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Abstract— Achieving energy efficiency and reducing 

greenhouse gas (GHG) emissions are critical goals for building 

retrofitting. This study tackles challenges such as limited data 

and scenario generalizability by adapting the U.S. ComStock 

database for Canadian buildings using a Euclidean distance-

based matching algorithm, achieving a 92% success rate for 

matches below a 2.43 threshold. Machine learning models, 

Random Forest (RF) and Extreme Gradient Boosting 

(XGBoost), were selected due to their effectiveness in handling 

high-dimensional, non-linear datasets and were applied to 

predict Energy Use Intensity (EUI) and GHG emissions. 

XGBoost, with optimized hyperparameters, outperformed RF, 

achieving R² values of 0.91 for EUI and 0.86 for GHG emissions, 

with lower RMSE and MAE values, showcasing its capability in 

handling complex, high-dimensional data. A comparative 

analysis highlighted significant environmental benefits of 

transitioning Heating, Ventilation, and Air Conditioning 

(HVAC) systems to cleaner fuels, such as air-source heat pumps. 

The proposed distribution-based method, leveraging 100 

buildings across diverse climates and types, offers a robust 

framework for policymakers to guide energy-efficient 

retrofitting decisions. 

Keywords- smart building retrofitting; energy efficiency; 

greenhouse gas emissions; machine learning. 

I.  INTRODUCTION  

The construction and operation of buildings contribute 
significantly to global energy consumption and greenhouse 
gas (GHG) emissions [1][2]. In Canada, existing buildings 
alone account for over 40% of emissions in major urban 
centers [3][4]. Consequently, enhancing energy efficiency and 
minimizing the environmental impact of existing buildings 
have become critical priorities within the building sector. 

Despite government initiatives such as the Canada 
Greener Homes program providing financial support [5], 
retrofitting buildings faces numerous challenges and 
uncertainties for building owners [6][7]. Key obstacles 
include a lack of information and awareness, which 
complicates decision-making processes. Retrofitting 
decisions typically depend on the expertise of energy advisors 
and audits—often time-consuming and expensive processes 
designed to identify potential retrofit measures [8][9].  

Another approach involves physics-based energy models 
that simulate building energy use and define retrofit scenarios 
based on these simulations. For instance, a historical building 
in Italy was modeled using EnergyPlus in [10], while Rahman 
et al. [11], simulated an office building in Australia, exploring 
major retrofit scenarios that achieved approximately 42% 
energy savings. Similar physics-based approaches have been 
applied in various cases [12]-[15]. However, these models 
often face significant uncertainties and energy performance 
gaps, which are rarely considered in final evaluations. 
Furthermore, their complexity, reliance on specialized 
expertise, and time-consuming processes render them less 
accessible for many building owners.  

The rise of artificial intelligence has spurred interest in 
Machine Learning (ML) and data-driven approaches for 
building retrofits. A key challenge in applying data-driven 
models to retrofit scenarios is the availability of reliable 
retrofit data. Common issues include uncertainty and 
subjectivity in data quality [16] and sometimes the privacy 
issues about gathered measured data. As a result, researchers 
often rely on artificial data or surrogate models to analyze 
retrofit scenarios [17]. While surrogate models mitigate some 
expertise and computational demands associated with 
physics-based simulations, they do not resolve uncertainties 
or performance gaps inherent in these models.  

Recently, a highly granular tool named ComStock [8], 
[18][19], developed by the National Renewable Energy 
Laboratory (NREL), has provided a database of over 300,000 
buildings, containing detailed building characteristics and 
information. The simulation results in this database are highly 
calibrated, incorporating stochastic models to more accurately 
reflect occupant behavior. This level of detail addresses the 
data availability issue for developing data-driven models. 
However, ComStock is limited in its geographic scope, being 
tailored to locations within the United States. Extending its 
utility to other regions, such as Canada, requires innovative 
approaches to ensure compatibility and relevance.  

This study addresses the challenges through an integration 
of data-matching techniques and machine learning models. 
The key contributions of this research are: 
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Figure 1. Workflow for developing retrofit scenarios from raw data to analysis 

 
• Data Matching for Enhanced Model Accuracy: The 

study leverages a highly calibrated simulation database 
(ComStock) using a Euclidean distance-based algorithm to 
identify and extract data from buildings that closely match 
Canadian counterparts. This approach addresses the data 
scarcity challenge and ensures reliable inputs for data-driven 
analysis. 

• Scalable Retrofit Evaluation Framework: A 
distribution-based method was proposed to generalize retrofit 
impacts across a diverse sample of buildings, considering 
variations in type, location, and climate zone. This method 
offers a robust framework for policymakers and stakeholders 
to make informed decisions. 

• Environmental and Energy Impact Insights: The 
research highlights the benefits of some retrofit scenarios such 
as transitioning HVAC systems to cleaner fuel sources, 
demonstrating their potential to significantly reduce GHG 
emissions. 

This study not only advances the application of machine 
learning for building retrofits but also provides a scalable 
framework for evaluating retrofit scenarios in diverse 
contexts, contributing to sustainable energy and 
environmental management in the building sector. 

The remainder of this paper is organized as follows: 
Section II details the proposed methodology, outlining steps 
from data extraction and preprocessing to the development of 
data-driven models, Section III presents and discusses the 
results of the case study. And finally, Section IV concludes 
the paper and highlights directions for future research. 

II. METHODOLOGY 

The overall process of developing retrofit scenarios from 
raw data is illustrated in Figure 1. The workflow begins with 
data collection, utilizing real user-input data from the Energy 
Star Portfolio Manager (ESPM) database—a database derived 
from Canadian user inputs—combined with the U.S. 
ComStock database. The preprocessing stage involves several 
steps, including feature selection, handling missing values and 
outliers, and feature engineering. For the ESPM database, a 
climate zone feature was generated using the heating degree 

days (HDD) metric for each building. In the ComStock 
database, a filtration process was applied to exclude buildings 
located in climate zones not present in Canada. 

Six features were selected for the building extraction 
process, implemented through a distance-based matching 
model. Categorical features underwent harmonization to 
ensure consistency between the datasets. The extracted 
buildings then went through the preprocessing pipeline again, 
starting with feature selection, followed by normalization. The 
preprocessed data was then used to train ensemble learning 
models, followed by a detailed retrofit analysis. 

A. Matching Process 

To adapt the ComStock database, originally created for 

buildings in the USA, for use in Canada, the portfolio manager 

database, which is based on Canadian user inputs, is 

employed. Six key features are selected for the matching 

process: climate zone, building construction year, building 

type, gross floor area, annual energy use intensity, and annual 

greenhouse gas (GHG) emissions. Categorical features in the 

dataset are transformed into numerical representations to 

ensure compatibility with the distance-based matching 

process. Specifically, one-hot encoding is applied to 

categorical variables, converting them into binary feature 

vectors. This transformation allows categorical attributes to be 

incorporated alongside numerical features without 

introducing ordinal biases. Once categorical variables are 

encoded, all features undergo normalization to eliminate 

discrepancies in scale and ensure that no single attribute 

dominates the distance calculation. The normalization process 

standardizes numerical features to a common range, 

facilitating a fair comparison between different building 

attributes during the matching process. Euclidean distance 

(Formula 1) is used to calculate the similarity between 

buildings in the two databases. 

𝐷(𝐴, 𝐵) =  √∑(𝑎𝑖 − 𝑏𝑖)
2

6

𝑖=1

 

 

(1) 
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Where 𝑎𝑖 and 𝑏𝑖 represent the feature values of buildings A 

and B, respectively, for the i-th feature.  

In the matching process, each target building, buildings in the 

ESPM database, was iterated through, and the closest 

matched building in the ComStock database was identified 

based on pre-computed distance values. For each target 

building, the already matched ComStock buildings were 

filtered out, and the closest building was selected by finding 

the minimum distance. The index of the closest building was 

recorded as the match, and the building was marked as used 

to prevent it from being selected again. This process was 

repeated until all target buildings were matched, ensuring that 

each building in the ESPM database was paired with the 

closest available building in the ComStock.  

To statistically show the accuracy of the matches, a threshold 

is first calculated based on the below formula using the mean 

and standard deviation of the minimum distances between 

buildings to establish a threshold. The threshold is a distance 

value that helps define what is considered a good match. 

 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝜇 + 𝑘. 𝜕 (2) 

Where μ is the average of the minimum distances, ∂ is the 

standard deviation of the minimum distances and k is 

multiplier which adjusts the sensitivity of the threshold. 

Then to calculate the good matches by counting how many of 

the minimum distances between buildings are less than the 

threshold previously calculated. 

 

𝐺𝑜𝑜𝑑 𝑀𝑎𝑡𝑐ℎ𝑒𝑠 =  ∑ 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑛

𝑖=1

< 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑔𝑜𝑜𝑑 𝑚𝑎𝑡𝑐ℎ𝑒𝑠

=
𝐺𝑜𝑜𝑑 𝑀𝑎𝑡𝑐ℎ𝑒𝑠

𝑛
× 100  

  

 

(3) 

 

Which n is the number of minimum distances in the minimum 

distance array. 

B. Machine learning models 

Two powerful ensemble learning techniques, Random 

Forest (RF) and XGBoost, were used to predict EUI and GHG 

emissions. RF was chosen for its ability to handle high-

dimensional feature interactions and provide interpretability, 

while XGBoost was selected for its superior predictive 

performance through gradient boosting and optimized 

learning. RF is an ensemble method that creates multiple 

decision trees using random subsets of the data, then combines 

their predictions to enhance model robustness and accuracy 

[20]. This approach is particularly effective at reducing 

overfitting and managing high-dimensional data. In contrast, 

XGBoost is a boosting-based technique that trains weak 

learners iteratively, focusing on minimizing errors from prior 

iterations. Its gradient boosting framework, along with 

features like regularization and efficient handling of missing 

data, enables it to capture complex patterns within the data 

effectively [21].  

To optimize the performance of these models, 

RandomizedSearchCV method, which is a package of Scikit 

Learn library [22], was used for hyperparameter tuning. This 

method efficiently explores the hyperparameter space by 

randomly selecting combinations and evaluating their 

performance based on cross-validation. Key parameters, such 

as the number of estimators, maximum depth of trees, and 

learning rate, were tuned for both models. The results of this 

tuning process, including the best parameters and 

corresponding performance metrics, will be detailed in the 

results section. This tuning ensured that the models were well-

suited to the dataset and provided reliable predictions for 

retrofit scenarios. 

 

C. Evaluation metrics 

This study employs three primary evaluation metrics: R-

squared (R²), Mean Absolute Error (MAE), and Root Mean 

Squared Error (RMSE). These metrics assess the 

performance of the trained model on the training data, which 

is then tested using the testing data. The corresponding 

formulas are provided below: 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 
(4) 

 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 
(5) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

 

(6) 

Where n is the number of data points, 𝑦𝑖  is the actual value, 

𝑦̂𝑖  is the predicted value and 𝑦̅  is the mean of the actual 

values. 

III. RESULTS 

This section presents the key findings derived from the 

dataset, highlighting the steps taken to ensure its relevance 

and applicability to Canadian building stock characteristics. 

A. Matching and data evaluation 
The ComStock database was initially filtered based on 

climate zone, reducing the dataset from 336,149 to 193,741 
buildings to better align with Canadian conditions. The 
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Figure 2. Distribution of minimum distances 

 

matching process aimed to find the most similar buildings for 
12,865 target buildings from the Portfolio Manager (PM) 
database. To achieve this, we utilized a Euclidean distance-
based approach across six key features, ensuring a robust and 
consistent comparison. Each target building from the PM 
database was iteratively matched to its closest counterpart in 
the filtered ComStock dataset, prioritizing similarity while 
preventing duplicate matches. The quality of these matches 
was assessed using a threshold-based validation method, 
which determined that approximately 92% of matches were 
within an acceptable distance threshold of 2.43 (with the 
multiplier set to 1). Figure 2 presents the distribution of  
minimum distances, highlighting a peak in frequency just 
before reaching the threshold, indicating the effectiveness of 
the matching strategy in pairing buildings with similar 
characteristics. 

Evaluating the extracted matched buildings, the boxplots 
for EUI and GHG emissions (Figure 3) reveal significant 
variability among building types, underscoring the influence 
of operational characteristics on energy consumption and 
greenhouse gas output. Quick Service Restaurants and Full-
Service Restaurants consistently exhibit the highest median 
values for both EUI (above 100 kWh/ft²) and GHG emissions 
(20,000–40,000 kg CO₂). This is likely due to the energy-
intensive nature of their operations, including frequent use of 
cooking equipment and extended operating hours. In contrast, 
building types such as small offices, medium offices, 
warehouses, and hospitals show narrower distributions, 
reflecting more uniform energy use, though the limited 
hospital sample size may artificially reduce observed 
variability. 

Interestingly, while large offices have slightly higher 
median EUI compared to medium offices, the latter 
demonstrates higher median GHG emissions. This disparity 
may reflect differences in energy source mixes or operational 
efficiencies. The extended whisker lengths for Quick Service 
and Full-Service Restaurants in the EUI plot, along with the 
longer whiskers for medium offices and Full-Service 
Restaurants in the GHG plot, highlight significant variability  

 
 

 

 
 

Figure 3. EUI and GHG emissions distribution across building types 
 

within these categories, possibly due to diverse building 
designs or operational practices. While outliers are present in 
both plots, particularly for Large Offices and restaurants, they 
were retained as they represent simulated variations intended 
to capture diverse building performances. These trends 
emphasize the importance of tailored energy and emissions 
management strategies for different building types. 

Based on Figure 4, Zone 7 has a medium EUI compared 
to other climate zones but records the lowest GHG emissions. 
In contrast, Zone 6 exhibits the highest average GHG 
emissions despite not having the highest EUI. This suggests 
that factors beyond energy consumption, such as the type of 
fuel used, play a significant role in GHG emissions. As shown 
in Figure 5, buildings in Zone 7 primarily use cleaner energy 
sources like electricity, natural gas, and district heating, which 
contribute to its lower GHG emissions. Conversely, a 
significant portion of Zone 6's GHG emissions is attributed to 
the use of carbon-intensive fuels like fuel oil, which lead to 
higher CO₂ emissions despite moderate energy usage. 

The challenge with zones like Zone 7 or Zone 8 is that they 
do not encompass buildings with a wide variety of fuel 
sources, which can reduce the accuracy of the training 
process. To address this limitation, a key future step is to 
update the Portfolio Manager data used to extract the datasets 
and include a broader range of buildings from the source 
database. This would ensure more comprehensive 
representation and improve the reliability of the analysis. 
 

 
Figure 4. EUI and GHG emissions by climate zone 
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TABLE I: HYPERPARAMETER RANGES AND OPTIMIZED VALUES FOR XGBOOST AND RANDOM FOREST MODELS USING 

RANDOMIZEDSEARCHCV

XGB Params Range Optimum RF Params Range Optimum 

Number of estimators [100, 200, 400] 
 

400 Number of estimators Randint (50, 300) 
 

169 

Estimator max depth [3, 6, 10] 6 max depth [None, 10, 20, 30, 40] 40 

 

Estimator learning rate [0.01, 0.05, 0.1, 0.2] 0.1 Min sample split Randint (2, 10) 2 

Estimator subsample [0.7, 0.8, 0.9] 

 

0.8 Min sample leaf 

 

Randint (1, 10) 

 

3 

Estimator colsample bytree [0.7, 0.8, 0.9] 0.8 max_features ['sqrt', 'log2', None] sqrt 

   Bootstrap [True, False] False 

 

B.Model training 

Table 1 summarizes the hyperparameter ranges and the 
optimized values for the two machine learning models used in 
this study: XGBoost (XGB) and Random Forest (RF). The 
purpose of this parameter tuning is to improve the predictive 
performance of each model by identifying the optimal 
combination of hyperparameters. The tuning process was 
conducted using RandomizedSearchCV method, which   
performs a randomized search over the specified parameter 
ranges to find the best-performing configuration. 

The hyperparameters chosen for the Random Forest (RF) 
and XGBoost models reveal important aspects of their 
optimization and performance. For example, max_features in 
the RF model defines how many features are considered at 
each split, with "sqrt" being the optimal value here. This 
parameter contributes to the diversity of the decision trees, a 
crucial element in improving generalization while 
maintaining computational efficiency. Similarly, the number 
of estimators (optimal value: 169 for RF and 400 for 
XGBoost) governs the ensemble size, directly affecting both 
model accuracy and training time. The selection of a higher 
number of estimators in XGBoost suggests its ability to handle 
larger ensembles effectively, while the smaller optimal value 
for RF indicates a balance between computational efficiency 
and predictive power. 

Another point of interest is the learning rate in XGBoost, 
which controls the step size during optimization. The optimal 
value of 0.1 strikes a balance between convergence speed and 
overfitting prevention. On the other hand, parameters like min 
samples split and min samples leaf in RF are essential for 
controlling tree growth and preventing overfitting by 
requiring a minimum number of data points at splits or leaves. 
The interplay between these parameters highlights how 
RandomizedSearchCV has fine-tuned the models to suit the 
dataset’s characteristics. These optimal values reflect the need 
to manage trade-offs between model complexity, overfitting, 
and computational demands, providing an essential balance 
for practical implementation. The selected optimum values 
were then utilized during the training process to ensure the 
models were fine-tuned for optimal performance. 

The model was trained using 90% of the data and then 
tested on the remaining 10%, which includes over 1,200 
different buildings. The training evaluation results (Table 2) 
highlight that XGBoost outperforms Random Forest in 

predicting both EUI and GHG emissions, as shown by higher 
R² values and lower RMSE and MAE metrics. XGBoost 
achieves an R² of 0.91 for EUI prediction compared to 0.83 
for Random Forest, and similarly, an R² of 0.86 for GHG 
emissions prediction compared to 0.75 for Random Forest. 
This superior performance underscores XGBoost’s capability 
to handle complex patterns in the data effectively. For 
example, in EUI prediction, the reduction in RMSE from 5.05 
(Random Forest) to 3.54 (XGBoost) reflects its ability to 
better capture underlying relationships, while the drop in 
MAE from 2.94 to 1.99 shows improved precision in its 
predictions. 

The high-dimensional input vector, consisting of 
approximately 48 predictors, plays a critical role in XGBoost's 
superior performance. XGBoost is particularly adept at 
managing complex feature interactions and identifying 
important predictors, thanks to its gradient boosting 
framework and regularization techniques. This is especially 
beneficial when working with many predictors, as it reduces 
the risk of overfitting and effectively prunes less relevant 
splits. Random Forest, while robust, may struggle with high-
dimensional data, as it treats all features more equally and 
lacks the inherent optimization for feature selection and 
interaction modeling. The results are visualized in Figure 6, 
using plots that show the relationship between predicted and 
measured values, with the red dashed line representing perfect 
predictions. These graphs highlight the performance of both 
models. The scatter plots demonstrate how closely the 
predicted values align with the measured values, with the red 
dashed line indicating the ideal prediction scenario. It is 
evident that XGBoost offers a more accurate fit for both EUI 
and GHG emissions data, as reflected by its higher R² values 
and smaller deviations from the perfect prediction line. This 
makes XGBoost the superior model in terms of predictive 
power and accuracy. 

 
Figure 5. Average GHG emissions by heating fuel type and climate 

zone
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TABLE II: TRAINING EVALUATION

 EUI Prediction GHG Emissions Prediction 

Model  R2  RMSE (kWh/ft2) MAE (kWh/ft2) R2  RMSE (kg-CO2) MAE (kg-CO2) 

Random Forrest  0.83 5.05 2.94 0.75 2440.59 1481.82 

XGBoost 0.91 3.54 1.99 0.86 1840.10 1012.21 

C. Retrofit evaluation and savings 

Figure 7 provides a clear comparison of how switching 
HVAC heating types affects both EUI and GHG emissions. 
For example, transitioning from a Furnace with Propane as its 
fuel source to an air source heat pump (ASHP) using 
Electricity results in a notable reduction in both metrics. The 
EUI decreases from approximately 29.5 kWh/ft² to around 
27.5 kWh/ft², indicating improved energy efficiency. 
Similarly, the GHG emissions drop significantly from around 
3,612 kg-CO₂ to just above 2,348 kg-CO₂, highlighting the 
environmental benefit of switching to a cleaner fuel source. 
This comparison underscores the potential of fuel changes in 
HVAC systems to achieve both energy and emission savings. 
While the evaluation presented in Figure 7 for a single 
building is valuable for specific retrofit scenarios, it is 
generally insufficient for policymakers and organizations 
involved in building retrofits. Decisions are rarely made based 
on the performance of a single building; instead, stakeholders 
prefer to evaluate retrofit savings across a broader portfolio of 
buildings [23]. To address this need, a sample of 100 diverse 
buildings across different climate zones was selected from the 
original database, and two distinct datasets—pre-retrofit and 
post-retrofit—were created for analysis. 

The pre-retrofit dataset represents the baseline scenario, 
where all buildings maintain their existing features except for 
the retrofit-specific variables (in this case, HVAC Heating 
Type and Heating Fuel Type), which were standardized to 
Furnace and Propane. Conversely, the post-retrofit dataset 
includes the same buildings with identical features as the pre-
retrofit dataset, but with HVAC Heating Type and Heating 
Fuel Type changed to ASHP and Electricity to simulate the 
retrofit. Additional post-retrofit scenarios were created by 
varying the HVAC and fuel types, consistent with the single 
building retrofit analysis. 

The resulting distributions of EUI and GHG emissions for 
various retrofit scenarios are shown in Figure 8. In this 
context, 'positive savings' refers to reductions in EUI and 
GHG emissions compared to the base case. Retrofitting from 
Furnace/Propane to options such as Furnace/Natural Gas, 
ASHP/Electricity, and Electric Resistance/Electricity 
demonstrated more than 70% of buildings achieving positive 
energy savings, highlighting the reliability of these scenarios 
for energy efficiency improvements. On the other hand, the 
transition from Furnace/Propane to Furnace/Fuel Oil 
exhibited the lowest positive change in GHG emissions, with 
nearly 98% of buildings showing negative savings. This 
outcome aligns with expectations, as Fuel Oil typically results 
in higher GHG emissions. Retrofitting to ASHP and Electric 
Resistance systems also showed high positive changes in 

GHG reductions, reinforcing their effectiveness in lowering 
carbon emissions across a diverse building sample. 

For District/District Heating, while the exact methodology 
for calculating heating energy and GHG emissions in the 
ComStock database is not explicitly detailed, the results 
presented in Figure 8 highlight the significant variability in 
district heating impacts among buildings. This variability is 
largely due to differences in fuel sources used within district 
heating networks, which can range from renewable energy 
sources to fossil fuels. For instance, in the case of the building 
depicted in Figure 7, the energy source could predominantly 
be renewables, resulting in very low GHG emissions 
alongside reasonable EUI. In contrast, other buildings, likely 
relying on fossil fuels for district heating, exhibit markedly 
different results, with higher EUI outcomes. Although, on the 
other hand, the positive GHG emissions observed for a group 
of buildings suggest that other attributes may influence district 
heating GHG emissions and even EUI. These attributes could 
not be accounted for due to a lack of available information. It 
is also worth noting that while 99% of the buildings using 
District/DistrictHeating show positive GHG emissions, the 
average GHG emissions of this group are 4526 kg-CO2, 
which is lower than buildings using Furnace/Propane (base 
case) with an average of 6365 kg-CO2, yet notably higher than 
the example building shown in Figure 7. This suggests that, 
despite the variability in district heating sources, the overall 
emissions performance of these systems may align more 
closely with that of fossil fuel-based systems like 
Furnace/Propane.  

 

 
 

Figure 6. Comparison of predicted vs. measured EUI and GHG 
emissions for Random Forest and XGBoost models 
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Figure 7. Comparative analysis of predicted energy use intensity (kWh/ft²) 

and GHG emissions (kg-CO₂) across various HVAC heating types 
 

These findings highlight the need for further investigation into 
the specific factors influencing emissions variations across 
different building groups. 

There may be some inaccuracies in the results due to the 
limited data used for training the regression model and its 
inability to accurately predict certain combinations of 
features. Other retrofit scenarios, such as changing window 
types, wall materials, or window-to-wall ratios, can also be 
evaluated using the same proposed methodology. While 
combining multiple retrofit scenarios could provide a more 
comprehensive evaluation, it introduces complexity, making 
it challenging to isolate the impact of each individual scenario. 

IV. CONCLUSION AND FUTURE WORK 

This study addresses the critical challenge of improving 
energy efficiency and reducing greenhouse gas (GHG) 
emissions in existing buildings, which contribute significantly 
to global emissions. While traditional methods such as 
physics-based energy simulation models offer valuable 
insights into retrofit scenarios, their limitations, including 
expertise requirements, time-consuming processes, and 
inherent uncertainties—can impede their practical 
application. Similarly, data-driven approaches using ML 
models face challenges due to the lack of reliable measured 
data and privacy concerns. 

To bridge these gaps, this research integrates data-
matching techniques with highly calibrated simulation 
databases to overcome data limitations for ML-based 
retrofitting analyses. By employing a Euclidean distance-
based matching algorithm, this approach successfully 
identifies comparable buildings and extracts valuable data, 
achieving a high success rate. Ensemble learning models, 
specifically Random Forest (RF) and XGBoost, were trained 
on the matched data to predict EUI and GHG emissions. The 
optimized XGBoost model outperformed RF, demonstrating 
superior accuracy and robustness with R² values of 0.91 for 
EUI and 0.86 for GHG emissions. 

The study further demonstrated the environmental and 
energy efficiency benefits of transitioning HVAC systems to 
cleaner fuel sources, such as air-source heat pumps. To 
enhance the generalizability of the findings, a distribution-
based method was introduced, which analyzed retrofit impacts 
across a sample of 100 buildings of various types and in 
different climate zones. This method provides actionable 
insights and a scalable framework for policymakers and 

stakeholders to make informed, data-driven decisions on 
building retrofits. 

By combining advanced data-matching techniques with 
machine learning and proposing a scalable evaluation 
framework, this research contributes to the growing body of 
knowledge on sustainable building retrofits. The scalability 
lies in its ability to generalize retrofit impacts across a diverse 
range of building types, climates, and geographic regions.  
Future work could focus on: 

1. Adding cost as a target variable to evaluate the 
economic aspects of retrofits, providing a more 
comprehensive assessment that integrates energy, 
environmental, and financial impacts. 

2. Updating the portfolio manager data dynamically 
with new inputs from users to enhance the adaptability and 
applicability of the proposed framework, ensuring it remains 
relevant and effective in real-world scenarios. 

 
 
Figure 8. Distributions of EUI and GHG emissions savings for various 

retrofit scenarios of heating HVAC and fuel type across a 100-building 
sample 
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