periods. These challenges not
only reduce operational performance and increase costs, but
also have broader implications for airlines and aircraft manu-
facturers, impacting turnaround schedules and prompting new
aircraft design considerations aimed at faster boarding [4]. On
the other hand, passenger behavior acts as both a contributor
to and a consequence of these challenges. Decisions about

arrival times, use of on-site services, and queue selection
can compound delays or alleviate pressure on infrastructure.
For example, the tendency for last-minute queuing or con-
gregation around certain kiosks can strain already-limited
terminal resources [5]. These feedback dynamics and emergent
behavioral patterns highlight the need to better understand the
reciprocal relationship between passenger behavior and airport
infrastructure capabilities.

Simulation-based approaches have emerged as important
tools to enable a detailed yet scalable analysis of both
behavioral and operational dynamics [6]. Formal methods,
such as Markov Decision Processes (MDP), offer structured
frameworks for modeling sequential decision-making in envi-
ronments characterized by uncertainty and time constraints [7].
In addition, Agent-Based Modeling (ABM) provides a bottom-
up approach by representing individual passenger agents and
their interactions, while Discrete Event Simulation (DES) is
adept at modeling process-driven phenomena such as service
durations and queue dynamics. A hybrid approach combining
these modeling paradigms enables the integration of behavioral
insights with operational realism, thereby addressing both
strategic and tactical dimensions of airport management [6].

Several studies have examined how passenger behavior
and infrastructural design shape check-in performance. A
simulation-based analysis of fifteen check-in configurations is
conducted in [8], revealing that single-queue systems com-
bined with variable counter allocation significantly reduced
waiting times and operational costs. ABM is applied in [9]
to investigate group travel dynamics, demonstrating that pas-
sengers traveling together often wait for one another, leading
to longer dwell times and increased congestion. A mesoscopic
simulation-optimization framework that incorporate infrastruc-
ture layout, stochastic passenger behavior, and resource con-
straints is proposed in [10] to minimize both staffing costs and
passenger discomfort. Although these studies use modeling
and simulation to explore passenger-infrastructure interactions,
none integrate MDP within a hybrid ABM and DES frame-
work. Without such integration, it is difficult to represent how
individual passengers make decisions in complex, changing
airport environments with diverse agent behaviors.

MDP is a powerful tool for modeling decision-making
scenarios characterized by sequential actions and inherent
uncertainty. It provides a systematic approach to describing
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how decision-makers, in this context, passengers, transition
between various states through the selection of specific ac-
tions. It facilitates the derivation of optimal policies under
uncertain conditions by accounting for both the immediate
consequences of decisions and their long-term ramifications,
effectively capturing the probabilistic transitions that define
system performance. The intrinsic strength of an MDP-based
approach lies in its capacity to encapsulate the sequential
nature of decision-making throughout the entire journey, from
the initial selection of a travel route to real-time adjustments in
departure times. In modeling door-to-door transport scenarios,
MDP systematically accounts for the full sequence of actions,
including route selection, mode choice, and responses to
unexpected delays, that collectively determine the efficiency
of the travel experience. This modeling framework effec-
tively captures uncertainties in passenger behavior, where the
outcomes of individual decisions are contingent upon both
personal choices and broader operational contexts [5].

This research is motivated by three central problems: (1)
persistent airport inefficiencies due to passenger-induced bot-
tlenecks and infrastructure limitations; (2) the absence of
integrated models that consider feedback between infrastruc-
ture and behavior; and (3) the need for data-driven tools to
inform decisions by airport planners and stakeholders. The
primary objectives of the research are to better understand
how passengers are influenced by airport infrastructure and
to identify operational inefficiencies to improve passenger
experience and airport performance. This paper addresses the
need to understand the bidirectional relationships between
passenger behavior and airport infrastructure by using a hybrid
modeling and simulation approach.

The main contributions are summarized as follows: (1) a
unified hybrid modeling framework is proposed to capture air-
port infrastructure-passenger interactions, (2) a methodology,
through an example, is presented to transform the integrated
passenger-infrastructure model into an MDP for optimal policy
derivation, and (3) an approach is introduced to integrate the
passenger profile into the decision-making reward system.The
framework is illustrated using the passenger check-in system
and supported with numerical calculations.

The rest of the paper is organized as follows: Section II
defines the passenger profile that is used to drive passenger
decision-making. Section III explains the airport infrastruc-
ture system and the overall modeling framework. Section IV
describes a sample model for the check-in system. Section V
explains the MDP formulation and its connection to the de-
veloped infrastructure model and passenger profile. Section VI
illustrates the decision-making policy. A numerical example is
given in Section VII. The work is concluded in Section VIII.

II. PASSENGER PROFILE

Airline passenger decision-making depends in part on pas-
senger attributes, such as age, gender, and travel purpose. The
passenger profile is defined as a set of key relevant features that
could impact passenger decision-making. For rational agents,
these features shape the reward function that drives the search

for an optimal agent policy. Table I shows some of the relevant
attributes of a passenger profile, including percentage values
as per [2][11]. One-hot encoding is used with categorical data.

TABLE I. PASSENGER PROFILE AS A SET OF PERSONAL FEATURES
[2][11]. ONE-HOT ENCODING IS USED FOR CATEGORICAL DATA. ONLY

THE FEATURES USED IN THE PAPER ARE ASSIGNED SYMBOLS.

Feature Symbol Data type
Age A Int
Gender GM , GF Cat
Travel purpose B, T Cat
Household Bool
Visa-free V, VF Bool
Travel frequency Int
Flight destination Cat
Travel class Cat

Symbols corresponding to features in Table I are
used to shape the reward functions in Section V.
The passenger feature vector is designated by θp =
[ A GM GF B T V VF ].

III. PASSENGER-INFRASTRUCTURE INTERACTION

Figure 1 shows a simplified block diagram for airport
infrastructure from the passenger’s perspective. The first stage
is the check-in system, where available passenger choices are
shopping, self-check-in, or manual check-in. The second stage
is security check-in. Passengers have very limited choices at
this stage, if any. However, passenger profile plays a role
in the security check-in system dynamics, e.g., passengers
who are more likely to carry forbidden articles will cause
check-in delays. The third stage is the departure lounge, where
passengers’ choices are shopping or waiting. The fourth stage
is the boarding gate area, where passengers have almost no
choices. Airport infrastructure dynamics, particularly flight
delays, play a key role in passenger satisfaction at this stage.
The final stage is the runway. Passengers have no choice,
but runway delays impact total passenger waiting time, hence
passenger satisfaction as well. Note that the infrastructure is
shown as a pipeline, as this is the passenger’s perspective,
given that the passenger cannot go back to an earlier system
once passed through it, e.g., security check-in. However,
infrastructure subsystems can interact in other configurations.

Check-in 

System

Security 

Check-in

Departure 

Lounge

Boarding 

Gate
Runway

Airport Departure Infrastructure

Figure 1. Airport infrastructure - Passenger’s perspective

The modeling framework is summarized as follows: A DES
model is developed for the airport infrastructure (Section IV).
The DES model combined with the passenger profile is used
to generate an MDP model (Section V). The MDP reward
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function is used to train the passenger agent (Section VI). The
trained agent is finally represented in an ABM format.

IV. AIRPORT INFRASTRUCTURE MATHEMATICAL MODEL

This section presents a mathematical model for the check-
in system that supports passenger decision-making. The rest
of the infrastructure components in Figure 1 can be modeled
very similarly and are not shown in the paper for brevity.

The check-in system is modeled as a DES, where state
transitions occur at distinct points in time based on arrivals,
service completions, and departures. The system includes
one queue for manual check-in, a second queue for self
check-in kiosks, and a third queue for baggage drop-off for
passengers who checked in online. This follows recent airport
organization, where each check-in system has a single queue
that is served by multiple desks/kiosks. Figure 2 illustrates
the check-in system architecture, and Table II summarizes the
model parameters.

Manual Check-in Self Check-in Baggage Dropoff

Check-in System

Figure 2. Airport check-in system

TABLE II. CHECK-IN SYSTEM MODEL PARAMETERS

Parameter Description
Nm Number of serving desks for manual check-in
Lm Queue length for manual check-in
Ns Number of kiosks for self check-in
Ls Queue length for self check-in
Nb Number of serving desks for baggage drop-off
Lb Queue length for baggage drop-off

The service time at each kiosk is modeled using an ex-
ponential distribution with rate parameter λ. This rate pa-
rameter depends mainly on the passenger profile, e.g., visa
requirements, how many bags the passenger has, the number
of family members checking in, or the fluency of using a
computer system for self-check-in. For manual check-in, the
rate parameter depends on the check-in agent’s efficiency as
well. For baggage drop-off, airline intervention is minimal, so
it could be safely assumed that the rate parameter depends
solely on the passenger profile.

The inputs to the check-in system, A = [ am as ab ],
represent the decision of a passenger to join/leave the manual
check-in line, self check-in line, and baggage drop-off line,
respectively. The state of the system is described by the length
of each queue, X = [ Lm Ls Lb ], which is considered
fully-observable by external agents. The output of the check-
in system, Y = [ X esm ess esb ], represents the events

that a manual check-in customer, self check-in customer, and
a baggage drop-off customer has been served, respectively.
The service events are internal to the system, which impacts
the number of passengers in each queue. As long as each
queue length is observable by passengers, the system can be
modeled with the state vector as the output. However, since the
approach follows ABM, it is convenient to use these service
events to simplify the queue position tracking performed by
each passenger. For simulation, the passenger arrival rate is
governed by passenger profiles instantiated according to profile
population. To test the check-in system agent independently, a
Poisson distribution could be assumed for passenger arrivals.
Finally, a possible passenger action inside the system is to
leave one queue and join another queue. This action could
be achieved using the given action space by assigning two
possible values to the input action, one for joining and another
for leaving the queue, i.e., am = 1 to join the queue, and
am = −1 for queue departure.

V. PASSENGER AGENT AND DECISION-MAKING

To support passenger decision-making, an MDP is devel-
oped for the system [12]. The focus here is on the check-
in system to present the technique, which could be extended
easily to the rest of the infrastructure subsystems.

A. State Space

From the check-in perspective, two state variables could
be identified for the passenger: the check-in status and the
physical location in the check-in area. As per Section IV,
the check-in system has three state variables representing the
length of each queue. Also, the passenger may wish to track
the length of the queue ahead of her position. Finally, a
key factor impacting airline passenger decisions is the Time
remaining To Departure (TTD). This variable is captured as a
count-down timer that is represented as a global state variable
Td, allowing a compact representation of the state space. Table
III summarizes the state variables and associated values.

TABLE III. PASSENGER DECISION-MAKING - MDP STATES

State Possible Values
Check-in status {Online, !checked-in, Checked-in}
Location {Lobby, Shopping, Check-in area}
Check-in area {Waiting, Baggage, Self, Manual}
Lm, Ls, Lb, Td {x ∈ Z | x ≥ 0}
Queue position (P ) {x ∈ Z | x ≥ 0}

B. Action Space

While being in the check-in lobby, the passenger can decide
to either go shopping or proceed to the check-in area. Once
in the check-in area, the passenger has to choose between
the different check-in queues. While standing in a queue, the
passenger can also elect to switch queues.
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C. Transition Function

Given the environment dynamics, a deterministic transition
function is assumed, where ∀(S, a) and a target state S′:

P [S′|S, a] = 1, P [S′′|S, a] = 0 ∀S′′ ̸= S′ (1)

D. Reward Function

To capture the influence of the passenger’s profile on the
decision-making process, the reward is designed to be a
function of the passenger profile, as well as the current system
state. For example, a business traveller could be more sensitive
to time delays than a tourist, and a female traveller may select
a shopping decision with higher probability. The following
section defines the reward function for the shopping and queue
selection decisions.

1) Shopping reward: Shopping reward comes from enjoy-
ing the experience, but the time spent during shopping, and
the time remaining for boarding, play a role in the shopping
decision. This could be captured given the following reward
function:

R = GM + 50GF︸ ︷︷ ︸
Pleasure

− Tsh(λp)︸ ︷︷ ︸
Shopping time

− 100(1− Td

120
)︸ ︷︷ ︸

Time to board

(2)

where Td is measured in minutes. Tsh is the shopping time,
which is a random variable assumed here to have an exponen-
tial distribution with rate λ that depends on the passenger’s
gender [13][14], hence the reward is stochastic:

1

λp
= 15GM + 30GF min (3)

2) Baggage Drop-off: This decision is driven by the time
remaining to board as well as the baggage drop-off queue
length. A longer queue urges the passenger to complete the
check-in faster:

R = LbTs(λb)︸ ︷︷ ︸
Queue time

+100(1− Td

120
)︸ ︷︷ ︸

Time to board

(4)

where the model assumes a constant service rate 1/λb = 3
min, independent of the passenger profile.

3) Check-in and Security screening: These decisions are
driven solely by the time remaining to boarding, assuming
absence of additional information about queue lengths:

R = 100(1− Td

120
)︸ ︷︷ ︸

Time to board

(5)

4) Queue Selection: For manual check-in, the service time
depends on both the passenger profile and the airport service
rate. For self-check-in, the service time depends mainly on
the passenger’s profile. We model the service time with an
exponential distribution as well. For the switching action, the
same formulae below apply to the relevant queue, where the

length of the queue reflects the current length at the switching
time:

R =

{
−LmTs(λm) Manual check-in
−LsTs(λs) Self check-in

(6)

1

λm
= 3GM + 5GF −B + 2V min (7)

1

λs
=

{
3 min 20 ≤ age ≤ 50

0.1A− 2 min age > 50
(8)

For manual check-in, the service rate takes into account
passenger gender (reflecting baggage need), a need for a visa
(reflecting time to check the proper paperwork), and whether
the passenger is a business traveler (reflecting light-weight
travel). For self-check-in, the service rate reflects computer
system fluency measured by age group.

Figure 3 is a state diagram representation of the MDP, where
orthogonal region representation is used for the concurrent
state variables Check-in Status and Location. The
Check-in Area is a superstate that comprises four states
representing the passenger location in the check-in area. The
remaining Time to departure is initialized when entering the
initial state, and globally decremented as the state diagram
is executed. When a specific queue is served, an internal
transition is triggered, and the passenger’s position is updated.
Reward functions are omitted to simplify the diagram. Dotted
lines are used to distinguish actions due to environmental dy-
namics. For more details on SysML state diagram semantics,
the reader is referred to [15].

Passenger Check-in StatePassenger Check-in State

Check-in AreaCheck-in Area

Shopping

Checked-Online

Checked-in

¬Checked-in

Lobby Shop

[Checked-Online]

entry / T_d = TOF - time

do / T_d--

[!(Checked-in)] /Check-in[¬checked-in] / Check-in

[P == -1]

[Checked-Online] / 
Baggage Drop

[P == -1]

[Checked-in]/Security screening
[Checked-in]/Security screening

Baggage drop

entry/ P = L_b

when (e_sb)/ P-- 

Baggage drop

entry/ P = L_b

when (e_sb)/ P-- 

Manual Check-in

entry/P=L_m

when(e_sm)/P--

Manual Check-in

entry/P=L_m

when(e_sm)/P--

Self Check-in

entry/P=L_m

when(e_ss)/P--

Self Check-in

entry/P=L_m

when(e_ss)/P--

Manual CheckinSelf Checkin

Switch

Waiting

[P == -1]

[P == -1][P == -1]

[!(Checked-Online)]

Figure 3. Check-in system state diagram. While waiting in a check-in queue,
there is a decision at every time step whether to continue in the queue or

switch queues. This loop-back transition is omitted to simplify the diagram.
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VI. DECISION-MAKING POLICY

A rational agent maximizes the expected cumulative reward
from the initial state (here airport check-in lobby) to final state
(boarding) [12]:

vπ(s) = Eπ

[
n∑

k=0

γkRi|S = s

]
(9)

where n is the number of decisions the passenger takes from
airport arrival to boarding, and γ is the reward discount factor.
This is a classical dynamic programming problem that can be
solved using a variety of algorithms [12]. In reality, passengers
would take decisions to maximize the immediate reward due to
the lack of information about subsequent infrastructure state,
i.e., γ = 0, which simplifies the problem significantly, as the
optimal action at each state is the one with the highest average
immediate reward, producing a deterministic policy.

Figure 4 shows the decision tree for the system MDP
that enumerates all possible decision paths, assuming no
online check-in. Due to space limitations, the decision sub-
tree following the initial shopping decision is omitted, as it is
identical to the sub-tree with Waiting state as its root. Every
edge is annotated with its expected reward. The cumulative
reward is the sum of all rewards starting from the initial state
to the final state. Numbers shown are related to the numerical
example explained in the next section.

Lobby

Shopping

Waiting

Manual Check-in

Self Check-in

Self Check-in

Lobby

Shop (20)

Checkin (0)

Checkin

Manual (-15)

Self (-18)

Switch

Manual Check-in

Lobby

Switch

Shopping

Shopping

Lobby

Lobby Shopping

Shopping

Shop

Sec. screening

Shop

Sec. screening

Shop

Sec. screening

Shop (-17.5)

Sec. screening (37.5)

Sec. screening

Sec. screening

Sec. screening

Sec. screening

Td = 90

Td = 75

Td = 90

Td = 120

Figure 4. Decision tree for the airline passenger. Switching decision from
Manual to self check-in and vice versa is not shown explicitly due to the

compact representation of the state space. Dashed lines designate
environmental actions not under the control of the passenger.

VII. OPTIMAL POLICY: A NUMERICAL EXAMPLE

Optimal policy of a cumulative reward system is often
obtained using numerical algorithms along with interactions
with the real system or a simulated version of it. An ABM
approach guides the development of the airport infrastructure
components. The trained agent with the optimal policy is then
developed using ABM and integrated with the rest of the
infrastructure environment. The presented work demonstrates
the decision-making process using a numerical example and
analytical techniques. This is mainly possible because of
the assumption of immediate reward maximization, i.e., zero
reward discount factor γ.

Assume a female, tourist, visa-free passenger
profile, i.e., the feature vector is given by
θp = [ 40 0 1 0 1 0 1 ]. It is further assumed
that the passenger arrives at the airport 2 hours before flight

departure, i.e., initial Td = 120 min. Furthermore, the queue
lengths are Lm = 3 and Ls = 6 at the time of passenger
arrival. The decision-making policy that maximizes the
immediate reward results in the trajectory highlighted in
bold in Figure 4, comprising Lobby → Shopping → Manual
Check-in → Security screening. A passenger with the same
profile who arrives 30 minutes late, encountering a longer
manual check-in queue Lm = 10, even with matching self
check-in queue length Ls = 10, will have the optimal path
Lobby → Self check-in → Security screening.

This illustrative example highlights the benefits of a deeper
understanding of passenger decision-making. Airport manage-
ment can optimally allocate resources and redesign operational
processes to minimize end-to-end travel time and passenger
stress, ultimately enhancing overall satisfaction.

VIII. CONCLUSION AND FUTURE WORK

This paper presents a framework that integrates ABM, DES,
and MDP for studying decision-making for airline passengers.
Different dynamic models can be transformed into an MDP
that can be solved using a variety of dynamic programming
and reinforcement learning algorithms to find the optimal pol-
icy for different discount factors. The framework facilitates the
joint representation of individual decision-making and process-
level system dynamics, which are often treated separately in
existing studies. The contribution lies not only in the technical
integration of modeling methods, but also in the application of
this hybrid framework to analyze behavior-informed check-in
processes under varying passenger conditions.

The analytical results demonstrate that even small variations
in passenger decision-making, such as arrival time, queue pref-
erence, or check-in method, can lead to significant differences
in airport performance. These decision patterns affect key
metrics including queue lengths, waiting times, and passenger
satisfaction. The hybrid framework, combining ABM and DES
supported by MDP, provides an effective means of capturing
both individual decision logic and operational flow dynamics.
For airport operators, the model offers practical insights into
how targeted, low-cost interventions, such as adaptive counter
allocation or improved wayfinding systems, can reduce con-
gestion as well as enhance service quality. Airlines benefit
from increased predictability of passenger processing, which
supports more efficient gate allocation and boarding schedules.
Aircraft manufacturers may use this modeling approach to
evaluate the likely impact of infrastructure-related delays on
passenger behaviors and preferences.

Some simplifying assumptions are made in the presented
model. Date and time of flight are important since they impact
the number of passengers that are simultaneously at the airport,
hence the passenger decision and experience. On the other
hand, date & time also influence how the airport infrastruc-
ture functions, e.g., service rate. Moreover, flight delays and
cancellations, and airport disruptions, are quite common and
would significantly impact both the infrastructure dynamics
and the passenger decision-making. Therefore, interfacing the
developed model with external information sources, such as
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urban mobility networks and real-time flight scheduling, and
capturing the impact in the system model are essential for
realistic high-fidelity modeling and simulation. Also, we used
the practical assumption that passengers seek to maximize
the immediate reward, i.e., no look-ahead strategy. Lookahead
strategy for decision-making would require algorithmic solu-
tions, but may reveal counter-intuitive decisions that could be
informative for both passengers and infrastructure operation.
A service rate is also assumed to follow an exponential distri-
bution, with arrival rate to follow a Poisson distribution. For
a more sophisticated stochastic behaviour of the infrastructure
obtained from available data, a high-fidelity simulation for the
infrastructure combined with numerical algorithms would be
needed to find the optimal policy, particularly for end-to-end
policy optimization.

Several challenges represent the future work. First, the
reward function formulation is challenging, particularly taking
into account the passenger profile. Although the presented
reward functions are intuitive from frequent travel experiences,
tuning such reward functions is not an easy task. Available
datasets could help, but there is no single integrated dataset
that combines all the presented features; hence, data aggrega-
tion with practical assumptions is needed. Inverse reinforce-
ment learning, where the reward is learned from observed
behavior, is currently under investigation. Second, modeling
decision-making for humans is a difficult task. Although the
passenger profile presented can help significantly, modeling
human behavior using a set of features may introduce bias and
reduce the resulting accuracy. For example, assuming that all
female passengers prefer shopping may be a biased assumption
and inaccurate. Adding additional attributes may help, e.g.,
age and origin, but this complicates the problem due to the
increased number of features that further require additional
data. Finally, measuring passenger satisfaction is important
for both airport operation and airline decision-making. Overall
time from check-in to flying is one metric that is captured in
the presented model. However, other factors can be considered,
such as comfort and emotional stress, which are challenging
to capture, yet significantly impact passenger behavior. Future
research will aim to include the aforementioned modeling
elements and to relax the simplifying assumptions for the
complete airport infrastructure for wider model applicability.
Also, available datasets will be used for model refinement
and validation. Sensitivity analysis will be carried out to
identify the most critical assumptions. Finally, the passenger
agents will be explored to better understand the passenger-
infrastructure interactions in modern airport systems.
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